ohci.c 98.5 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
S
Stefan Richter 已提交
25
#include <linux/device.h>
A
Andrew Morton 已提交
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
S
Stefan Richter 已提交
28
#include <linux/firewire-constants.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
S
Stefan Richter 已提交
41
#include <linux/spinlock.h>
S
Stefan Richter 已提交
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
45
#include <linux/workqueue.h>
A
Andrew Morton 已提交
46

S
Stefan Richter 已提交
47
#include <asm/byteorder.h>
S
Stefan Richter 已提交
48
#include <asm/page.h>
49
#include <asm/system.h>
50

51 52 53 54
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

55 56
#include "core.h"
#include "ohci.h"
57

58 59 60 61 62 63 64 65 66 67 68 69 70
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
71 72 73 74 75 76 77 78 79 80

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

81 82 83 84
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
85

86 87 88 89 90 91 92 93
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94

95 96
struct ar_context {
	struct fw_ohci *ohci;
97 98 99 100
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
101
	void *pointer;
102
	unsigned int last_buffer_index;
103
	u32 regs;
104 105 106
	struct tasklet_struct tasklet;
};

107 108 109 110 111
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
112 113 114 115 116 117 118 119 120 121 122 123 124

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

125
struct context {
S
Stefan Richter 已提交
126
	struct fw_ohci *ohci;
127
	u32 regs;
128
	int total_allocation;
129
	bool running;
130
	bool flushing;
S
Stefan Richter 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
156 157 158

	descriptor_callback_t callback;

S
Stefan Richter 已提交
159
	struct tasklet_struct tasklet;
160 161
};

162 163 164 165 166 167
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168 169 170

struct iso_context {
	struct fw_iso_context base;
171
	struct context context;
172
	int excess_bytes;
173 174
	void *header;
	size_t header_length;
175 176 177

	u8 sync;
	u8 tags;
178 179 180 181 182 183 184 185
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
186
	int node_id;
187
	int generation;
188
	int request_generation;	/* for timestamping incoming requests */
189
	unsigned quirks;
190
	unsigned int pri_req_max;
191
	u32 bus_time;
192
	bool is_root;
193
	bool csr_state_setclear_abdicate;
194 195
	int n_ir;
	int n_it;
196 197 198 199
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
200 201
	spinlock_t lock;

202 203
	struct mutex phy_reg_mutex;

204 205 206
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

207 208
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
209 210
	struct context at_request_ctx;
	struct context at_response_ctx;
211

212
	u32 it_context_support;
213
	u32 it_context_mask;     /* unoccupied IT contexts */
214
	struct iso_context *it_context_list;
215
	u64 ir_context_channels; /* unoccupied channels */
216
	u32 ir_context_support;
217
	u32 ir_context_mask;     /* unoccupied IR contexts */
218
	struct iso_context *ir_context_list;
219 220
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
221 222 223 224 225 226 227 228 229

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
230
	struct work_struct bus_reset_work;
231 232

	u32 self_id_buffer[512];
233 234
};

A
Adrian Bunk 已提交
235
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
236 237 238 239
{
	return container_of(card, struct fw_ohci, card);
}

240 241 242 243 244 245
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
246 247 248 249 250 251

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

252
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
253 254 255 256 257 258
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
259
#define OHCI_TCODE_PHY_PACKET		0x0e
260
#define OHCI_VERSION_1_1		0x010010
261

262 263
static char ohci_driver_name[] = KBUILD_MODNAME;

264
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
265
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
266
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
267 268
#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
269
#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
270

271 272 273
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
274
#define QUIRK_NO_1394A			8
275
#define QUIRK_NO_MSI			16
276
#define QUIRK_TI_SLLZ059		32
277 278 279

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
280
	unsigned short vendor, device, revision, flags;
281
} ohci_quirks[] = {
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

297 298 299
	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_NO_MSI},

300 301 302 303 304 305
	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

306 307 308 309 310 311
	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},

312 313 314 315 316
	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
317 318
};

319 320 321 322 323 324 325
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
326
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
327
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
328
	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
329 330
	")");

331
#define OHCI_PARAM_DEBUG_AT_AR		1
332
#define OHCI_PARAM_DEBUG_SELFIDS	2
333 334
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
335

336 337
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

338 339 340 341
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
342 343 344
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
345 346 347 348
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
349 350 351 352 353 354
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
355 356
		return;

357
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
358 359 360 361 362 363 364 365 366
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
367
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
368
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
369
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
370
	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
371 372 373 374 375
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
376 377
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
378
		    OHCI1394_regAccessFail | OHCI1394_busReset)
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

396
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
397 398 399 400
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

401 402
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
403 404 405

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
406 407 408 409 410 411
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
412
		else
413 414 415 416
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

460
	if (evt == OHCI1394_evt_bus_reset) {
461 462
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
463 464 465
		return;
	}

466 467 468 469 470 471 472 473 474 475 476 477 478 479
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
480
	case 0xa:
481
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
482
		break;
483 484 485 486
	case 0xe:
		fw_notify("A%c %s, PHY %08x %08x\n",
			  dir, evts[evt], header[1], header[2]);
		break;
487
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
488 489 490 491 492 493
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
494 495
		break;
	default:
496 497 498 499 500 501
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
502 503 504 505 506
	}
}

#else

507 508 509 510
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
511 512 513

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
514
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
515 516 517 518
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
519
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
520 521 522 523
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
524
static inline void flush_writes(const struct fw_ohci *ohci)
525 526 527 528 529
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

530 531 532 533 534 535
/*
 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 */
536
static int read_phy_reg(struct fw_ohci *ohci, int addr)
537
{
538
	u32 val;
539
	int i;
540 541

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
542
	for (i = 0; i < 3 + 100; i++) {
543
		val = reg_read(ohci, OHCI1394_PhyControl);
544 545 546
		if (!~val)
			return -ENODEV; /* Card was ejected. */

