compaction.c 56.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
10
#include <linux/cpu.h>
11 12 13 14 15
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
16
#include <linux/sysctl.h>
17
#include <linux/sysfs.h>
18
#include <linux/page-isolation.h>
19
#include <linux/kasan.h>
20 21
#include <linux/kthread.h>
#include <linux/freezer.h>
22
#include <linux/page_owner.h>
23 24
#include "internal.h"

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

40 41
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

42 43 44
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

45 46 47 48 49
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

50 51 52
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
53
	unsigned long high_pfn = 0;
54 55

	list_for_each_entry_safe(page, next, freelist, lru) {
56
		unsigned long pfn = page_to_pfn(page);
57 58
		list_del(&page->lru);
		__free_page(page);
59 60
		if (pfn > high_pfn)
			high_pfn = pfn;
61 62
	}

63
	return high_pfn;
64 65
}

66 67
static void map_pages(struct list_head *list)
{
68 69 70 71 72 73 74 75 76 77
	unsigned int i, order, nr_pages;
	struct page *page, *next;
	LIST_HEAD(tmp_list);

	list_for_each_entry_safe(page, next, list, lru) {
		list_del(&page->lru);

		order = page_private(page);
		nr_pages = 1 << order;

78
		post_alloc_hook(page, order, __GFP_MOVABLE);
79 80
		if (order)
			split_page(page, order);
81

82 83 84 85
		for (i = 0; i < nr_pages; i++) {
			list_add(&page->lru, &tmp_list);
			page++;
		}
86
	}
87 88

	list_splice(&tmp_list, list);
89 90
}

91 92 93 94 95
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

96
#ifdef CONFIG_COMPACTION
97

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
int PageMovable(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	if (!__PageMovable(page))
		return 0;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
		return 1;

	return 0;
}
EXPORT_SYMBOL(PageMovable);

void __SetPageMovable(struct page *page, struct address_space *mapping)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);

void __ClearPageMovable(struct page *page)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	/*
	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
	 * flag so that VM can catch up released page by driver after isolation.
	 * With it, VM migration doesn't try to put it back.
	 */
	page->mapping = (void *)((unsigned long)page->mapping &
				PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

206 207 208 209 210 211 212 213 214 215
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

216 217 218 219
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
220
	zone->compact_cached_free_pfn =
221
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
222 223
}

224 225 226 227 228
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
229
static void __reset_isolation_suitable(struct zone *zone)
230 231
{
	unsigned long start_pfn = zone->zone_start_pfn;
232
	unsigned long end_pfn = zone_end_pfn(zone);
233 234
	unsigned long pfn;

235
	zone->compact_blockskip_flush = false;
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
252 253

	reset_cached_positions(zone);
254 255
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

271 272
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
273
 * future. The information is later cleared by __reset_isolation_suitable().
274
 */
275 276
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
277
			bool migrate_scanner)
278
{
279
	struct zone *zone = cc->zone;
280
	unsigned long pfn;
281 282 283 284

	if (cc->ignore_skip_hint)
		return;

285 286 287
	if (!page)
		return;

288 289 290
	if (nr_isolated)
		return;

291
	set_pageblock_skip(page);
292

293 294 295 296 297 298
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
299 300
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
301 302 303 304
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
305
	}
306 307 308 309 310 311 312 313
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

314 315
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
316
			bool migrate_scanner)
317 318 319 320
{
}
#endif /* CONFIG_COMPACTION */

321 322 323 324 325 326 327 328 329 330
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
331
{
332 333
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
334
			cc->contended = true;
335 336 337 338 339
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
340

341
	return true;
342 343
}

344 345
/*
 * Compaction requires the taking of some coarse locks that are potentially
346 347 348 349 350 351 352
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
353
 *
354 355 356 357
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
358
 */
359 360
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
361
{
362 363 364 365
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
366

367
	if (fatal_signal_pending(current)) {
368
		cc->contended = true;
369 370
		return true;
	}
371

