compaction.c 43.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19 20
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

36 37
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

38 39 40
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

41 42 43
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
44
	unsigned long high_pfn = 0;
45 46

	list_for_each_entry_safe(page, next, freelist, lru) {
47
		unsigned long pfn = page_to_pfn(page);
48 49
		list_del(&page->lru);
		__free_page(page);
50 51
		if (pfn > high_pfn)
			high_pfn = pfn;
52 53
	}

54
	return high_pfn;
55 56
}

57 58 59 60 61 62 63 64 65 66
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

67 68 69 70 71
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
				unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
131
static void __reset_isolation_suitable(struct zone *zone)
132 133
{
	unsigned long start_pfn = zone->zone_start_pfn;
134
	unsigned long end_pfn = zone_end_pfn(zone);
135 136
	unsigned long pfn;

137 138
	zone->compact_cached_migrate_pfn[0] = start_pfn;
	zone->compact_cached_migrate_pfn[1] = start_pfn;
139
	zone->compact_cached_free_pfn = end_pfn;
140
	zone->compact_blockskip_flush = false;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

174 175
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
176
 * future. The information is later cleared by __reset_isolation_suitable().
177
 */
178 179
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
180
			bool migrate_scanner)
181
{
182
	struct zone *zone = cc->zone;
183
	unsigned long pfn;
184 185 186 187

	if (cc->ignore_skip_hint)
		return;

188 189 190
	if (!page)
		return;

191 192 193
	if (nr_isolated)
		return;

194
	set_pageblock_skip(page);
195

196 197 198 199 200 201
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
202 203
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
204 205 206 207
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
208
	}
209 210 211 212 213 214 215 216
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

217 218
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
219
			bool migrate_scanner)
220 221 222 223
{
}
#endif /* CONFIG_COMPACTION */

224 225 226 227 228 229 230 231 232 233
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
234
{
235 236 237 238 239 240 241 242
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
			cc->contended = COMPACT_CONTENDED_LOCK;
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
243

244
	return true;
245 246
}

247 248
/*
 * Compaction requires the taking of some coarse locks that are potentially
249 250 251 252 253 254 255
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
256
 *
257 258 259 260
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
261
 */
262 263
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
264
{
265 266 267 268
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
269

270 271 272 273
	if (fatal_signal_pending(current)) {
		cc->contended = COMPACT_CONTENDED_SCHED;
		return true;
	}
274

275
	if (need_resched()) {
276
		if (cc->mode == MIGRATE_ASYNC) {
277 278
			cc->contended = COMPACT_CONTENDED_SCHED;
			return true;
279 280 281 282
		}
		cond_resched();
	}

283
	return false;
284 285
}

286 287 288
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
289
 * compaction. This is similar to what compact_unlock_should_abort() does, but
290 291 292 293 294 295 296 297 298 299
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
300
			cc->contended = COMPACT_CONTENDED_SCHED;
301 302 303 304 305 306 307 308 309
			return true;
		}

		cond_resched();
	}

	return false;
}

310 311 312
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
313
	/* If the page is a large free page, then disallow migration */
314 315 316 317 318 319 320 321 322
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}
323 324

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
325
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
326 327 328 329 330 331
		return true;

	/* Otherwise skip the block */
	return false;
}

332
/*
333 334 335
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
336
 */
337
static unsigned long isolate_freepages_block(struct compact_control *cc,
338
				unsigned long *start_pfn,
339 340 341
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
342
{
343
	int nr_scanned = 0, total_isolated = 0;
344
	struct page *cursor, *valid_page = NULL;
345
	unsigned long flags = 0;
346
	bool locked = false;
347
	unsigned long blockpfn = *start_pfn;
348 349 350

	cursor = pfn_to_page(blockpfn);

351
	/* Isolate free pages. */
352 353 354 355
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

356 357 358 359 360 361 362 363 364 365
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

366
		nr_scanned++;
367
		if (!pfn_valid_within(blockpfn))
368 369
			goto isolate_fail;

370 371
		if (!valid_page)
			valid_page = page;
372
		if (!PageBuddy(page))
373
			goto isolate_fail;
374 375

		/*
376 377 378 379 380
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
381
		 */
382 383 384 385 386 387 388 389 390
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
391 392
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
393 394
			if (!locked)
				break;
395

