compaction.c 39.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19 20
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

36 37
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

38 39 40
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

41 42 43 44 45 46 47 48 49 50 51 52 53 54
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

55 56 57 58 59 60 61 62 63 64
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

65 66 67 68 69
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
				unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
129
static void __reset_isolation_suitable(struct zone *zone)
130 131
{
	unsigned long start_pfn = zone->zone_start_pfn;
132
	unsigned long end_pfn = zone_end_pfn(zone);
133 134
	unsigned long pfn;

135 136
	zone->compact_cached_migrate_pfn[0] = start_pfn;
	zone->compact_cached_migrate_pfn[1] = start_pfn;
137
	zone->compact_cached_free_pfn = end_pfn;
138
	zone->compact_blockskip_flush = false;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

172 173
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
174
 * future. The information is later cleared by __reset_isolation_suitable().
175
 */
176 177
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
178
			bool migrate_scanner)
179
{
180
	struct zone *zone = cc->zone;
181
	unsigned long pfn;
182 183 184 185

	if (cc->ignore_skip_hint)
		return;

186 187 188
	if (!page)
		return;

189 190 191
	if (nr_isolated)
		return;

192
	set_pageblock_skip(page);
193

194 195 196 197 198 199 200 201
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (cc->finished_update_migrate)
			return;
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
202 203
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
204 205 206 207 208 209
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (cc->finished_update_free)
			return;
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
210
	}
211 212 213 214 215 216 217 218
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

219 220
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
221
			bool migrate_scanner)
222 223 224 225
{
}
#endif /* CONFIG_COMPACTION */

226 227 228 229 230 231 232 233 234 235
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
236
{
237 238 239 240 241 242 243 244
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
			cc->contended = COMPACT_CONTENDED_LOCK;
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
245

246
	return true;
247 248
}

249 250
/*
 * Compaction requires the taking of some coarse locks that are potentially
251 252 253 254 255 256 257
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
258
 *
259 260 261 262
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
263
 */
264 265
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
266
{
267 268 269 270
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
271

272 273 274 275
	if (fatal_signal_pending(current)) {
		cc->contended = COMPACT_CONTENDED_SCHED;
		return true;
	}
276

277
	if (need_resched()) {
278
		if (cc->mode == MIGRATE_ASYNC) {
279 280
			cc->contended = COMPACT_CONTENDED_SCHED;
			return true;
281 282 283 284
		}
		cond_resched();
	}

285
	return false;
286 287
}

288 289 290
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
291
 * compaction. This is similar to what compact_unlock_should_abort() does, but
292 293 294 295 296 297 298 299 300 301
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
302
			cc->contended = COMPACT_CONTENDED_SCHED;
303 304 305 306 307 308 309 310 311
			return true;
		}

		cond_resched();
	}

	return false;
}

312 313 314
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
315
	/* If the page is a large free page, then disallow migration */
316
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
317
		return false;
318 319

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
320
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
321 322 323 324 325 326
		return true;

	/* Otherwise skip the block */
	return false;
}

327
/*
328 329 330
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
331
 */
332 333
static unsigned long isolate_freepages_block(struct compact_control *cc,
				unsigned long blockpfn,
334 335 336
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
337
{
338
	int nr_scanned = 0, total_isolated = 0;
339
	struct page *cursor, *valid_page = NULL;
340 341
	unsigned long flags;
	bool locked = false;
342 343 344

	cursor = pfn_to_page(blockpfn);

345
	/* Isolate free pages. */
346 347 348 349
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

350 351 352 353 354 355 356 357 358 359
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

360
		nr_scanned++;
361
		if (!pfn_valid_within(blockpfn))
362 363
			goto isolate_fail;

364 365
		if (!valid_page)
			valid_page = page;
366
		if (!PageBuddy(page))
367
			goto isolate_fail;
368 369 370 371 372 373 374 375 376

