compaction.c 34.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19 20
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

36 37
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

38 39 40
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

41 42 43 44 45 46 47 48 49 50 51 52 53 54
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

55 56 57 58 59 60 61 62 63 64
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

65 66 67 68 69
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
86
static void __reset_isolation_suitable(struct zone *zone)
87 88
{
	unsigned long start_pfn = zone->zone_start_pfn;
89
	unsigned long end_pfn = zone_end_pfn(zone);
90 91
	unsigned long pfn;

92 93
	zone->compact_cached_migrate_pfn[0] = start_pfn;
	zone->compact_cached_migrate_pfn[1] = start_pfn;
94
	zone->compact_cached_free_pfn = end_pfn;
95
	zone->compact_blockskip_flush = false;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

129 130
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
131
 * future. The information is later cleared by __reset_isolation_suitable().
132
 */
133 134
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
135
			bool set_unsuitable, bool migrate_scanner)
136
{
137
	struct zone *zone = cc->zone;
138
	unsigned long pfn;
139 140 141 142

	if (cc->ignore_skip_hint)
		return;

143 144 145
	if (!page)
		return;

146 147 148 149 150 151 152 153
	if (nr_isolated)
		return;

	/*
	 * Only skip pageblocks when all forms of compaction will be known to
	 * fail in the near future.
	 */
	if (set_unsuitable)
154
		set_pageblock_skip(page);
155

156 157 158 159 160 161 162 163
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (cc->finished_update_migrate)
			return;
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
164 165
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
166 167 168 169 170 171
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (cc->finished_update_free)
			return;
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
172
	}
173 174 175 176 177 178 179 180
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

181 182
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
183
			bool set_unsuitable, bool migrate_scanner)
184 185 186 187
{
}
#endif /* CONFIG_COMPACTION */

188 189 190 191 192
static inline bool should_release_lock(spinlock_t *lock)
{
	return need_resched() || spin_is_contended(lock);
}

193 194 195 196 197 198 199 200 201 202 203 204
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
205
	if (should_release_lock(lock)) {
206 207 208 209 210 211
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
212
		if (cc->mode == MIGRATE_ASYNC) {
213
			cc->contended = true;
214 215 216 217 218 219 220 221 222 223 224
			return false;
		}

		cond_resched();
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

225 226 227
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
228
	/* If the page is a large free page, then disallow migration */
229
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
230
		return false;
231 232

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
233
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
234 235 236 237 238 239
		return true;

	/* Otherwise skip the block */
	return false;
}

240
/*
241 242 243
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
244
 */
245 246
static unsigned long isolate_freepages_block(struct compact_control *cc,
				unsigned long blockpfn,
247 248 249
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
250
{
251
	int nr_scanned = 0, total_isolated = 0;
252
	struct page *cursor, *valid_page = NULL;
253 254
	unsigned long flags;
	bool locked = false;
255
	bool checked_pageblock = false;
256 257 258

	cursor = pfn_to_page(blockpfn);

259
	/* Isolate free pages. */
260 261 262 263
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

264
		nr_scanned++;
265
		if (!pfn_valid_within(blockpfn))
266 267
			goto isolate_fail;

268 269
		if (!valid_page)
			valid_page = page;
270
		if (!PageBuddy(page))
271
			goto isolate_fail;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

		/*
		 * The zone lock must be held to isolate freepages.
		 * Unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock and we acquire the lock as late as
		 * possible.
		 */
		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
								locked, cc);
		if (!locked)
			break;

		/* Recheck this is a suitable migration target under lock */
287 288 289 290 291 292 293 294 295 296
		if (!strict && !checked_pageblock) {
			/*
			 * We need to check suitability of pageblock only once
			 * and this isolate_freepages_block() is called with
			 * pageblock range, so just check once is sufficient.
			 */
			checked_pageblock = true;
			if (!suitable_migration_target(page))
				break;
		}
297