396 397 398 399
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
400 401 402 403 404 405 406 407 408 409 410 411 412

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
413
			continue;
414
		}
415 416 417 418 419 420 421

isolate_fail:
		if (strict)
			break;
		else
			continue;

422 423
	}

424 425 426
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

427
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
428 429 430 431 432 433

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
434
	if (strict && blockpfn < end_pfn)
435 436 437 438 439
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

440 441
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
442
		update_pageblock_skip(cc, valid_page, total_isolated, false);
443

444
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
445
	if (total_isolated)
446
		count_compact_events(COMPACTISOLATED, total_isolated);
447 448 449
	return total_isolated;
}

450 451 452 453 454 455 456 457 458 459 460 461 462
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
463
unsigned long
464 465
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
466
{
467
	unsigned long isolated, pfn, block_end_pfn;
468 469
	LIST_HEAD(freelist);

470 471 472 473 474
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn += isolated,
				block_end_pfn += pageblock_nr_pages) {
475 476
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
477 478 479

		block_end_pfn = min(block_end_pfn, end_pfn);

480 481 482 483 484 485 486 487 488 489
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

490 491 492
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
			break;

493 494
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

524
/* Update the number of anon and file isolated pages in the zone */
525
static void acct_isolated(struct zone *zone, struct compact_control *cc)
526 527
{
	struct page *page;
528
	unsigned int count[2] = { 0, };
529

530 531 532
	if (list_empty(&cc->migratepages))
		return;

533 534
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
535

536 537
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
538 539 540 541 542
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
543
	unsigned long active, inactive, isolated;
544 545 546

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
547 548
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
549 550 551
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

552
	return isolated > (inactive + active) / 2;
553 554
}

555
/**
556 557
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
558
 * @cc:		Compaction control structure.
559 560 561
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
562 563
 *
 * Isolate all pages that can be migrated from the range specified by
564 565 566 567
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
568
 *
569 570 571
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
572
 */
573 574 575
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
576
{
577
	struct zone *zone = cc->zone;
578
	unsigned long nr_scanned = 0, nr_isolated = 0;
579
	struct list_head *migratelist = &cc->migratepages;
580
	struct lruvec *lruvec;
581
	unsigned long flags = 0;
582
	bool locked = false;
583
	struct page *page = NULL, *valid_page = NULL;
584 585 586 587 588 589 590

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
591
		/* async migration should just abort */
592
		if (cc->mode == MIGRATE_ASYNC)
593
			return 0;
594

595 596 597
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
598
			return 0;
599 600
	}

601 602
	if (compact_should_abort(cc))
		return 0;
603

604 605
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
606 607 608 609 610 611 612 613 614
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&zone->lru_lock, flags,
								&locked, cc))
			break;
615

616 617
		if (!pfn_valid_within(low_pfn))
			continue;
618
		nr_scanned++;
619 620

		page = pfn_to_page(low_pfn);
621

622 623 624
		if (!valid_page)
			valid_page = page;

625
		/*
626 627 628 629
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
630
		 */
631 632 633 634 635 636 637 638 639 640
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
641
			continue;
642
		}
643

644 645 646 647 648 649 650
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
651
				if (balloon_page_isolate(page)) {
652
					/* Successfully isolated */
653
					goto isolate_success;
654 655
				}
			}
656
			continue;
657
		}
658 659

		/*
660 661 662 663 664 665 666 667
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
668
		 */
669 670
		if (PageTransHuge(page)) {
			if (!locked)
671 672 673 674 675
				low_pfn = ALIGN(low_pfn + 1,
						pageblock_nr_pages) - 1;
			else
				low_pfn += (1 << compound_order(page)) - 1;

676 677 678
			continue;
		}

679 680 681 682 683 684 685 686 687
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

688 689
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
690 691
			locked = compact_trylock_irqsave(&zone->lru_lock,
								&flags, cc);
692 693
			if (!locked)
				break;
694

695 696 697 698 699 700 701
			/* Recheck PageLRU and PageTransHuge under lock */
			if (!PageLRU(page))
				continue;
			if (PageTransHuge(page)) {
				low_pfn += (1 << compound_order(page)) - 1;
				continue;
			}
702 703
		}

704 705
		lruvec = mem_cgroup_page_lruvec(page, zone);