372
	if (need_resched()) {
373
		if (cc->mode == MIGRATE_ASYNC) {
374
			cc->contended = true;
375
			return true;
376 377 378 379
		}
		cond_resched();
	}

380
	return false;
381 382
}

383 384 385
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
386
 * compaction. This is similar to what compact_unlock_should_abort() does, but
387 388 389 390 391 392 393 394 395 396
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
397
			cc->contended = true;
398 399 400 401 402 403 404 405 406
			return true;
		}

		cond_resched();
	}

	return false;
}

407
/*
408 409 410
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
411
 */
412
static unsigned long isolate_freepages_block(struct compact_control *cc,
413
				unsigned long *start_pfn,
414 415 416
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
417
{
418
	int nr_scanned = 0, total_isolated = 0;
419
	struct page *cursor, *valid_page = NULL;
420
	unsigned long flags = 0;
421
	bool locked = false;
422
	unsigned long blockpfn = *start_pfn;
423
	unsigned int order;
424 425 426

	cursor = pfn_to_page(blockpfn);

427
	/* Isolate free pages. */
428
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
429
		int isolated;
430 431
		struct page *page = cursor;

432 433 434 435 436 437 438 439 440 441
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

442
		nr_scanned++;
443
		if (!pfn_valid_within(blockpfn))
444 445
			goto isolate_fail;

446 447
		if (!valid_page)
			valid_page = page;
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER)) {
				blockpfn += (1UL << comp_order) - 1;
				cursor += (1UL << comp_order) - 1;
			}

			goto isolate_fail;
		}

466
		if (!PageBuddy(page))
467
			goto isolate_fail;
468 469

		/*
470 471 472 473 474
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
475
		 */
476 477 478 479 480 481 482 483 484
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
485 486
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
487 488
			if (!locked)
				break;
489

490 491 492 493
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
494

495 496 497
		/* Found a free page, will break it into order-0 pages */
		order = page_order(page);
		isolated = __isolate_free_page(page, order);
498 499
		if (!isolated)
			break;
500
		set_page_private(page, order);
501

502
		total_isolated += isolated;
503
		cc->nr_freepages += isolated;
504 505
		list_add_tail(&page->lru, freelist);

506 507 508
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
			blockpfn += isolated;
			break;
509
		}
510 511 512 513
		/* Advance to the end of split page */
		blockpfn += isolated - 1;
		cursor += isolated - 1;
		continue;
514 515 516 517 518 519 520

isolate_fail:
		if (strict)
			break;
		else
			continue;

521 522
	}

523 524 525
	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

526 527 528 529 530 531 532
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

533 534 535
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

536 537 538
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

539 540 541 542 543
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
544
	if (strict && blockpfn < end_pfn)
545 546
		total_isolated = 0;

547 548
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
549
		update_pageblock_skip(cc, valid_page, total_isolated, false);
550

551
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
552
	if (total_isolated)
553
		count_compact_events(COMPACTISOLATED, total_isolated);
554 555 556
	return total_isolated;
}

557 558 559 560 561 562 563 564 565 566 567 568 569
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
570
unsigned long
571 572
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
573
{
574
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
575 576
	LIST_HEAD(freelist);

577
	pfn = start_pfn;
578
	block_start_pfn = pageblock_start_pfn(pfn);
579 580
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
581
	block_end_pfn = pageblock_end_pfn(pfn);
582 583

	for (; pfn < end_pfn; pfn += isolated,
584
				block_start_pfn = block_end_pfn,
585
				block_end_pfn += pageblock_nr_pages) {
586 587
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
588 589 590

		block_end_pfn = min(block_end_pfn, end_pfn);

591 592 593 594 595 596
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
597 598
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
599 600 601
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

602 603
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
604 605
			break;

606 607
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

624
	/* __isolate_free_page() does not map the pages */
625 626 627 628 629 630 631 632 633 634 635 636
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