547 548 549
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

550 551 552 553 554 555
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
556
	}
557
	fw_error("failed to read phy reg\n");
558

559 560
	return -EBUSY;
}
561

562 563 564
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
565 566

	reg_write(ohci, OHCI1394_PhyControl,
567
		  OHCI1394_PhyControl_Write(addr, val));
568
	for (i = 0; i < 3 + 100; i++) {
569
		val = reg_read(ohci, OHCI1394_PhyControl);
570 571 572
		if (!~val)
			return -ENODEV; /* Card was ejected. */

573 574
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
575

576 577
		if (i >= 3)
			msleep(1);
578 579 580 581
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
582 583
}

584 585
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
586
{
587
	int ret = read_phy_reg(ohci, addr);
588 589
	if (ret < 0)
		return ret;
590

591 592 593 594 595 596 597
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

598
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
599 600
}

601
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
602
{
603
	int ret;
604

605
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
606 607
	if (ret < 0)
		return ret;
608

609
	return read_phy_reg(ohci, addr);
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
635 636
}

637 638 639 640 641 642
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
643
{
644
	struct descriptor *d;
645

646 647 648 649
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
650

651
	wmb(); /* finish init of new descriptors before branch_address update */
652 653 654 655
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
656

657
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
658 659
}

660
static void ar_context_release(struct ar_context *ctx)
661
{
662
	unsigned int i;
663

664 665
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
666

667 668 669 670 671 672 673
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
674 675
}

676
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
677
{
678 679 680
	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ctx->ohci);
681

682
		fw_error("AR error: %s; DMA stopped\n", error_msg);
683
	}
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
780 781
}

782 783
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
784
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
785 786 787 788
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

789
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
790 791
{
	struct fw_ohci *ohci = ctx->ohci;
792 793
	struct fw_packet p;
	u32 status, length, tcode;
794
	int evt;
795

796 797 798
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
799 800 801 802 803

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
804
		p.header[3] = (__force __u32) buffer[3];
805
		p.header_length = 16;
806
		p.payload_length = 0;
807 808 809
		break;

	case TCODE_READ_BLOCK_REQUEST :
810
		p.header[3] = cond_le32_to_cpu(buffer[3]);
811 812 813 814 815
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
816 817 818
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
819
		p.header[3] = cond_le32_to_cpu(buffer[3]);
820
		p.header_length = 16;
821
		p.payload_length = p.header[3] >> 16;
822 823 824 825
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
826 827 828 829
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
830
	case OHCI_TCODE_PHY_PACKET:
831
		p.header_length = 12;
832
		p.payload_length = 0;
833
		break;
834 835

	default:
836 837
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
838
	}
839

840 841 842 843
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
844
	status = cond_le32_to_cpu(buffer[length]);
845
	evt    = (status >> 16) & 0x1f;
846

847
	p.ack        = evt - 16;
848 849 850
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
851

852
	log_ar_at_event('R', p.speed, p.header, evt);
853

854
	/*
855 856 857 858 859 860 861 862 863
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
864 865 866 867 868
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
869
	 * request.
870 871 872
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
873
	 * at a slightly incorrect time (in bus_reset_work).
874
	 */
875
	if (evt == OHCI1394_evt_bus_reset) {
876
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
877 878
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
879
		fw_core_handle_request(&ohci->card, &p);
880
	} else {
881
		fw_core_handle_response(&ohci->card, &p);
882
	}
883

884 885
	return buffer + length + 1;
}
886

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

915 916 917
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
918 919
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
920

921 922 923
	p = ctx->pointer;
	if (!p)
		return;
924

925 926 927 928
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
929

930
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
931
		/*
932 933 934 935
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
936
		 */
937 938 939 940 941 942 943
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
944

945 946 947 948 949 950
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
951

952 953
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
954

955
	return;
956

957 958
error:
	ctx->pointer = NULL;
959 960
}

961 962
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
963
{
964 965 966 967
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
968

969 970
	ctx->regs        = regs;
	ctx->ohci        = ohci;
971 972
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
992
				 -1, PAGE_KERNEL);
993 994 995
	if (!ctx->buffer)
		goto out_of_memory;

996 997
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
1009

1010
	return 0;
1011 1012 1013 1014 1015

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
1016 1017 1018 1019
}

static void ar_context_run(struct ar_context *ctx)
{
1020 1021 1022 1023
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
1024

1025
	ctx->pointer = ctx->buffer;
1026

1027
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1028
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1029
}
S
Stefan Richter 已提交
1030

1031
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1032
{
1033
	__le16 branch;
1034

1035
	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1036 1037

	/* figure out which descriptor the branch address goes in */
1038
	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1039 1040 1041 1042 1043
		return d;
	else
		return d + z - 1;
}

1044 1045 1046 1047 1048 1049
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1050
	struct descriptor_buffer *desc;
1051

1052 1053 1054
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1055
	while (last->branch_address != 0) {
1056
		struct descriptor_buffer *old_desc = desc;
1057 1058
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1059 1060 1061 1062 1063 1064 1065 1066 1067
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1068
		last = find_branch_descriptor(d, z);
1069 1070 1071 1072

		if (!ctx->callback(ctx, d, last))
			break;

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1083 1084 1085
	}
}

1086 1087 1088 1089
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1090
static int context_add_buffer(struct context *ctx)
1091 1092
{
	struct descriptor_buffer *desc;
1093
	dma_addr_t uninitialized_var(bus_addr);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1119 1120
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1121 1122 1123
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1124 1125 1126 1127
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1128 1129
		return -ENOMEM;

1130 1131 1132
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1133 1134 1135
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1136 1137
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1138
	 * branch address and looks like it's been sent.  That way we
1139
	 * have a descriptor to append DMA programs to.
1140
	 */
1141 1142 1143 1144 1145 1146
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1147 1148 1149 1150

	return 0;
}

1151
static void context_release(struct context *ctx)
1152 1153
{
	struct fw_card *card = &ctx->ohci->card;
1154
	struct descriptor_buffer *desc, *tmp;
1155