706
		/* Try isolate the page */
707
		if (__isolate_lru_page(page, isolate_mode) != 0)
708 709
			continue;

710
		VM_BUG_ON_PAGE(PageTransCompound(page), page);
711

712
		/* Successfully isolated */
713
		del_page_from_lru_list(page, lruvec, page_lru(page));
714 715

isolate_success:
716 717
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
718
		nr_isolated++;
719 720

		/* Avoid isolating too much */
721 722
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
723
			break;
724
		}
725 726
	}

727 728 729 730 731 732 733
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

734 735
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
736

737 738 739 740
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
741
	if (low_pfn == end_pfn)
742
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
743

744 745
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

746
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
747
	if (nr_isolated)
748
		count_compact_events(COMPACTISOLATED, nr_isolated);
749

750 751 752
	return low_pfn;
}

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
	unsigned long pfn, block_end_pfn;

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn = block_end_pfn,
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

778
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

		/*
		 * In case of fatal failure, release everything that might
		 * have been isolated in the previous iteration, and signal
		 * the failure back to caller.
		 */
		if (!pfn) {
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			break;
		}
794 795 796

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
797 798 799 800 801 802
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

803 804
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
805
/*
806 807
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
808
 */
809
static void isolate_freepages(struct compact_control *cc)
810
{
811
	struct zone *zone = cc->zone;
812
	struct page *page;
813
	unsigned long block_start_pfn;	/* start of current pageblock */
814
	unsigned long isolate_start_pfn; /* exact pfn we start at */
815 816
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
817 818
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
819

820 821
	/*
	 * Initialise the free scanner. The starting point is where we last
822
	 * successfully isolated from, zone-cached value, or the end of the
823 824
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
825 826 827
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
828 829
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
830
	 */
831
	isolate_start_pfn = cc->free_pfn;
832 833 834
	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
835
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
836

837 838 839 840 841
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
842 843
	for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
				block_end_pfn = block_start_pfn,
844 845
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
846
		unsigned long isolated;
847

848 849 850
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
851
		 * to schedule, or even abort async compaction.
852
		 */
853 854 855
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
856

857 858 859
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
860 861 862
			continue;

		/* Check the block is suitable for migration */
863
		if (!suitable_migration_target(page))
864
			continue;
865

866 867 868 869
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

870 871
		/* Found a block suitable for isolating free pages from. */
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
872
					block_end_pfn, freelist, false);
873
		nr_freepages += isolated;
874

875 876 877 878 879 880 881 882 883 884 885 886 887
		/*
		 * Remember where the free scanner should restart next time,
		 * which is where isolate_freepages_block() left off.
		 * But if it scanned the whole pageblock, isolate_start_pfn
		 * now points at block_end_pfn, which is the start of the next
		 * pageblock.
		 * In that case we will however want to restart at the start
		 * of the previous pageblock.
		 */
		cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
				isolate_start_pfn :
				block_start_pfn - pageblock_nr_pages;

888 889 890 891 892 893
		/*
		 * isolate_freepages_block() might have aborted due to async
		 * compaction being contended
		 */
		if (cc->contended)
			break;
894 895 896 897 898
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

899 900 901 902
	/*
	 * If we crossed the migrate scanner, we want to keep it that way
	 * so that compact_finished() may detect this
	 */
903
	if (block_start_pfn < low_pfn)
904
		cc->free_pfn = cc->migrate_pfn;
905

906
	cc->nr_freepages = nr_freepages;
907 908 909 910 911 912 913 914 915 916 917 918 919
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

920 921 922 923
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
924
	if (list_empty(&cc->freepages)) {
925
		if (!cc->contended)
926
			isolate_freepages(cc);
927 928 929 930 931 932 933 934 935 936 937 938 939

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
940 941 942 943 944 945 946 947 948 949 950 951
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

952 953 954 955 956 957 958 959
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
960 961 962
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
963 964 965 966 967
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;
968 969 970
	struct page *page;
	const isolate_mode_t isolate_mode =
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
971

972 973 974 975 976
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
977 978

	/* Only scan within a pageblock boundary */
979
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
980

981 982 983 984 985 986
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
	for (; end_pfn <= cc->free_pfn;
			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
987

988 989 990 991 992 993 994 995
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
996