637
/* Update the number of anon and file isolated pages in the zone */
638
static void acct_isolated(struct zone *zone, struct compact_control *cc)
639 640
{
	struct page *page;
641
	unsigned int count[2] = { 0, };
642

643 644 645
	if (list_empty(&cc->migratepages))
		return;

646 647
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
648

M
Mel Gorman 已提交
649 650
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, count[0]);
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, count[1]);
651 652 653 654 655
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
656
	unsigned long active, inactive, isolated;
657

M
Mel Gorman 已提交
658 659 660 661 662 663
	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
664

665
	return isolated > (inactive + active) / 2;
666 667
}

668
/**
669 670
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
671
 * @cc:		Compaction control structure.
672 673 674
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
675 676
 *
 * Isolate all pages that can be migrated from the range specified by
677 678 679 680
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
681
 *
682 683 684
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
685
 */
686 687 688
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
689
{
690
	struct zone *zone = cc->zone;
691
	unsigned long nr_scanned = 0, nr_isolated = 0;
692
	struct lruvec *lruvec;
693
	unsigned long flags = 0;
694
	bool locked = false;
695
	struct page *page = NULL, *valid_page = NULL;
696
	unsigned long start_pfn = low_pfn;
697 698
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
699 700 701 702 703 704 705

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
706
		/* async migration should just abort */
707
		if (cc->mode == MIGRATE_ASYNC)
708
			return 0;
709

710 711 712
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
713
			return 0;
714 715
	}

716 717
	if (compact_should_abort(cc))
		return 0;
718

719 720 721 722 723
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

724 725
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

749 750 751 752 753 754
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
755
		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
756 757
								&locked, cc))
			break;
758

759
		if (!pfn_valid_within(low_pfn))
760
			goto isolate_fail;
761
		nr_scanned++;
762 763

		page = pfn_to_page(low_pfn);
764

765 766 767
		if (!valid_page)
			valid_page = page;

768
		/*
769 770 771 772
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
773
		 */
774 775 776 777 778 779 780 781 782 783
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
784
			continue;
785
		}
786

787
		/*
788 789 790 791 792
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
793
		 */
794 795 796 797 798
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER))
				low_pfn += (1UL << comp_order) - 1;
799

800
			goto isolate_fail;
801 802
		}

803 804 805 806 807 808 809 810 811 812 813 814 815
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU and non-lru movable pages.
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			/*
			 * __PageMovable can return false positive so we need
			 * to verify it under page_lock.
			 */
			if (unlikely(__PageMovable(page)) &&
					!PageIsolated(page)) {
				if (locked) {
816
					spin_unlock_irqrestore(zone_lru_lock(zone),
817 818 819 820 821 822 823 824
									flags);
					locked = false;
				}

				if (isolate_movable_page(page, isolate_mode))
					goto isolate_success;
			}

825
			goto isolate_fail;
826
		}
827

828 829 830 831 832 833 834
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
835
			goto isolate_fail;
836

837 838
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
839
			locked = compact_trylock_irqsave(zone_lru_lock(zone),
840
								&flags, cc);
841 842
			if (!locked)
				break;
843

844
			/* Recheck PageLRU and PageCompound under lock */
845
			if (!PageLRU(page))
846
				goto isolate_fail;
847 848 849 850 851 852 853 854

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
				low_pfn += (1UL << compound_order(page)) - 1;
855
				goto isolate_fail;
856
			}
857 858
		}

M
Mel Gorman 已提交
859
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
860

861
		/* Try isolate the page */
862
		if (__isolate_lru_page(page, isolate_mode) != 0)
863
			goto isolate_fail;
864

865
		VM_BUG_ON_PAGE(PageCompound(page), page);
866

867
		/* Successfully isolated */
868
		del_page_from_lru_list(page, lruvec, page_lru(page));
869 870

isolate_success:
871
		list_add(&page->lru, &cc->migratepages);
872
		cc->nr_migratepages++;
873
		nr_isolated++;
874