298 299
		/* Recheck this is a buddy page under lock */
		if (!PageBuddy(page))
300
			goto isolate_fail;
301 302 303 304 305 306 307 308 309 310 311 312 313

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
314
			continue;
315
		}
316 317 318 319 320 321 322

isolate_fail:
		if (strict)
			break;
		else
			continue;

323 324
	}

325
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
326 327 328 329 330 331

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
332
	if (strict && blockpfn < end_pfn)
333 334 335 336 337
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

338 339
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
340 341
		update_pageblock_skip(cc, valid_page, total_isolated, true,
				      false);
342

343
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
344
	if (total_isolated)
345
		count_compact_events(COMPACTISOLATED, total_isolated);
346 347 348
	return total_isolated;
}

349 350 351 352 353 354 355 356 357 358 359 360 361
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
362
unsigned long
363 364
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
365
{
366
	unsigned long isolated, pfn, block_end_pfn;
367 368 369
	LIST_HEAD(freelist);

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
370
		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
371 372 373 374 375 376 377 378 379
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

380
		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
						   &freelist, true);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

411
/* Update the number of anon and file isolated pages in the zone */
412
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
413 414
{
	struct page *page;
415
	unsigned int count[2] = { 0, };
416

417 418
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
419

420 421 422 423 424 425 426 427
	/* If locked we can use the interrupt unsafe versions */
	if (locked) {
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	} else {
		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	}
428 429 430 431 432
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
433
	unsigned long active, inactive, isolated;
434 435 436

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
437 438
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
439 440 441
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

442
	return isolated > (inactive + active) / 2;
443 444
}

445 446 447 448 449 450
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
M
Minchan Kim 已提交
451
 * @unevictable: true if it allows to isolate unevictable pages
452 453 454 455 456 457 458 459 460 461 462 463
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
464
 */
465
unsigned long
466
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
M
Minchan Kim 已提交
467
		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
468
{
469
	unsigned long last_pageblock_nr = 0, pageblock_nr;
470
	unsigned long nr_scanned = 0, nr_isolated = 0;
471
	struct list_head *migratelist = &cc->migratepages;
472
	struct lruvec *lruvec;
473
	unsigned long flags;
474
	bool locked = false;
475
	struct page *page = NULL, *valid_page = NULL;
476
	bool set_unsuitable = true;
477 478
	const isolate_mode_t mode = (cc->mode == MIGRATE_ASYNC ?
					ISOLATE_ASYNC_MIGRATE : 0) |
479
				    (unevictable ? ISOLATE_UNEVICTABLE : 0);
480 481 482 483 484 485 486

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
487
		/* async migration should just abort */
488
		if (cc->mode == MIGRATE_ASYNC)
489
			return 0;
490

491 492 493
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
494
			return 0;
495 496
	}

497 498 499 500 501 502
	if (cond_resched()) {
		/* Async terminates prematurely on need_resched() */
		if (cc->mode == MIGRATE_ASYNC)
			return 0;
	}

503 504
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
505
		/* give a chance to irqs before checking need_resched() */
506
		if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
507 508 509 510
			if (should_release_lock(&zone->lru_lock)) {
				spin_unlock_irqrestore(&zone->lru_lock, flags);
				locked = false;
			}
511
		}
512

513 514 515 516 517 518 519 520 521 522 523 524 525
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

526 527
		if (!pfn_valid_within(low_pfn))
			continue;
528
		nr_scanned++;
529

530 531 532 533 534 535
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
536
		page = pfn_to_page(low_pfn);
537 538 539
		if (page_zone(page) != zone)
			continue;

540 541 542 543 544
		if (!valid_page)
			valid_page = page;

		/* If isolation recently failed, do not retry */
		pageblock_nr = low_pfn >> pageblock_order;
545 546 547 548 549 550 551 552 553 554 555 556 557
		if (last_pageblock_nr != pageblock_nr) {
			int mt;

			last_pageblock_nr = pageblock_nr;
			if (!isolation_suitable(cc, page))
				goto next_pageblock;