997 998
		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
		if (!page)
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
								isolate_mode);

		if (!low_pfn || cc->contended)
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
1030 1031 1032 1033 1034 1035
	/*
	 * Record where migration scanner will be restarted. If we end up in
	 * the same pageblock as the free scanner, make the scanners fully
	 * meet so that compact_finished() terminates compaction.
	 */
	cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1036

1037
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1038 1039
}

1040 1041
static int compact_finished(struct zone *zone, struct compact_control *cc,
			    const int migratetype)
1042
{
1043
	unsigned int order;
1044
	unsigned long watermark;
1045

1046
	if (cc->contended || fatal_signal_pending(current))
1047 1048
		return COMPACT_PARTIAL;

1049
	/* Compaction run completes if the migrate and free scanner meet */
1050
	if (cc->free_pfn <= cc->migrate_pfn) {
1051
		/* Let the next compaction start anew. */
1052 1053
		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1054 1055
		zone->compact_cached_free_pfn = zone_end_pfn(zone);

1056 1057 1058 1059 1060 1061 1062 1063 1064
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

1065
		return COMPACT_COMPLETE;
1066
	}
1067

1068 1069 1070 1071
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
1072 1073 1074
	if (cc->order == -1)
		return COMPACT_CONTINUE;

1075 1076 1077
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);

1078 1079
	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
							cc->alloc_flags))
1080 1081
		return COMPACT_CONTINUE;

1082
	/* Direct compactor: Is a suitable page free? */
1083 1084 1085 1086
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];

		/* Job done if page is free of the right migratetype */
1087
		if (!list_empty(&area->free_list[migratetype]))
1088 1089 1090 1091
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (cc->order >= pageblock_order && area->nr_free)
1092 1093 1094
			return COMPACT_PARTIAL;
	}

1095 1096 1097
	return COMPACT_CONTINUE;
}

1098 1099 1100 1101 1102 1103 1104
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
1105 1106
unsigned long compaction_suitable(struct zone *zone, int order,
					int alloc_flags, int classzone_idx)
1107 1108 1109 1110
{
	int fragindex;
	unsigned long watermark;

1111 1112 1113 1114 1115 1116 1117
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

1118 1119 1120 1121 1122 1123 1124 1125 1126
	watermark = low_wmark_pages(zone);
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
		return COMPACT_PARTIAL;

1127 1128 1129 1130 1131
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
1132 1133
	watermark += (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1134 1135 1136 1137 1138 1139
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1140 1141
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

	return COMPACT_CONTINUE;
}

1154 1155 1156
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
1157
	unsigned long start_pfn = zone->zone_start_pfn;
1158
	unsigned long end_pfn = zone_end_pfn(zone);
1159
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1160
	const bool sync = cc->mode != MIGRATE_ASYNC;
1161
	unsigned long last_migrated_pfn = 0;
1162

1163 1164
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

1175 1176 1177 1178 1179 1180 1181 1182
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

1183 1184 1185 1186 1187
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1188
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1189 1190 1191 1192 1193 1194 1195
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
1196 1197
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1198
	}
1199

1200 1201
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);

1202 1203
	migrate_prep_local();

1204 1205
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1206
		int err;
1207
		unsigned long isolate_start_pfn = cc->migrate_pfn;
1208

1209 1210 1211
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1212
			putback_movable_pages(&cc->migratepages);
1213
			cc->nr_migratepages = 0;
1214 1215
			goto out;
		case ISOLATE_NONE:
1216 1217 1218 1219 1220 1221
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1222 1223 1224
		case ISOLATE_SUCCESS:
			;
		}
1225

1226
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1227
				compaction_free, (unsigned long)cc, cc->mode,
1228
				MR_COMPACTION);
1229

1230 1231
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1232

1233 1234
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1235
		if (err) {
1236
			putback_movable_pages(&cc->migratepages);
1237 1238 1239 1240 1241
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1242 1243 1244
				ret = COMPACT_PARTIAL;
				goto out;
			}
1245
		}
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator. We use the pfn that
		 * isolate_migratepages() started from in this loop iteration
		 * - this is the lowest page that could have been isolated and
		 * then freed by migration.
		 */
		if (!last_migrated_pfn)
			last_migrated_pfn = isolate_start_pfn;

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
		if (cc->order > 0 && last_migrated_pfn) {
			int cpu;
			unsigned long current_block_start =
				cc->migrate_pfn & ~((1UL << cc->order) - 1);

			if (last_migrated_pfn < current_block_start) {
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
				last_migrated_pfn = 0;
			}
		}