875 876 877 878 879 880 881 882 883
		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator.
		 * - this is the lowest page that was isolated and likely be
		 * then freed by migration.
		 */
		if (!cc->last_migrated_pfn)
			cc->last_migrated_pfn = low_pfn;

884
		/* Avoid isolating too much */
885 886
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
887
			break;
888
		}
889 890 891 892 893 894 895 896 897 898 899 900 901

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
902
				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
				locked = false;
			}
			acct_isolated(zone, cc);
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			cc->last_migrated_pfn = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
920 921
	}

922 923 924 925 926 927 928
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

929
	if (locked)
930
		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
931

932 933 934 935
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
936
	if (low_pfn == end_pfn)
937
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
938

939 940
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
941

942
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
943
	if (nr_isolated)
944
		count_compact_events(COMPACTISOLATED, nr_isolated);
945

946 947 948
	return low_pfn;
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
963
	unsigned long pfn, block_start_pfn, block_end_pfn;
964 965 966

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
967
	block_start_pfn = pageblock_start_pfn(pfn);
968 969
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
970
	block_end_pfn = pageblock_end_pfn(pfn);
971 972

	for (; pfn < end_pfn; pfn = block_end_pfn,
973
				block_start_pfn = block_end_pfn,
974 975 976 977
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

978 979
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
980 981 982 983 984
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

985
		if (!pfn)
986
			break;
987 988 989

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
990 991 992 993 994 995
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

996 997
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
998 999

/* Returns true if the page is within a block suitable for migration to */
1000 1001
static bool suitable_migration_target(struct compact_control *cc,
							struct page *page)
1002
{
1003 1004 1005
	if (cc->ignore_block_suitable)
		return true;

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
		return true;

	/* Otherwise skip the block */
	return false;
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

1035
/*
1036 1037
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
1038
 */
1039
static void isolate_freepages(struct compact_control *cc)
1040
{
1041
	struct zone *zone = cc->zone;
1042
	struct page *page;
1043
	unsigned long block_start_pfn;	/* start of current pageblock */
1044
	unsigned long isolate_start_pfn; /* exact pfn we start at */
1045 1046
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1047
	struct list_head *freelist = &cc->freepages;
1048

1049 1050
	/*
	 * Initialise the free scanner. The starting point is where we last
1051
	 * successfully isolated from, zone-cached value, or the end of the
1052 1053
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
1054 1055 1056
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
1057 1058
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
1059
	 */
1060
	isolate_start_pfn = cc->free_pfn;
1061
	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1062 1063
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1064
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1065

1066 1067 1068 1069 1070
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1071
	for (; block_start_pfn >= low_pfn;
1072
				block_end_pfn = block_start_pfn,
1073 1074
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1075 1076 1077
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
1078
		 * to schedule, or even abort async compaction.
1079
		 */
1080 1081 1082
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1083

1084 1085 1086
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1087 1088 1089
			continue;

		/* Check the block is suitable for migration */
1090
		if (!suitable_migration_target(cc, page))
1091
			continue;
1092

1093 1094 1095 1096
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1097
		/* Found a block suitable for isolating free pages from. */
1098 1099
		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
					freelist, false);
1100

1101
		/*
1102 1103
		 * If we isolated enough freepages, or aborted due to lock
		 * contention, terminate.
1104
		 */
1105 1106
		if ((cc->nr_freepages >= cc->nr_migratepages)
							|| cc->contended) {
1107 1108 1109 1110 1111
			if (isolate_start_pfn >= block_end_pfn) {
				/*
				 * Restart at previous pageblock if more
				 * freepages can be isolated next time.
				 */
1112 1113
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1114
			}
1115
			break;
1116
		} else if (isolate_start_pfn < block_end_pfn) {
1117
			/*
1118 1119
			 * If isolation failed early, do not continue
			 * needlessly.
1120
			 */
1121
			break;
1122
		}
1123 1124
	}