		/*
		 * The zone lock must be held to isolate freepages.
		 * Unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock and we acquire the lock as late as
		 * possible.
		 */
377 378 379
		if (!locked)
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
380 381 382 383 384
		if (!locked)
			break;

		/* Recheck this is a buddy page under lock */
		if (!PageBuddy(page))
385
			goto isolate_fail;
386 387 388 389 390 391 392 393 394 395 396 397 398

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
399
			continue;
400
		}
401 402 403 404 405 406 407

isolate_fail:
		if (strict)
			break;
		else
			continue;

408 409
	}

410
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
411 412 413 414 415 416

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
417
	if (strict && blockpfn < end_pfn)
418 419 420 421 422
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

423 424
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
425
		update_pageblock_skip(cc, valid_page, total_isolated, false);
426

427
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
428
	if (total_isolated)
429
		count_compact_events(COMPACTISOLATED, total_isolated);
430 431 432
	return total_isolated;
}

433 434 435 436 437 438 439 440 441 442 443 444 445
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
446
unsigned long
447 448
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
449
{
450
	unsigned long isolated, pfn, block_end_pfn;
451 452
	LIST_HEAD(freelist);

453 454 455 456 457
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn += isolated,
				block_end_pfn += pageblock_nr_pages) {
458 459 460

		block_end_pfn = min(block_end_pfn, end_pfn);

461 462 463
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
			break;

464
		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
						   &freelist, true);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

495
/* Update the number of anon and file isolated pages in the zone */
496
static void acct_isolated(struct zone *zone, struct compact_control *cc)
497 498
{
	struct page *page;
499
	unsigned int count[2] = { 0, };
500

501 502 503
	if (list_empty(&cc->migratepages))
		return;

504 505
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
506

507 508
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
509 510 511 512 513
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
514
	unsigned long active, inactive, isolated;
515 516 517

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
518 519
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
520 521 522
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

523
	return isolated > (inactive + active) / 2;
524 525
}

526
/**
527 528
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
529
 * @cc:		Compaction control structure.
530 531 532
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
533 534
 *
 * Isolate all pages that can be migrated from the range specified by
535 536 537 538
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
539
 *
540 541 542
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
543
 */
544 545 546
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
547
{
548
	struct zone *zone = cc->zone;
549
	unsigned long nr_scanned = 0, nr_isolated = 0;
550
	struct list_head *migratelist = &cc->migratepages;
551
	struct lruvec *lruvec;
552
	unsigned long flags;
553
	bool locked = false;
554
	struct page *page = NULL, *valid_page = NULL;
555 556 557 558 559 560 561

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
562
		/* async migration should just abort */
563
		if (cc->mode == MIGRATE_ASYNC)
564
			return 0;
565

566 567 568
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
569
			return 0;
570 571
	}

572 573
	if (compact_should_abort(cc))
		return 0;
574

575 576
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
577 578 579 580 581 582 583 584 585
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&zone->lru_lock, flags,
								&locked, cc))
			break;
586

587 588
		if (!pfn_valid_within(low_pfn))
			continue;
589
		nr_scanned++;
590 591

		page = pfn_to_page(low_pfn);
592

593 594 595
		if (!valid_page)
			valid_page = page;

596 597 598 599
		/*
		 * Skip if free. page_order cannot be used without zone->lock
		 * as nothing prevents parallel allocations or buddy merging.
		 */
600 601 602
		if (PageBuddy(page))
			continue;

603 604 605 606 607 608 609 610 611
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
				if (locked && balloon_page_isolate(page)) {
					/* Successfully isolated */
612
					goto isolate_success;
613 614
				}
			}
615
			continue;
616
		}
617 618

		/*
619 620 621 622 623 624 625 626
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
627
		 */
628 629
		if (PageTransHuge(page)) {
			if (!locked)
630 631 632 633 634
				low_pfn = ALIGN(low_pfn + 1,
						pageblock_nr_pages) - 1;
			else
				low_pfn += (1 << compound_order(page)) - 1;

635 636 637
			continue;
		}

638 639 640 641 642 643 644 645 646
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