1156 1157 1158 1159
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1160 1161
}

1162
/* Must be called with ohci->lock held */
1163 1164
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1165
{
1166 1167 1168 1169 1170 1171 1172 1173 1174
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1186

1187
	d = desc->buffer + desc->used / sizeof(*d);
1188
	memset(d, 0, z * sizeof(*d));
1189
	*d_bus = desc->buffer_bus + desc->used;
1190 1191 1192 1193

	return d;
}

1194
static void context_run(struct context *ctx, u32 extra)
1195 1196 1197
{
	struct fw_ohci *ohci = ctx->ohci;

1198
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1199
		  le32_to_cpu(ctx->last->branch_address));
1200 1201
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1202
	ctx->running = true;
1203 1204 1205 1206 1207 1208 1209
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1210
	struct descriptor_buffer *desc = ctx->buffer_tail;
1211

1212
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1213

1214
	desc->used += (z + extra) * sizeof(*d);
1215 1216

	wmb(); /* finish init of new descriptors before branch_address update */
1217 1218
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1219 1220 1221 1222 1223
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1224
	int i;
1225

1226
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1227
	ctx->running = false;
1228

1229
	for (i = 0; i < 1000; i++) {
1230
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1231
		if ((reg & CONTEXT_ACTIVE) == 0)
1232
			return;
1233

1234 1235
		if (i)
			udelay(10);
1236
	}
1237
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1238
}
1239

1240
struct driver_data {
1241
	u8 inline_data[8];
1242 1243
	struct fw_packet *packet;
};
1244

1245 1246
/*
 * This function apppends a packet to the DMA queue for transmission.
1247
 * Must always be called with the ochi->lock held to ensure proper
1248 1249
 * generation handling and locking around packet queue manipulation.
 */
1250 1251
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1252 1253
{
	struct fw_ohci *ohci = ctx->ohci;
1254
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1255 1256 1257
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1258 1259
	int z, tcode;

1260 1261 1262 1263
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1264 1265
	}

1266
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1267 1268
	d[0].res_count = cpu_to_le16(packet->timestamp);

1269 1270
	/*
	 * The DMA format for asyncronous link packets is different
1271
	 * from the IEEE1394 layout, so shift the fields around
1272
	 * accordingly.
1273
	 */
1274

1275
	tcode = (packet->header[0] >> 4) & 0x0f;
1276
	header = (__le32 *) &d[1];
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1287 1288 1289 1290 1291
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1292 1293

		if (TCODE_IS_BLOCK_PACKET(tcode))
1294
			header[3] = cpu_to_le32(packet->header[3]);
1295
		else
1296 1297 1298
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1299 1300
		break;

1301
	case TCODE_LINK_INTERNAL:
1302 1303
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1304 1305
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1306
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1307

1308
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1309
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1310 1311
		break;

1312
	case TCODE_STREAM_DATA:
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1323 1324
	}

1325
	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1326 1327
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1328
	packet->driver_data = driver_data;
1329

1330
	if (packet->payload_length > 0) {
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		if (packet->payload_length > sizeof(driver_data->inline_data)) {
			payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
			if (dma_mapping_error(ohci->card.device, payload_bus)) {
				packet->ack = RCODE_SEND_ERROR;
				return -1;
			}
			packet->payload_bus	= payload_bus;
			packet->payload_mapped	= true;
		} else {
			memcpy(driver_data->inline_data, packet->payload,
			       packet->payload_length);
			payload_bus = d_bus + 3 * sizeof(*d);
1346 1347 1348 1349 1350 1351
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1352
	} else {
1353 1354
		last = &d[0];
		z = 2;
1355 1356
	}

1357 1358 1359
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1360

1361 1362
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
1363
		if (packet->payload_mapped)
1364 1365
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1366 1367 1368 1369 1370
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1371

1372
	if (ctx->running)
1373
		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1374
	else
1375 1376 1377
		context_run(ctx, 0);

	return 0;
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
static void at_context_flush(struct context *ctx)
{
	tasklet_disable(&ctx->tasklet);

	ctx->flushing = true;
	context_tasklet((unsigned long)ctx);
	ctx->flushing = false;

	tasklet_enable(&ctx->tasklet);
}

1391 1392 1393
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1394
{
1395
	struct driver_data *driver_data;
1396
	struct fw_packet *packet;
1397
	struct fw_ohci *ohci = context->ohci;
1398 1399
	int evt;

1400
	if (last->transfer_status == 0 && !context->flushing)
1401 1402
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1403

1404 1405 1406 1407 1408
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1409

1410
	if (packet->payload_mapped)
1411
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1412 1413
				 packet->payload_length, DMA_TO_DEVICE);

1414 1415
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1416

1417 1418
	log_ar_at_event('T', packet->speed, packet->header, evt);

1419 1420 1421 1422 1423
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1424

1425
	case OHCI1394_evt_flushed:
1426 1427 1428 1429
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1430 1431
		packet->ack = RCODE_GENERATION;
		break;
1432

1433
	case OHCI1394_evt_missing_ack:
1434 1435 1436 1437 1438 1439 1440 1441 1442
		if (context->flushing)
			packet->ack = RCODE_GENERATION;
		else {
			/*
			 * Using a valid (current) generation count, but the
			 * node is not on the bus or not sending acks.
			 */
			packet->ack = RCODE_NO_ACK;
		}
1443
		break;
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1454

1455 1456 1457 1458 1459 1460 1461
	case OHCI1394_evt_no_status:
		if (context->flushing) {
			packet->ack = RCODE_GENERATION;
			break;
		}
		/* fall through */

1462 1463 1464 1465
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1466

1467
	packet->callback(packet, &ohci->card, packet->ack);
1468

1469
	return 1;
1470 1471
}

1472 1473 1474 1475 1476
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1477