			/*
			 * For async migration, also only scan in MOVABLE
			 * blocks. Async migration is optimistic to see if
			 * the minimum amount of work satisfies the allocation
			 */
			mt = get_pageblock_migratetype(page);
558 559
			if (cc->mode == MIGRATE_ASYNC &&
			    !migrate_async_suitable(mt)) {
560
				set_unsuitable = false;
561 562 563
				goto next_pageblock;
			}
		}
564

565 566 567 568
		/*
		 * Skip if free. page_order cannot be used without zone->lock
		 * as nothing prevents parallel allocations or buddy merging.
		 */
569 570 571
		if (PageBuddy(page))
			continue;

572 573 574 575 576 577 578 579 580
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
				if (locked && balloon_page_isolate(page)) {
					/* Successfully isolated */
581
					goto isolate_success;
582 583
				}
			}
584
			continue;
585
		}
586 587

		/*
588 589 590 591 592 593 594 595
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
596
		 */
597 598 599 600 601 602 603
		if (PageTransHuge(page)) {
			if (!locked)
				goto next_pageblock;
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

604 605 606 607 608 609 610 611 612
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

613 614 615 616 617 618 619 620 621
		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked || fatal_signal_pending(current))
			break;

		/* Recheck PageLRU and PageTransHuge under lock */
		if (!PageLRU(page))
			continue;
622 623 624 625 626
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

627 628
		lruvec = mem_cgroup_page_lruvec(page, zone);

629
		/* Try isolate the page */
630
		if (__isolate_lru_page(page, mode) != 0)
631 632
			continue;

633
		VM_BUG_ON_PAGE(PageTransCompound(page), page);
634

635
		/* Successfully isolated */
636
		del_page_from_lru_list(page, lruvec, page_lru(page));
637 638 639

isolate_success:
		cc->finished_update_migrate = true;
640 641
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
642
		nr_isolated++;
643 644

		/* Avoid isolating too much */
645 646
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
647
			break;
648
		}
649 650 651 652

		continue;

next_pageblock:
653
		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
654 655
	}

656
	acct_isolated(zone, locked, cc);
657

658 659
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
660

661 662 663 664
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
665 666 667
	if (low_pfn == end_pfn)
		update_pageblock_skip(cc, valid_page, nr_isolated,
				      set_unsuitable, true);
668

669 670
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

671
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
672
	if (nr_isolated)
673
		count_compact_events(COMPACTISOLATED, nr_isolated);
674

675 676 677
	return low_pfn;
}

678 679
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
680
/*
681 682
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
683
 */
684 685
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
686
{
687
	struct page *page;
688 689 690 691
	unsigned long block_start_pfn;	/* start of current pageblock */
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
	unsigned long next_free_pfn; /* start pfn for scaning at next round */
692 693
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
694

695 696
	/*
	 * Initialise the free scanner. The starting point is where we last
697 698
	 * successfully isolated from, zone-cached value, or the end of the
	 * zone when isolating for the first time. We need this aligned to
699 700 701 702
	 * the pageblock boundary, because we do
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
703 704
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
705
	 */
706 707 708
	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
709
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
710

711
	/*
712 713
	 * If no pages are isolated, the block_start_pfn < low_pfn check
	 * will kick in.
714
	 */
715
	next_free_pfn = 0;
716

717 718 719 720 721
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
722 723 724
	for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
				block_end_pfn = block_start_pfn,
				block_start_pfn -= pageblock_nr_pages) {
725
		unsigned long isolated;
726

727 728 729 730 731 732 733
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
		 * to schedule.
		 */
		cond_resched();

734
		if (!pfn_valid(block_start_pfn))
735
			continue;
736

737 738 739 740 741 742 743
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
744
		page = pfn_to_page(block_start_pfn);
745 746 747 748
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
749
		if (!suitable_migration_target(page))
750
			continue;
751