647 648 649 650 651
		/* If the lock is not held, try to take it */
		if (!locked)
			locked = compact_trylock_irqsave(&zone->lru_lock,
								&flags, cc);
		if (!locked)
652 653 654 655 656
			break;

		/* Recheck PageLRU and PageTransHuge under lock */
		if (!PageLRU(page))
			continue;
657 658 659 660 661
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

662 663
		lruvec = mem_cgroup_page_lruvec(page, zone);

664
		/* Try isolate the page */
665
		if (__isolate_lru_page(page, isolate_mode) != 0)
666 667
			continue;

668
		VM_BUG_ON_PAGE(PageTransCompound(page), page);
669

670
		/* Successfully isolated */
671
		del_page_from_lru_list(page, lruvec, page_lru(page));
672 673 674

isolate_success:
		cc->finished_update_migrate = true;
675 676
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
677
		nr_isolated++;
678 679

		/* Avoid isolating too much */
680 681
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
682
			break;
683
		}
684 685
	}

686 687
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
688

689 690 691 692
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
693
	if (low_pfn == end_pfn)
694
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
695

696 697
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

698
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
699
	if (nr_isolated)
700
		count_compact_events(COMPACTISOLATED, nr_isolated);
701

702 703 704
	return low_pfn;
}

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
	unsigned long pfn, block_end_pfn;

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn = block_end_pfn,
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

730
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

		/*
		 * In case of fatal failure, release everything that might
		 * have been isolated in the previous iteration, and signal
		 * the failure back to caller.
		 */
		if (!pfn) {
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			break;
		}
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

752 753
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
754
/*
755 756
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
757
 */
758
static void isolate_freepages(struct compact_control *cc)
759
{
760
	struct zone *zone = cc->zone;
761
	struct page *page;
762 763 764
	unsigned long block_start_pfn;	/* start of current pageblock */
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
765 766
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
767

768 769
	/*
	 * Initialise the free scanner. The starting point is where we last
770 771
	 * successfully isolated from, zone-cached value, or the end of the
	 * zone when isolating for the first time. We need this aligned to
772 773 774 775
	 * the pageblock boundary, because we do
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
776 777
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
778
	 */
779 780 781
	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
782
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
783

784 785 786 787 788
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
789 790 791
	for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
				block_end_pfn = block_start_pfn,
				block_start_pfn -= pageblock_nr_pages) {
792
		unsigned long isolated;
793

794 795 796
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
797
		 * to schedule, or even abort async compaction.
798
		 */
799 800 801
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
802

803 804 805
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
806 807 808
			continue;

		/* Check the block is suitable for migration */
809
		if (!suitable_migration_target(page))
810
			continue;
811

812 813 814 815
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

816
		/* Found a block suitable for isolating free pages from */
817
		cc->free_pfn = block_start_pfn;
818 819
		isolated = isolate_freepages_block(cc, block_start_pfn,
					block_end_pfn, freelist, false);
820
		nr_freepages += isolated;
821 822

		/*
823 824 825 826
		 * Set a flag that we successfully isolated in this pageblock.
		 * In the next loop iteration, zone->compact_cached_free_pfn
		 * will not be updated and thus it will effectively contain the
		 * highest pageblock we isolated pages from.
827
		 */
828
		if (isolated)
829
			cc->finished_update_free = true;
830 831 832 833 834 835 836

		/*
		 * isolate_freepages_block() might have aborted due to async
		 * compaction being contended
		 */
		if (cc->contended)
			break;
837 838 839 840 841
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

842 843 844 845
	/*
	 * If we crossed the migrate scanner, we want to keep it that way
	 * so that compact_finished() may detect this
	 */
846
	if (block_start_pfn < low_pfn)
847
		cc->free_pfn = cc->migrate_pfn;
848

849
	cc->nr_freepages = nr_freepages;
850 851 852 853 854 855 856 857 858 859 860 861 862
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