1478 1479
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1480 1481 1482 1483
{
	struct fw_packet response;
	int tcode, length, i;

1484
	tcode = HEADER_GET_TCODE(packet->header[0]);
1485
	if (TCODE_IS_BLOCK_PACKET(tcode))
1486
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1505 1506
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1507 1508
{
	struct fw_packet response;
1509
	int tcode, length, ext_tcode, sel, try;
1510 1511 1512
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1513 1514
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1515
	payload = packet->payload;
1516
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1548 1549 1550 1551 1552

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1553
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1554
{
1555
	u64 offset, csr;
1556

1557 1558 1559 1560
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1561 1562 1563

	offset =
		((unsigned long long)
1564
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1585 1586 1587 1588 1589

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1590
}
1591

1592
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1593 1594
{
	unsigned long flags;
1595
	int ret;
1596 1597 1598

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1599
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1600
	    ctx->ohci->generation == packet->generation) {
1601 1602 1603
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1604
	}
1605

1606
	ret = at_context_queue_packet(ctx, packet);
1607 1608
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1609
	if (ret < 0)
1610
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1611

1612 1613
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
static void detect_dead_context(struct fw_ohci *ohci,
				const char *name, unsigned int regs)
{
	u32 ctl;

	ctl = reg_read(ohci, CONTROL_SET(regs));
	if (ctl & CONTEXT_DEAD) {
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
		fw_error("DMA context %s has stopped, error code: %s\n",
			 name, evts[ctl & 0x1f]);
#else
		fw_error("DMA context %s has stopped, error code: %#x\n",
			 name, ctl & 0x1f);
#endif
	}
}

static void handle_dead_contexts(struct fw_ohci *ohci)
{
	unsigned int i;
	char name[8];

	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
	for (i = 0; i < 32; ++i) {
		if (!(ohci->it_context_support & (1 << i)))
			continue;
		sprintf(name, "IT%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
	}
	for (i = 0; i < 32; ++i) {
		if (!(ohci->ir_context_support & (1 << i)))
			continue;
		sprintf(name, "IR%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
	}
	/* TODO: maybe try to flush and restart the dead contexts */
}

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1727 1728 1729 1730 1731 1732
static int get_status_for_port(struct fw_ohci *ohci, int port_index)
{
	int reg;

	mutex_lock(&ohci->phy_reg_mutex);
	reg = write_phy_reg(ohci, 7, port_index);
1733 1734
	if (reg >= 0)
		reg = read_phy_reg(ohci, 8);
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	mutex_unlock(&ohci->phy_reg_mutex);
	if (reg < 0)
		return reg;

	switch (reg & 0x0f) {
	case 0x06:
		return 2;	/* is child node (connected to parent node) */
	case 0x0e:
		return 3;	/* is parent node (connected to child node) */
	}
	return 1;		/* not connected */
}

static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
	int self_id_count)
{
	int i;
	u32 entry;
1753

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	for (i = 0; i < self_id_count; i++) {
		entry = ohci->self_id_buffer[i];
		if ((self_id & 0xff000000) == (entry & 0xff000000))
			return -1;
		if ((self_id & 0xff000000) < (entry & 0xff000000))
			return i;
	}
	return i;
}

/*
1765 1766 1767 1768
 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
 * Construct the selfID from phy register contents.
 * FIXME:  How to determine the selfID.i flag?
1769 1770 1771
 */
static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
{
1772 1773 1774
	int reg, i, pos, status;
	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
	u32 self_id = 0x8040c800;
1775 1776 1777 1778 1779 1780 1781 1782

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
		fw_notify("node ID not valid, new bus reset in progress\n");
		return -EBUSY;
	}
	self_id |= ((reg & 0x3f) << 24); /* phy ID */

1783
	reg = ohci_read_phy_reg(&ohci->card, 4);
1784 1785 1786 1787
	if (reg < 0)
		return reg;
	self_id |= ((reg & 0x07) << 8); /* power class */

1788
	reg = ohci_read_phy_reg(&ohci->card, 1);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	if (reg < 0)
		return reg;
	self_id |= ((reg & 0x3f) << 16); /* gap count */

	for (i = 0; i < 3; i++) {
		status = get_status_for_port(ohci, i);
		if (status < 0)
			return status;
		self_id |= ((status & 0x3) << (6 - (i * 2)));
	}

	pos = get_self_id_pos(ohci, self_id, self_id_count);
	if (pos >= 0) {
		memmove(&(ohci->self_id_buffer[pos+1]),
			&(ohci->self_id_buffer[pos]),
			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
		ohci->self_id_buffer[pos] = self_id;
		self_id_count++;
	}
	return self_id_count;
}

1811
static void bus_reset_work(struct work_struct *work)
1812
{
1813 1814
	struct fw_ohci *ohci =
		container_of(work, struct fw_ohci, bus_reset_work);
1815
	int self_id_count, i, j, reg;
1816 1817
	int generation, new_generation;
	unsigned long flags;
1818 1819
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1820
	bool is_new_root;
1821 1822 1823

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1824
		fw_notify("node ID not valid, new bus reset in progress\n");
1825 1826
		return;
	}
1827 1828 1829 1830 1831 1832
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1833

1834 1835 1836 1837 1838 1839
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1840 1841 1842 1843 1844
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1845 1846
	/*
	 * The count in the SelfIDCount register is the number of
1847 1848
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1849 1850
	 * bit extra to get the actual number of self IDs.
	 */
1851
	self_id_count = (reg >> 3) & 0xff;
1852 1853

	if (self_id_count > 252) {
1854 1855 1856
		fw_notify("inconsistent self IDs\n");
		return;
	}
1857