1280 1281
	}

1282
out:
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
		free_pfn &= ~(pageblock_nr_pages-1);
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1301

1302 1303
	trace_mm_compaction_end(ret);

1304 1305
	return ret;
}
1306

1307
static unsigned long compact_zone_order(struct zone *zone, int order,
1308 1309
		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
		int alloc_flags, int classzone_idx)
1310
{
1311
	unsigned long ret;
1312 1313 1314 1315
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1316
		.gfp_mask = gfp_mask,
1317
		.zone = zone,
1318
		.mode = mode,
1319 1320
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1321 1322 1323 1324
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1325 1326 1327 1328 1329 1330 1331
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1332 1333
}

1334 1335
int sysctl_extfrag_threshold = 500;

1336 1337 1338 1339 1340 1341
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1342
 * @mode: The migration mode for async, sync light, or sync migration
1343 1344
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1345 1346 1347 1348
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1349
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1350
			enum migrate_mode mode, int *contended,
1351
			int alloc_flags, int classzone_idx)
1352 1353 1354 1355 1356 1357
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1358
	int rc = COMPACT_DEFERRED;
1359 1360 1361
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1362

1363
	/* Check if the GFP flags allow compaction */
1364
	if (!order || !may_enter_fs || !may_perform_io)
1365
		return COMPACT_SKIPPED;
1366 1367 1368 1369 1370

	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;
1371
		int zone_contended;
1372

1373 1374 1375
		if (compaction_deferred(zone, order))
			continue;

1376
		status = compact_zone_order(zone, order, gfp_mask, mode,
1377
				&zone_contended, alloc_flags, classzone_idx);
1378
		rc = max(status, rc);
1379 1380 1381 1382 1383
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1384

1385
		/* If a normal allocation would succeed, stop compacting */
1386 1387
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
					classzone_idx, alloc_flags)) {
1388 1389 1390 1391 1392 1393 1394
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

1409
		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1410 1411 1412 1413 1414 1415 1416
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1438 1439
	}

1440 1441 1442 1443 1444 1445 1446
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
	if (rc > COMPACT_SKIPPED && all_zones_contended)
		*contended = COMPACT_CONTENDED_LOCK;

1447 1448 1449 1450
	return rc;
}


1451
/* Compact all zones within a node */
1452
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1463 1464 1465 1466 1467
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1468

1469
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1470
			compact_zone(zone, cc);
1471

1472
		if (cc->order > 0) {
1473 1474 1475
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1476 1477
		}

1478 1479
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1480 1481 1482
	}
}

1483
void compact_pgdat(pg_data_t *pgdat, int order)
1484 1485 1486
{
	struct compact_control cc = {
		.order = order,
1487
		.mode = MIGRATE_ASYNC,
1488 1489
	};

1490 1491 1492
	if (!order)
		return;

1493
	__compact_pgdat(pgdat, &cc);
1494 1495
}

1496
static void compact_node(int nid)
1497 1498 1499
{
	struct compact_control cc = {
		.order = -1,
1500
		.mode = MIGRATE_SYNC,
1501
		.ignore_skip_hint = true,
1502 1503
	};

1504
	__compact_pgdat(NODE_DATA(nid), &cc);
1505 1506
}

1507
/* Compact all nodes in the system */
1508
static void compact_nodes(void)
1509 1510 1511
{
	int nid;

1512 1513 1514
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1527
		compact_nodes();
1528 1529 1530

	return 0;
}
1531

1532 1533 1534 1535 1536 1537 1538 1539
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1540
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1541
static ssize_t sysfs_compact_node(struct device *dev,
1542
			struct device_attribute *attr,
1543 1544
			const char *buf, size_t count)
{
1545 1546 1547 1548 1549 1550 1551 1552
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1553 1554 1555

	return count;
}
1556
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1557 1558 1559

int compaction_register_node(struct node *node)
{
1560
	return device_create_file(&node->dev, &dev_attr_compact);
1561 1562 1563 1564
}

void compaction_unregister_node(struct node *node)
{
1565
	return device_remove_file(&node->dev, &dev_attr_compact);
1566 1567
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1568 1569

#endif /* CONFIG_COMPACTION */