752 753 754 755
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

756
		/* Found a block suitable for isolating free pages from */
757 758
		isolated = isolate_freepages_block(cc, block_start_pfn,
					block_end_pfn, freelist, false);
759
		nr_freepages += isolated;
760 761 762 763 764 765

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
766
		if (isolated && next_free_pfn == 0) {
767
			cc->finished_update_free = true;
768
			next_free_pfn = block_start_pfn;
769
		}
770 771 772 773 774
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

775 776 777 778
	/*
	 * If we crossed the migrate scanner, we want to keep it that way
	 * so that compact_finished() may detect this
	 */
779 780 781 782
	if (block_start_pfn < low_pfn)
		next_free_pfn = cc->migrate_pfn;

	cc->free_pfn = next_free_pfn;
783
	cc->nr_freepages = nr_freepages;
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

/*
 * We cannot control nr_migratepages fully when migration is running as
 * migrate_pages() has no knowledge of of compact_control.  When migration is
 * complete, we count the number of pages on the list by hand.
829 830 831 832 833 834 835 836 837 838 839 840
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;

	cc->nr_migratepages = nr_migratepages;
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
861
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
862 863 864 865 866 867 868 869

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
M
Minchan Kim 已提交
870
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
871
	if (!low_pfn || cc->contended)
872 873 874 875 876 877 878
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

879
static int compact_finished(struct zone *zone,
880
			    struct compact_control *cc)
881
{
882
	unsigned int order;
883
	unsigned long watermark;
884

885 886 887
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

888
	/* Compaction run completes if the migrate and free scanner meet */
889
	if (cc->free_pfn <= cc->migrate_pfn) {
890
		/* Let the next compaction start anew. */
891 892
		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
893 894
		zone->compact_cached_free_pfn = zone_end_pfn(zone);

895 896 897 898 899 900 901 902 903
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

904
		return COMPACT_COMPLETE;
905
	}
906

907 908 909 910
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
911 912 913
	if (cc->order == -1)
		return COMPACT_CONTINUE;

914 915 916 917 918 919 920
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

921
	/* Direct compactor: Is a suitable page free? */
922 923 924 925 926 927 928 929 930
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];

		/* Job done if page is free of the right migratetype */
		if (!list_empty(&area->free_list[cc->migratetype]))
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (cc->order >= pageblock_order && area->nr_free)
931 932 933
			return COMPACT_PARTIAL;
	}

934 935 936
	return COMPACT_CONTINUE;
}

937 938 939 940 941 942 943 944 945 946 947 948
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

949 950 951 952 953 954 955
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

956 957 958 959 960 961 962 963 964 965 966 967 968
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
969 970
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
971 972 973 974 975 976 977 978 979
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

980 981
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
982 983 984 985 986
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

987 988 989
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
990
	unsigned long start_pfn = zone->zone_start_pfn;
991
	unsigned long end_pfn = zone_end_pfn(zone);
992
	const bool sync = cc->mode != MIGRATE_ASYNC;
993

994 995 996 997 998 999 1000 1001 1002 1003 1004
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

1005 1006 1007 1008 1009 1010 1011 1012
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

1013 1014 1015 1016 1017
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1018
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1019 1020 1021 1022 1023 1024 1025
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
1026 1027
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1028
	}
1029

1030 1031
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);

1032 1033 1034 1035
	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
1036
		int err;
1037

1038 1039 1040
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1041
			putback_movable_pages(&cc->migratepages);
1042
			cc->nr_migratepages = 0;
1043 1044
			goto out;
		case ISOLATE_NONE:
1045
			continue;
1046 1047 1048
		case ISOLATE_SUCCESS:
			;
		}
1049 1050

		nr_migrate = cc->nr_migratepages;
1051
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1052
				compaction_free, (unsigned long)cc, cc->mode,
1053
				MR_COMPACTION);
1054 1055 1056
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