863 864 865 866
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
867
	if (list_empty(&cc->freepages)) {
868
		if (!cc->contended)
869
			isolate_freepages(cc);
870 871 872 873 874 875 876 877 878 879 880 881 882

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
883 884 885 886 887 888 889 890 891 892 893 894
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

895 896 897 898 899 900 901 902
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
903 904 905
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
906 907 908 909 910
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;
911 912 913
	struct page *page;
	const isolate_mode_t isolate_mode =
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
914

915 916 917 918 919
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
920 921

	/* Only scan within a pageblock boundary */
922
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
923

924 925 926 927 928 929
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
	for (; end_pfn <= cc->free_pfn;
			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
930

931 932 933 934 935 936 937 938
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
939

940 941
		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
		if (!page)
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
								isolate_mode);

		if (!low_pfn || cc->contended)
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
	/* Record where migration scanner will be restarted */
974 975
	cc->migrate_pfn = low_pfn;

976
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
977 978
}

979
static int compact_finished(struct zone *zone,
980
			    struct compact_control *cc)
981
{
982
	unsigned int order;
983
	unsigned long watermark;
984

985
	if (cc->contended || fatal_signal_pending(current))
986 987
		return COMPACT_PARTIAL;

988
	/* Compaction run completes if the migrate and free scanner meet */
989
	if (cc->free_pfn <= cc->migrate_pfn) {
990
		/* Let the next compaction start anew. */
991 992
		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
993 994
		zone->compact_cached_free_pfn = zone_end_pfn(zone);

995 996 997 998 999 1000 1001 1002 1003
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

1004
		return COMPACT_COMPLETE;
1005
	}
1006

1007 1008 1009 1010
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
1011 1012 1013
	if (cc->order == -1)
		return COMPACT_CONTINUE;

1014 1015 1016 1017 1018 1019 1020
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

1021
	/* Direct compactor: Is a suitable page free? */
1022 1023 1024 1025 1026 1027 1028 1029 1030
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];

		/* Job done if page is free of the right migratetype */
		if (!list_empty(&area->free_list[cc->migratetype]))
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (cc->order >= pageblock_order && area->nr_free)
1031 1032 1033
			return COMPACT_PARTIAL;
	}

1034 1035 1036
	return COMPACT_CONTINUE;
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

1049 1050 1051 1052 1053 1054 1055
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1069 1070
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
1071 1072 1073 1074 1075 1076 1077 1078 1079
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

1080 1081
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
1082 1083 1084 1085 1086
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

1087 1088 1089
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
1090
	unsigned long start_pfn = zone->zone_start_pfn;
1091
	unsigned long end_pfn = zone_end_pfn(zone);
1092
	const bool sync = cc->mode != MIGRATE_ASYNC;
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

1105 1106 1107 1108 1109 1110 1111 1112
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

1113 1114 1115 1116 1117
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1118
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1119 1120 1121 1122 1123 1124 1125
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
1126 1127
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1128
	}
1129

1130 1131
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);

1132 1133 1134
	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1135
		int err;
1136

1137 1138 1139
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1140
			putback_movable_pages(&cc->migratepages);
1141
			cc->nr_migratepages = 0;
1142 1143
			goto out;
		case ISOLATE_NONE:
1144
			continue;
1145 1146 1147
		case ISOLATE_SUCCESS:
			;
		}
1148

1149
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1150
				compaction_free, (unsigned long)cc, cc->mode,
1151
				MR_COMPACTION);
1152

1153 1154
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1155

1156 1157
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1158
		if (err) {
1159
			putback_movable_pages(&cc->migratepages);
1160 1161 1162 1163 1164
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1165 1166 1167
				ret = COMPACT_PARTIAL;
				goto out;
			}
1168 1169 1170
		}
	}

1171
out:
1172 1173 1174 1175
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

1176 1177
	trace_mm_compaction_end(ret);