1125
	/* __isolate_free_page() does not map the pages */
1126 1127
	map_pages(freelist);

1128
	/*
1129 1130 1131 1132
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1133
	 */
1134
	cc->free_pfn = isolate_start_pfn;
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1148 1149 1150 1151
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1152
	if (list_empty(&cc->freepages)) {
1153
		if (!cc->contended)
1154
			isolate_freepages(cc);
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1180 1181 1182 1183 1184 1185 1186
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1187 1188 1189 1190 1191 1192
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1193
/*
1194 1195 1196
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1197 1198 1199 1200
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1201 1202 1203
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1204 1205
	struct page *page;
	const isolate_mode_t isolate_mode =
1206
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1207
		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1208

1209 1210 1211 1212 1213
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1214
	block_start_pfn = pageblock_start_pfn(low_pfn);
1215 1216
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1217 1218

	/* Only scan within a pageblock boundary */
1219
	block_end_pfn = pageblock_end_pfn(low_pfn);
1220

1221 1222 1223 1224
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1225 1226 1227 1228
	for (; block_end_pfn <= cc->free_pfn;
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1229

1230 1231 1232 1233 1234 1235 1236 1237
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1238

1239 1240
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1241
		if (!page)
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
1258 1259
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1260

1261 1262
		if (!low_pfn || cc->contended) {
			acct_isolated(zone, cc);
1263
			return ISOLATE_ABORT;
1264
		}
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
1275 1276
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1277

1278
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1279 1280
}

1281 1282 1283 1284 1285 1286 1287 1288 1289
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1290
static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1291
			    const int migratetype)
1292
{
1293
	unsigned int order;
1294
	unsigned long watermark;
1295

1296
	if (cc->contended || fatal_signal_pending(current))
1297
		return COMPACT_CONTENDED;
1298

1299
	/* Compaction run completes if the migrate and free scanner meet */
1300
	if (compact_scanners_met(cc)) {
1301
		/* Let the next compaction start anew. */
1302
		reset_cached_positions(zone);
1303

1304 1305
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1306
		 * by kswapd when it goes to sleep. kcompactd does not set the
1307 1308 1309
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1310
		if (cc->direct_compaction)
1311 1312
			zone->compact_blockskip_flush = true;

1313 1314 1315 1316
		if (cc->whole_zone)
			return COMPACT_COMPLETE;
		else
			return COMPACT_PARTIAL_SKIPPED;
1317
	}
1318

1319
	if (is_via_compact_memory(cc->order))
1320 1321
		return COMPACT_CONTINUE;

1322
	/* Compaction run is not finished if the watermark is not met */
1323
	watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK];
1324

1325 1326
	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
							cc->alloc_flags))
1327 1328
		return COMPACT_CONTINUE;

1329
	/* Direct compactor: Is a suitable page free? */
1330 1331
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];
1332
		bool can_steal;
1333 1334

		/* Job done if page is free of the right migratetype */
1335
		if (!list_empty(&area->free_list[migratetype]))
1336
			return COMPACT_SUCCESS;
1337

1338 1339 1340 1341
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
			!list_empty(&area->free_list[MIGRATE_CMA]))
1342
			return COMPACT_SUCCESS;
1343 1344 1345 1346 1347 1348 1349
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
						true, &can_steal) != -1)
1350
			return COMPACT_SUCCESS;
1351 1352
	}

1353 1354 1355
	return COMPACT_NO_SUITABLE_PAGE;
}

1356 1357 1358
static enum compact_result compact_finished(struct zone *zone,
			struct compact_control *cc,
			const int migratetype)
1359 1360 1361 1362 1363 1364 1365 1366 1367
{
	int ret;

	ret = __compact_finished(zone, cc, migratetype);
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1368 1369
}