1057 1058
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
1059

1060
		/* Release isolated pages not migrated */
1061
		if (err) {
1062
			putback_movable_pages(&cc->migratepages);
1063
			cc->nr_migratepages = 0;
1064 1065 1066 1067 1068
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1069 1070 1071
				ret = COMPACT_PARTIAL;
				goto out;
			}
1072 1073 1074
		}
	}

1075
out:
1076 1077 1078 1079
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

1080 1081
	trace_mm_compaction_end(ret);

1082 1083
	return ret;
}
1084

1085 1086
static unsigned long compact_zone_order(struct zone *zone, int order,
		gfp_t gfp_mask, enum migrate_mode mode, bool *contended)
1087
{
1088
	unsigned long ret;
1089 1090 1091 1092 1093 1094
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
1095
		.mode = mode,
1096 1097 1098 1099
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1100 1101 1102 1103 1104 1105 1106
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1107 1108
}

1109 1110
int sysctl_extfrag_threshold = 500;

1111 1112 1113 1114 1115 1116
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1117
 * @mode: The migration mode for async, sync light, or sync migration
1118 1119
 * @contended: Return value that is true if compaction was aborted due to lock contention
 * @page: Optionally capture a free page of the requested order during compaction
1120 1121 1122 1123
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1124
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1125
			enum migrate_mode mode, bool *contended)
1126 1127 1128 1129 1130 1131 1132
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;
1133
	int alloc_flags = 0;
1134

1135
	/* Check if the GFP flags allow compaction */
1136
	if (!order || !may_enter_fs || !may_perform_io)
1137 1138
		return rc;

1139
	count_compact_event(COMPACTSTALL);
1140

1141 1142 1143 1144
#ifdef CONFIG_CMA
	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
1145 1146 1147 1148 1149
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

1150
		status = compact_zone_order(zone, order, gfp_mask, mode,
1151
						contended);
1152 1153
		rc = max(status, rc);

1154
		/* If a normal allocation would succeed, stop compacting */
1155 1156
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
				      alloc_flags))
1157 1158 1159 1160 1161 1162 1163
			break;
	}

	return rc;
}


1164
/* Compact all zones within a node */
1165
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1176 1177 1178 1179 1180
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1181

1182
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1183
			compact_zone(zone, cc);
1184

1185
		if (cc->order > 0) {
1186 1187 1188
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1189 1190
		}

1191 1192
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1193 1194 1195
	}
}

1196
void compact_pgdat(pg_data_t *pgdat, int order)
1197 1198 1199
{
	struct compact_control cc = {
		.order = order,
1200
		.mode = MIGRATE_ASYNC,
1201 1202
	};

1203 1204 1205
	if (!order)
		return;

1206
	__compact_pgdat(pgdat, &cc);
1207 1208
}

1209
static void compact_node(int nid)
1210 1211 1212
{
	struct compact_control cc = {
		.order = -1,
1213
		.mode = MIGRATE_SYNC,
1214
		.ignore_skip_hint = true,
1215 1216
	};

1217
	__compact_pgdat(NODE_DATA(nid), &cc);
1218 1219
}

1220
/* Compact all nodes in the system */
1221
static void compact_nodes(void)
1222 1223 1224
{
	int nid;

1225 1226 1227
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1240
		compact_nodes();
1241 1242 1243

	return 0;
}
1244

1245 1246 1247 1248 1249 1250 1251 1252
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1253
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1254
static ssize_t sysfs_compact_node(struct device *dev,
1255
			struct device_attribute *attr,
1256 1257
			const char *buf, size_t count)
{
1258 1259 1260 1261 1262 1263 1264 1265
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1266 1267 1268

	return count;
}
1269
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1270 1271 1272

int compaction_register_node(struct node *node)
{
1273
	return device_create_file(&node->dev, &dev_attr_compact);
1274 1275 1276 1277
}

void compaction_unregister_node(struct node *node)
{
1278
	return device_remove_file(&node->dev, &dev_attr_compact);
1279 1280
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1281 1282

#endif /* CONFIG_COMPACTION */