1178 1179
	return ret;
}
1180

1181
static unsigned long compact_zone_order(struct zone *zone, int order,
1182
		gfp_t gfp_mask, enum migrate_mode mode, int *contended)
1183
{
1184
	unsigned long ret;
1185 1186 1187 1188 1189 1190
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
1191
		.mode = mode,
1192 1193 1194 1195
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1196 1197 1198 1199 1200 1201 1202
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1203 1204
}

1205 1206
int sysctl_extfrag_threshold = 500;

1207 1208 1209 1210 1211 1212
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1213
 * @mode: The migration mode for async, sync light, or sync migration
1214 1215
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1216
 * @candidate_zone: Return the zone where we think allocation should succeed
1217 1218 1219 1220
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1221
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1222
			enum migrate_mode mode, int *contended,
1223
			struct zone **candidate_zone)
1224 1225 1226 1227 1228 1229
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1230
	int rc = COMPACT_DEFERRED;
1231
	int alloc_flags = 0;
1232 1233 1234
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1235

1236
	/* Check if the GFP flags allow compaction */
1237
	if (!order || !may_enter_fs || !may_perform_io)
1238
		return COMPACT_SKIPPED;
1239

1240 1241 1242 1243
#ifdef CONFIG_CMA
	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
1244 1245 1246 1247
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;
1248
		int zone_contended;
1249

1250 1251 1252
		if (compaction_deferred(zone, order))
			continue;

1253
		status = compact_zone_order(zone, order, gfp_mask, mode,
1254
							&zone_contended);
1255
		rc = max(status, rc);
1256 1257 1258 1259 1260
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1261

1262
		/* If a normal allocation would succeed, stop compacting */
1263
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1264 1265 1266 1267 1268 1269 1270 1271 1272
				      alloc_flags)) {
			*candidate_zone = zone;
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

		if (mode != MIGRATE_ASYNC) {
1288 1289 1290 1291 1292 1293 1294
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1316 1317
	}

1318 1319 1320 1321 1322 1323 1324
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
	if (rc > COMPACT_SKIPPED && all_zones_contended)
		*contended = COMPACT_CONTENDED_LOCK;

1325 1326 1327 1328
	return rc;
}


1329
/* Compact all zones within a node */
1330
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1341 1342 1343 1344 1345
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1346

1347
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1348
			compact_zone(zone, cc);
1349

1350
		if (cc->order > 0) {
1351 1352 1353
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1354 1355
		}

1356 1357
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1358 1359 1360
	}
}

1361
void compact_pgdat(pg_data_t *pgdat, int order)
1362 1363 1364
{
	struct compact_control cc = {
		.order = order,
1365
		.mode = MIGRATE_ASYNC,
1366 1367
	};

1368 1369 1370
	if (!order)
		return;

1371
	__compact_pgdat(pgdat, &cc);
1372 1373
}

1374
static void compact_node(int nid)
1375 1376 1377
{
	struct compact_control cc = {
		.order = -1,
1378
		.mode = MIGRATE_SYNC,
1379
		.ignore_skip_hint = true,
1380 1381
	};

1382
	__compact_pgdat(NODE_DATA(nid), &cc);
1383 1384
}

1385
/* Compact all nodes in the system */
1386
static void compact_nodes(void)
1387 1388 1389
{
	int nid;

1390 1391 1392
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1405
		compact_nodes();
1406 1407 1408

	return 0;
}
1409

1410 1411 1412 1413 1414 1415 1416 1417
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1418
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1419
static ssize_t sysfs_compact_node(struct device *dev,
1420
			struct device_attribute *attr,
1421 1422
			const char *buf, size_t count)
{
1423 1424 1425 1426 1427 1428 1429 1430
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1431 1432 1433

	return count;
}
1434
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1435 1436 1437

int compaction_register_node(struct node *node)
{
1438
	return device_create_file(&node->dev, &dev_attr_compact);
1439 1440 1441 1442
}

void compaction_unregister_node(struct node *node)
{
1443
	return device_remove_file(&node->dev, &dev_attr_compact);
1444 1445
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1446 1447

#endif /* CONFIG_COMPACTION */