1370 1371 1372 1373
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1374
 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1375 1376
 *   COMPACT_CONTINUE - If compaction should run now
 */
1377
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1378
					unsigned int alloc_flags,
1379 1380
					int classzone_idx,
					unsigned long wmark_target)
1381 1382 1383
{
	unsigned long watermark;

1384
	if (is_via_compact_memory(order))
1385 1386
		return COMPACT_CONTINUE;

1387
	watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1388 1389 1390 1391 1392 1393
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
1394
		return COMPACT_SUCCESS;
1395

1396
	/*
1397
	 * Watermarks for order-0 must be met for compaction to be able to
1398 1399 1400 1401 1402 1403 1404
	 * isolate free pages for migration targets. This means that the
	 * watermark and alloc_flags have to match, or be more pessimistic than
	 * the check in __isolate_free_page(). We don't use the direct
	 * compactor's alloc_flags, as they are not relevant for freepage
	 * isolation. We however do use the direct compactor's classzone_idx to
	 * skip over zones where lowmem reserves would prevent allocation even
	 * if compaction succeeds.
1405 1406
	 * For costly orders, we require low watermark instead of min for
	 * compaction to proceed to increase its chances.
1407 1408
	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
	 * suitable migration targets
1409
	 */
1410 1411 1412
	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
				low_wmark_pages(zone) : min_wmark_pages(zone);
	watermark += compact_gap(order);
1413
	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1414
						ALLOC_CMA, wmark_target))
1415 1416
		return COMPACT_SKIPPED;

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	return COMPACT_CONTINUE;
}

enum compact_result compaction_suitable(struct zone *zone, int order,
					unsigned int alloc_flags,
					int classzone_idx)
{
	enum compact_result ret;
	int fragindex;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
				    zone_page_state(zone, NR_FREE_PAGES));
1429 1430 1431 1432
	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1433 1434
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1435 1436 1437
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
1438 1439 1440 1441 1442 1443
	 * Only compact if a failure would be due to fragmentation. Also
	 * ignore fragindex for non-costly orders where the alternative to
	 * a successful reclaim/compaction is OOM. Fragindex and the
	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
	 * excessive compaction for costly orders, but it should not be at the
	 * expense of system stability.
1444
	 */
1445
	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1446 1447 1448 1449
		fragindex = fragmentation_index(zone, order);
		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
			ret = COMPACT_NOT_SUITABLE_ZONE;
	}
1450 1451 1452 1453 1454 1455 1456 1457

	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
		int alloc_flags)
{
	struct zone *zone;
	struct zoneref *z;

	/*
	 * Make sure at least one zone would pass __compaction_suitable if we continue
	 * retrying the reclaim.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
		enum compact_result compact_result;

		/*
		 * Do not consider all the reclaimable memory because we do not
		 * want to trash just for a single high order allocation which
		 * is even not guaranteed to appear even if __compaction_suitable
		 * is happy about the watermark check.
		 */
1479
		available = zone_reclaimable_pages(zone) / order;
1480 1481 1482
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
		compact_result = __compaction_suitable(zone, order, alloc_flags,
				ac_classzone_idx(ac), available);
1483
		if (compact_result != COMPACT_SKIPPED)
1484 1485 1486 1487 1488 1489
			return true;
	}

	return false;
}

1490
static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1491
{
1492
	enum compact_result ret;
1493
	unsigned long start_pfn = zone->zone_start_pfn;
1494
	unsigned long end_pfn = zone_end_pfn(zone);
1495
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1496
	const bool sync = cc->mode != MIGRATE_ASYNC;
1497

1498 1499
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1500
	/* Compaction is likely to fail */
1501
	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1502
		return ret;
1503 1504 1505

	/* huh, compaction_suitable is returning something unexpected */
	VM_BUG_ON(ret != COMPACT_CONTINUE);
1506