1858
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1859
	rmb();
1860 1861

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1862 1863 1864 1865
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1866 1867
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1868
	}
1869 1870 1871 1872

	if (ohci->quirks & QUIRK_TI_SLLZ059) {
		self_id_count = find_and_insert_self_id(ohci, self_id_count);
		if (self_id_count < 0) {
1873
			fw_notify("could not construct local self ID\n");
1874 1875 1876 1877 1878 1879 1880 1881
			return;
		}
	}

	if (self_id_count == 0) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1882
	rmb();
1883

1884 1885
	/*
	 * Check the consistency of the self IDs we just read.  The
1886 1887 1888 1889 1890 1891 1892 1893 1894
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1895 1896
	 * of self IDs.
	 */
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

1908
	ohci->generation = -1; /* prevent AT packet queueing */
1909 1910
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1911 1912 1913

	spin_unlock_irqrestore(&ohci->lock, flags);

1914 1915 1916 1917 1918
	/*
	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
	 * packets in the AT queues and software needs to drain them.
	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
	 */
1919 1920 1921 1922 1923 1924
	at_context_flush(&ohci->at_request_ctx);
	at_context_flush(&ohci->at_response_ctx);

	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1925 1926
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1927
	if (ohci->quirks & QUIRK_RESET_PACKET)
1928 1929
		ohci->request_generation = generation;

1930 1931
	/*
	 * This next bit is unrelated to the AT context stuff but we
1932 1933 1934 1935
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1936
	 * next_config_rom pointer so a new update can take place.
1937
	 */
1938 1939

	if (ohci->next_config_rom != NULL) {
1940 1941 1942 1943
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1944 1945 1946 1947
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1948 1949
		/*
		 * Restore config_rom image and manually update
1950 1951
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1952 1953
		 * do that last.
		 */
1954 1955
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1956 1957 1958
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1959 1960
	}

1961 1962 1963 1964 1965
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1966 1967
	spin_unlock_irqrestore(&ohci->lock, flags);

1968 1969 1970 1971
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1972 1973
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1974

1975
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1976 1977 1978
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1979 1980 1981 1982 1983
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1984
	u32 event, iso_event;
1985 1986 1987 1988
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1989
	if (!event || !~event)
1990 1991
		return IRQ_NONE;

1992 1993 1994 1995 1996 1997
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1998
	log_irqs(event);
1999 2000

	if (event & OHCI1394_selfIDComplete)
2001
		queue_work(fw_workqueue, &ohci->bus_reset_work);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
2025 2026
	}

2027 2028 2029
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2030

2031 2032 2033 2034 2035 2036
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
2037 2038
	}

2039 2040 2041 2042
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

2043 2044 2045 2046 2047
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
2048
		fw_error("PCI posted write error\n");
2049
	}
2050

2051 2052 2053 2054 2055 2056 2057
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

2069 2070 2071
	if (unlikely(event & OHCI1394_unrecoverableError))
		handle_dead_contexts(ohci);

2072 2073 2074 2075
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
2076 2077
	} else
		flush_writes(ohci);
2078

2079 2080 2081
	return IRQ_HANDLED;
}

2082 2083
static int software_reset(struct fw_ohci *ohci)
{
2084
	u32 val;
2085 2086 2087
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2088 2089 2090 2091
	for (i = 0; i < 500; i++) {
		val = reg_read(ohci, OHCI1394_HCControlSet);
		if (!~val)
			return -ENODEV; /* Card was ejected. */
2092

2093
		if (!(val & OHCI1394_HCControl_softReset))
2094
			return 0;
2095

2096 2097 2098 2099 2100 2101
		msleep(1);
	}

	return -EBUSY;
}

2102 2103 2104 2105 2106 2107 2108 2109 2110
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

2111 2112 2113
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
2114
	int ret, clear, set, offset;
2115 2116 2117 2118 2119 2120 2121 2122

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
2123 2124 2125 2126 2127 2128 2129 2130
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
2145
	ret = update_phy_reg(ohci, 5, clear, set);
2146 2147
	if (ret < 0)
		return ret;
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

2162 2163
static int probe_tsb41ba3d(struct fw_ohci *ohci)
{
2164 2165 2166
	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
	int reg, i;
2167 2168 2169 2170

	reg = read_phy_reg(ohci, 2);
	if (reg < 0)
		return reg;
2171 2172
	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
		return 0;
2173

2174 2175 2176 2177 2178 2179
	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
		reg = read_paged_phy_reg(ohci, 1, i + 10);
		if (reg < 0)
			return reg;
		if (reg != id[i])
			return 0;
2180
	}
2181
	return 1;
2182 2183
}

2184 2185
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
2186 2187 2188
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
2189
	u32 lps, seconds, version, irqs;
2190
	int i, ret;
2191

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
2202 2203
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
2204 2205 2206 2207 2208
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
2220

2221
	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2222 2223 2224 2225 2226 2227
		ret = probe_tsb41ba3d(ohci);
		if (ret < 0)
			return ret;
		if (ret)
			fw_notify("local TSB41BA3D phy\n");
		else
2228 2229 2230
			ohci->quirks &= ~QUIRK_TI_SLLZ059;
	}

2231 2232 2233
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

2234
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2235 2236 2237 2238 2239 2240 2241
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2242 2243
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2244

2245 2246 2247 2248
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

2249 2250 2251 2252
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2253
		card->broadcast_channel_auto_allocated = true;
2254 2255
	}

2256 2257 2258 2259
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2260
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2261 2262 2263 2264 2265

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2266 2267 2268
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2269

2270
	/* Activate link_on bit and contender bit in our self ID packets.*/
2271 2272 2273
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2274

2275 2276
	/*
	 * When the link is not yet enabled, the atomic config rom
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2294 2295 2296 2297 2298 2299 2300
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2301

2302
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2303 2304 2305 2306 2307 2308 2309 2310
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2311