1507 1508
	/*
	 * Clear pageblock skip if there were failures recently and compaction
1509
	 * is about to be retried after being deferred.
1510
	 */
1511
	if (compaction_restarting(zone, cc->order))
1512 1513
		__reset_isolation_suitable(zone);

1514 1515
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
1516 1517 1518
	 * information on where the scanners should start (unless we explicitly
	 * want to compact the whole zone), but check that it is initialised
	 * by ensuring the values are within zone boundaries.
1519
	 */
1520
	if (cc->whole_zone) {
1521
		cc->migrate_pfn = start_pfn;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
	} else {
		cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
		cc->free_pfn = zone->compact_cached_free_pfn;
		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
			zone->compact_cached_free_pfn = cc->free_pfn;
		}
		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
			cc->migrate_pfn = start_pfn;
			zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
			zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
		}
1535

1536 1537 1538
		if (cc->migrate_pfn == start_pfn)
			cc->whole_zone = true;
	}
1539

1540
	cc->last_migrated_pfn = 0;
1541

1542 1543
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1544

1545 1546
	migrate_prep_local();

1547 1548
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1549
		int err;
1550

1551 1552
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
1553
			ret = COMPACT_CONTENDED;
1554
			putback_movable_pages(&cc->migratepages);
1555
			cc->nr_migratepages = 0;
1556 1557
			goto out;
		case ISOLATE_NONE:
1558 1559 1560 1561 1562 1563
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1564 1565 1566
		case ISOLATE_SUCCESS:
			;
		}
1567

1568
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1569
				compaction_free, (unsigned long)cc, cc->mode,
1570
				MR_COMPACTION);
1571

1572 1573
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1574

1575 1576
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1577
		if (err) {
1578
			putback_movable_pages(&cc->migratepages);
1579 1580 1581 1582
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
1583
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1584
				ret = COMPACT_CONTENDED;
1585 1586
				goto out;
			}
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
				cc->last_migrated_pfn = 0;

			}
1599
		}
1600 1601 1602 1603 1604 1605 1606 1607 1608

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
1609
		if (cc->order > 0 && cc->last_migrated_pfn) {
1610 1611
			int cpu;
			unsigned long current_block_start =
1612
				block_start_pfn(cc->migrate_pfn, cc->order);
1613

1614
			if (cc->last_migrated_pfn < current_block_start) {
1615 1616 1617 1618 1619
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
1620
				cc->last_migrated_pfn = 0;
1621 1622 1623
			}
		}

1624 1625
	}

1626
out:
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
1637
		free_pfn = pageblock_start_pfn(free_pfn);
1638 1639 1640 1641 1642 1643 1644
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1645

1646 1647
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1648

1649 1650
	return ret;
}
1651

1652
static enum compact_result compact_zone_order(struct zone *zone, int order,
1653
		gfp_t gfp_mask, enum compact_priority prio,
1654
		unsigned int alloc_flags, int classzone_idx)
1655
{
1656
	enum compact_result ret;
1657 1658 1659 1660
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1661
		.gfp_mask = gfp_mask,
1662
		.zone = zone,
1663 1664
		.mode = (prio == COMPACT_PRIO_ASYNC) ?
					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1665 1666
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1667
		.direct_compaction = true,
1668
		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
1669 1670
		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1671 1672 1673 1674
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1675 1676 1677 1678 1679 1680
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	return ret;
1681 1682
}

1683 1684
int sysctl_extfrag_threshold = 500;

1685 1686 1687
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1688 1689 1690
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1691
 * @mode: The migration mode for async, sync light, or sync migration
1692 1693 1694
 *
 * This is the main entry point for direct page compaction.
 */
1695
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1696
		unsigned int alloc_flags, const struct alloc_context *ac,
1697
		enum compact_priority prio)
1698 1699 1700 1701 1702
{
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1703
	enum compact_result rc = COMPACT_SKIPPED;
1704

1705
	/* Check if the GFP flags allow compaction */
1706
	if (!may_enter_fs || !may_perform_io)
1707
		return COMPACT_SKIPPED;
1708

1709
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1710

1711
	/* Compact each zone in the list */
1712 1713
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1714
		enum compact_result status;
1715

1716 1717
		if (prio > MIN_COMPACT_PRIORITY
					&& compaction_deferred(zone, order)) {
1718
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1719
			continue;
1720
		}
1721

1722
		status = compact_zone_order(zone, order, gfp_mask, prio,
1723
					alloc_flags, ac_classzone_idx(ac));
1724 1725
		rc = max(status, rc);

1726 1727
		/* The allocation should succeed, stop compacting */
		if (status == COMPACT_SUCCESS) {
1728 1729 1730 1731 1732 1733 1734
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1735

1736
			break;
1737 1738
		}

1739
		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1740
					status == COMPACT_PARTIAL_SKIPPED))
1741 1742 1743 1744 1745 1746
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
1747 1748 1749 1750

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
1751
		 * case do not try further zones
1752
		 */
1753 1754 1755
		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
					|| fatal_signal_pending(current))
			break;
1756 1757 1758 1759 1760 1761
	}

	return rc;
}


1762
/* Compact all zones within a node */
1763
static void compact_node(int nid)
1764
{
1765
	pg_data_t *pgdat = NODE_DATA(nid);
1766 1767
	int zoneid;
	struct zone *zone;
1768 1769 1770 1771 1772 1773 1774
	struct compact_control cc = {
		.order = -1,
		.mode = MIGRATE_SYNC,
		.ignore_skip_hint = true,
		.whole_zone = true,
	};

1775 1776 1777 1778 1779 1780 1781

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1782 1783 1784 1785 1786
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);
1787

1788
		compact_zone(zone, &cc);
1789

1790 1791
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
1792 1793 1794 1795
	}
}

/* Compact all nodes in the system */
1796
static void compact_nodes(void)
1797 1798 1799
{
	int nid;

1800 1801 1802
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1803 1804 1805 1806 1807 1808 1809
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

1810 1811 1812 1813
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
1814 1815 1816 1817
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1818
		compact_nodes();
1819 1820 1821

	return 0;
}
1822

1823 1824 1825 1826 1827 1828 1829 1830
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1831
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1832
static ssize_t sysfs_compact_node(struct device *dev,
1833
			struct device_attribute *attr,
1834 1835
			const char *buf, size_t count)
{
1836 1837 1838 1839 1840 1841 1842 1843
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1844 1845 1846

	return count;
}
1847
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1848 1849 1850

int compaction_register_node(struct node *node)
{
1851
	return device_create_file(&node->dev, &dev_attr_compact);
1852 1853 1854 1855
}

void compaction_unregister_node(struct node *node)
{
1856
	return device_remove_file(&node->dev, &dev_attr_compact);
1857 1858
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1859

1860 1861
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
1862
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1863 1864 1865 1866 1867 1868 1869 1870
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

1871
	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
		.ignore_skip_hint = true,

	};
	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
	count_vm_event(KCOMPACTD_WAKE);

1904
	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

1924 1925
		if (kthread_should_stop())
			return;
1926 1927
		status = compact_zone(zone, &cc);

1928
		if (status == COMPACT_SUCCESS) {
1929
			compaction_defer_reset(zone, cc.order, false);
1930
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

	if (!waitqueue_active(&pgdat->kcompactd_wait))
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

		kcompactd_do_work(pgdat);
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
{
	int nid;

	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
		for_each_node_state(nid, N_MEMORY) {
			pg_data_t *pgdat = NODE_DATA(nid);
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);

			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
				/* One of our CPUs online: restore mask */
				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
		}
	}
	return NOTIFY_OK;
}

static int __init kcompactd_init(void)
{
	int nid;

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}
subsys_initcall(kcompactd_init)

2077
#endif /* CONFIG_COMPACTION */