2312
	ohci->next_header = ohci->next_config_rom[0];
2313 2314
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2315 2316
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2317 2318 2319 2320
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2321 2322
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
2323
	if (request_irq(dev->irq, irq_handler,
2324 2325 2326 2327
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
2328 2329 2330 2331 2332 2333 2334

		if (config_rom) {
			dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					  ohci->next_config_rom,
					  ohci->next_config_rom_bus);
			ohci->next_config_rom = NULL;
		}
2335 2336 2337
		return -EIO;
	}

2338 2339 2340 2341 2342 2343
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2344
		OHCI1394_cycle64Seconds |
2345 2346 2347
		OHCI1394_cycleInconsistent |
		OHCI1394_unrecoverableError |
		OHCI1394_cycleTooLong |
2348 2349 2350 2351 2352
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2353 2354 2355
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
2356 2357 2358 2359 2360 2361

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_rcvPhyPkt);

	ar_context_run(&ohci->ar_request_ctx);
2362 2363 2364
	ar_context_run(&ohci->ar_response_ctx);

	flush_writes(ohci);
2365

2366 2367
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2368 2369 2370 2371

	return 0;
}

2372
static int ohci_set_config_rom(struct fw_card *card,
2373
			       const __be32 *config_rom, size_t length)
2374 2375 2376 2377
{
	struct fw_ohci *ohci;
	unsigned long flags;
	__be32 *next_config_rom;
2378
	dma_addr_t uninitialized_var(next_config_rom_bus);
2379 2380 2381

	ohci = fw_ohci(card);

2382 2383
	/*
	 * When the OHCI controller is enabled, the config rom update
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
2406
	 * ohci->next_config_rom to NULL (see bus_reset_work).
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	/*
	 * If there is not an already pending config_rom update,
	 * push our new allocation into the ohci->next_config_rom
	 * and then mark the local variable as null so that we
	 * won't deallocate the new buffer.
	 *
	 * OTOH, if there is a pending config_rom update, just
	 * use that buffer with the new config_rom data, and
	 * let this routine free the unused DMA allocation.
	 */

2428 2429 2430
	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;
2431 2432
		next_config_rom = NULL;
	}
2433

2434
	copy_config_rom(ohci->next_config_rom, config_rom, length);
2435

2436 2437
	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
2438

2439
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2440 2441 2442

	spin_unlock_irqrestore(&ohci->lock, flags);

2443 2444 2445 2446 2447
	/* If we didn't use the DMA allocation, delete it. */
	if (next_config_rom != NULL)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);

2448 2449
	/*
	 * Now initiate a bus reset to have the changes take
2450 2451 2452
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2453 2454
	 * takes effect.
	 */
2455

2456 2457 2458
	fw_schedule_bus_reset(&ohci->card, true, true);

	return 0;
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2475 2476 2477
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2478 2479
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2480
	int ret = -ENOENT;
2481

2482
	tasklet_disable(&ctx->tasklet);
2483

2484 2485
	if (packet->ack != 0)
		goto out;
2486

2487
	if (packet->payload_mapped)
2488 2489 2490
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2491
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2492 2493 2494
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2495
	ret = 0;
2496 2497
 out:
	tasklet_enable(&ctx->tasklet);
2498

2499
	return ret;
2500 2501
}

2502 2503
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2504
{
2505 2506 2507
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2508 2509
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2510
	int n, ret = 0;
2511

2512 2513 2514 2515
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2516 2517 2518 2519

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2520
		ret = -ESTALE;
2521 2522 2523
		goto out;
	}

2524 2525 2526 2527
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2528 2529 2530 2531 2532 2533 2534

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2535 2536
	flush_writes(ohci);
 out:
2537
	spin_unlock_irqrestore(&ohci->lock, flags);
2538 2539

	return ret;
2540
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2541
}
S
Stefan Richter 已提交
2542

2543
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2544
{
2545
	struct fw_ohci *ohci = fw_ohci(card);
2546 2547
	unsigned long flags;
	u32 value;
2548 2549

	switch (csr_offset) {
2550 2551 2552 2553 2554
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2555
			value = CSR_STATE_BIT_CMSTR;
2556
		else
2557 2558 2559
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2560

2561
		return value;
2562

2563 2564 2565
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2566 2567 2568
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2580 2581 2582 2583
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2584 2585 2586 2587
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2588 2589 2590 2591
	default:
		WARN_ON(1);
		return 0;
	}
2592 2593
}

2594
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2595 2596
{
	struct fw_ohci *ohci = fw_ohci(card);
2597
	unsigned long flags;
2598

2599
	switch (csr_offset) {
2600 2601 2602 2603 2604 2605
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2606 2607
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2608
		break;
2609

2610 2611 2612 2613 2614 2615
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2616 2617
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2618
		break;
2619

2620 2621 2622 2623 2624
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2625 2626 2627 2628 2629 2630 2631
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2632 2633 2634 2635 2636 2637
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2638 2639 2640 2641 2642 2643 2644
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2645 2646 2647 2648 2649
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2650 2651 2652 2653
	default:
		WARN_ON(1);
		break;
	}
2654 2655
}

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2678 2679 2680 2681 2682 2683
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2684
	struct descriptor *pd;
2685
	__le32 *ir_header;
2686
	void *p;
2687

2688
	for (pd = d; pd <= last; pd++)
2689 2690 2691
		if (pd->transfer_status)
			break;
	if (pd > last)
2692 2693 2694
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2695 2696
	p = last + 1;
	copy_iso_headers(ctx, p);
2697

2698 2699
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2700 2701 2702 2703
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2704 2705 2706 2707 2708 2709
		ctx->header_length = 0;
	}

	return 1;
}

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2732 2733 2734
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2735
{
2736 2737
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2738 2739
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2740

2741 2742 2743 2744 2745
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2746 2747
		return 0;

2748 2749 2750 2751 2752 2753 2754 2755 2756
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2757 2758 2759
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2760 2761
		ctx->header_length = 0;
	}
2762
	return 1;
2763 2764
}

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2777
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2778
				int type, int channel, size_t header_size)
2779 2780
{
	struct fw_ohci *ohci = fw_ohci(card);
2781 2782 2783 2784
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2785
	unsigned long flags;
2786
	int index, ret = -EBUSY;
2787

2788
	spin_lock_irqsave(&ohci->lock, flags);
2789

2790 2791 2792
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2793
		callback = handle_it_packet;
2794 2795 2796 2797 2798 2799 2800 2801 2802
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2803
		channels = &ohci->ir_context_channels;
2804
		mask     = &ohci->ir_context_mask;
2805
		callback = handle_ir_packet_per_buffer;
2806 2807 2808 2809 2810 2811 2812 2813
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2814

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2830
	}
2831

2832 2833 2834
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2835
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2836

2837
	memset(ctx, 0, sizeof(*ctx));
2838 2839
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2840 2841
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2842
		goto out;
2843
	}
2844 2845
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2846
		goto out_with_header;
2847

2848 2849 2850
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2851
	return &ctx->base;
2852 2853 2854 2855 2856

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2867
	*mask |= 1 << index;
2868

2869 2870
	spin_unlock_irqrestore(&ohci->lock, flags);

2871
	return ERR_PTR(ret);
2872 2873
}

2874 2875
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2876
{
S
Stefan Richter 已提交
2877
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2878
	struct fw_ohci *ohci = ctx->context.ohci;
2879
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2880 2881
	int index;

2882 2883 2884 2885
	/* the controller cannot start without any queued packets */
	if (ctx->context.last->branch_address == 0)
		return -ENODATA;

2886 2887
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2888
		index = ctx - ohci->it_context_list;
2889 2890 2891
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2892
				(cycle & 0x7fff) << 16;
2893

2894 2895
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2896
		context_run(&ctx->context, match);
2897 2898 2899 2900 2901 2902
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2903
		index = ctx - ohci->ir_context_list;
2904 2905 2906 2907 2908
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2909

2910 2911
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2912
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2913
		context_run(&ctx->context, control);
2914 2915 2916 2917

		ctx->sync = sync;
		ctx->tags = tags;

2918
		break;
2919
	}
2920 2921 2922 2923

	return 0;
}

2924 2925 2926
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2927
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2928 2929
	int index;

2930 2931
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2932 2933
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2934 2935 2936 2937
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2938 2939
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2940
		break;
2941 2942 2943
	}
	flush_writes(ohci);
	context_stop(&ctx->context);
2944
	tasklet_kill(&ctx->context.tasklet);
2945 2946 2947 2948

	return 0;
}

2949 2950 2951
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2952
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2953 2954 2955
	unsigned long flags;
	int index;

2956 2957
	ohci_stop_iso(base);
	context_release(&ctx->context);
2958
	free_page((unsigned long)ctx->header);
2959

2960 2961
	spin_lock_irqsave(&ohci->lock, flags);

2962 2963
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2964 2965
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2966 2967 2968
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2969 2970
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2971
		ohci->ir_context_channels |= 1ULL << base->channel;
2972 2973 2974 2975 2976 2977 2978 2979 2980
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2981 2982 2983 2984 2985
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

3016 3017 3018 3019 3020 3021 3022 3023
#ifdef CONFIG_PM
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
{
	int i;
	struct iso_context *ctx;

	for (i = 0 ; i < ohci->n_ir ; i++) {
		ctx = &ohci->ir_context_list[i];
3024
		if (ctx->context.running)
3025 3026 3027 3028 3029
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}

	for (i = 0 ; i < ohci->n_it ; i++) {
		ctx = &ohci->it_context_list[i];
3030
		if (ctx->context.running)
3031 3032 3033 3034 3035
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}
}
#endif

3036 3037 3038 3039
static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
3040
{
3041
	struct descriptor *d, *last, *pd;
3042 3043
	struct fw_iso_packet *p;
	__le32 *header;
3044
	dma_addr_t d_bus, page_bus;
3045 3046
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
3047
	int page, end_page, i, length, offset;
3048 3049

	p = packet;
3050
	payload_index = payload;
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
3069
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3070

3071 3072 3073
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
3074 3075

	if (!p->skip) {
3076
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3077
		d[0].req_count = cpu_to_le16(8);
3078 3079 3080 3081 3082 3083 3084 3085
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
3086 3087

		header = (__le32 *) &d[1];
3088 3089 3090 3091 3092
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
3093
		header[1] =
3094
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3095 3096 3097 3098 3099
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
3100
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
3113 3114 3115

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
3116 3117 3118 3119 3120

		payload_index += length;
	}

	if (p->interrupt)
3121
		irq = DESCRIPTOR_IRQ_ALWAYS;
3122
	else
3123
		irq = DESCRIPTOR_NO_IRQ;
3124

3125
	last = z == 2 ? d : d + z - 1;
3126 3127 3128
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
3129
				     irq);
3130

3131
	context_append(&ctx->context, d, z, header_z);
3132 3133 3134

	return 0;
}
S
Stefan Richter 已提交
3135

3136 3137 3138 3139
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
3140
{
3141
	struct descriptor *d, *pd;
3142 3143
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
3144 3145
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
3146 3147

	/*
3148 3149
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
3150
	 */
3151
	packet_count = packet->header_length / ctx->base.header_size;
3152
	header_size  = max(ctx->base.header_size, (size_t)8);
3153 3154 3155 3156 3157

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
3158
	payload_per_buffer = packet->payload_length / packet_count;
3159 3160 3161

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
3162
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3163
		d = context_get_descriptors(&ctx->context,
3164
				z + header_z, &d_bus);
3165 3166 3167
		if (d == NULL)
			return -ENOMEM;

3168 3169
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
3170
		if (packet->skip && i == 0)
3171
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3172 3173
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
3174
		d->transfer_status = 0;
3175 3176
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

3177
		rest = payload_per_buffer;
3178
		pd = d;
3179
		for (j = 1; j < z; j++) {
3180
			pd++;
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
3200 3201 3202
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
3203
		if (packet->interrupt && i == packet_count - 1)
3204 3205 3206 3207 3208 3209 3210 3211
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

3264 3265 3266 3267
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
3268
{
3269
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3270
	unsigned long flags;
3271
	int ret = -ENOSYS;
3272

3273
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
3285 3286
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

3287
	return ret;
3288 3289
}

3290 3291 3292 3293 3294 3295 3296 3297
static void ohci_flush_queue_iso(struct fw_iso_context *base)
{
	struct context *ctx =
			&container_of(base, struct iso_context, base)->context;

	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
}

3298
static const struct fw_card_driver ohci_driver = {
3299
	.enable			= ohci_enable,
3300
	.read_phy_reg		= ohci_read_phy_reg,
3301 3302 3303 3304
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3305
	.cancel_packet		= ohci_cancel_packet,
3306
	.enable_phys_dma	= ohci_enable_phys_dma,
3307 3308
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3309 3310 3311

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3312
	.set_iso_channels	= ohci_set_iso_channels,
3313
	.queue_iso		= ohci_queue_iso,
3314
	.flush_queue_iso	= ohci_flush_queue_iso,
3315
	.start_iso		= ohci_start_iso,
3316
	.stop_iso		= ohci_stop_iso,
3317 3318
};

3319
#ifdef CONFIG_PPC_PMAC
3320
static void pmac_ohci_on(struct pci_dev *dev)
3321
{
3322 3323 3324 3325 3326 3327 3328 3329
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3330 3331
}

3332
static void pmac_ohci_off(struct pci_dev *dev)
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3344 3345
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3346 3347
#endif /* CONFIG_PPC_PMAC */

3348 3349
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
3350 3351
{
	struct fw_ohci *ohci;
3352
	u32 bus_options, max_receive, link_speed, version;
3353
	u64 guid;
3354
	int i, err;
3355 3356
	size_t size;

3357 3358 3359 3360 3361
	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
		return -ENOSYS;
	}

3362
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3363
	if (ohci == NULL) {
3364 3365
		err = -ENOMEM;
		goto fail;
3366 3367 3368 3369
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3370
	pmac_ohci_on(dev);
3371

3372 3373
	err = pci_enable_device(dev);
	if (err) {
3374
		fw_error("Failed to enable OHCI hardware\n");
3375
		goto fail_free;
3376 3377 3378 3379 3380 3381 3382
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3383
	mutex_init(&ohci->phy_reg_mutex);
3384

3385
	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3386

3387 3388
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3389
		fw_error("MMIO resource unavailable\n");
3390
		goto fail_disable;
3391 3392 3393 3394 3395
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
3396 3397
		err = -ENXIO;
		goto fail_iomem;
3398 3399
	}

3400
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3401 3402 3403 3404 3405
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3406 3407 3408
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3409 3410
	if (param_quirks)
		ohci->quirks = param_quirks;
3411

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3429 3430
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3431
		goto fail_misc_buf;
3432

3433
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3434 3435 3436
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3437

3438 3439 3440 3441
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3442

3443 3444 3445 3446
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3447 3448

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3449
	ohci->ir_context_channels = ~0ULL;
3450
	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3451
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3452
	ohci->ir_context_mask = ohci->ir_context_support;
3453 3454
	ohci->n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * ohci->n_ir;
3455
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3456 3457

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3458
	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3459
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3460
	ohci->it_context_mask = ohci->it_context_support;
3461 3462
	ohci->n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * ohci->n_it;
3463
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3464 3465

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3466
		err = -ENOMEM;
3467
		goto fail_contexts;
3468 3469
	}

3470 3471
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3472 3473 3474 3475 3476 3477 3478

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3479
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3480
	if (err)
3481
		goto fail_contexts;
3482

3483 3484 3485 3486
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
3487
		  ohci->n_ir, ohci->n_it, ohci->quirks);
3488

3489
	return 0;
3490

3491
 fail_contexts:
3492
	kfree(ohci->ir_context_list);
3493 3494
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3495
 fail_atreq_ctx:
3496
	context_release(&ohci->at_request_ctx);
3497
 fail_arrsp_ctx:
3498
	ar_context_release(&ohci->ar_response_ctx);
3499
 fail_arreq_ctx:
3500
	ar_context_release(&ohci->ar_request_ctx);
3501 3502 3503
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3504
 fail_iounmap:
3505 3506 3507 3508 3509
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3510
 fail_free:
3511
	kfree(ohci);
3512
	pmac_ohci_off(dev);
3513 3514 3515
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3516 3517

	return err;
3518 3519 3520 3521 3522 3523 3524
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3525 3526
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3527
	cancel_work_sync(&ohci->bus_reset_work);
3528 3529
	fw_core_remove_card(&ohci->card);

3530 3531 3532 3533
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3534 3535 3536

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3537 3538 3539 3540 3541 3542 3543 3544 3545

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3546 3547
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3548 3549
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3550 3551
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3552
	pci_disable_msi(dev);
3553 3554 3555
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3556
	kfree(ohci);
3557
	pmac_ohci_off(dev);
3558

3559 3560 3561
	fw_notify("Removed fw-ohci device.\n");
}

3562
#ifdef CONFIG_PM
3563
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3564
{
3565
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3566 3567 3568
	int err;

	software_reset(ohci);
3569
	free_irq(dev->irq, ohci);
3570
	pci_disable_msi(dev);
3571
	err = pci_save_state(dev);
3572
	if (err) {
3573
		fw_error("pci_save_state failed\n");
3574 3575
		return err;
	}
3576
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3577 3578
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3579
	pmac_ohci_off(dev);
3580

3581 3582 3583
	return 0;
}

3584
static int pci_resume(struct pci_dev *dev)
3585
{
3586
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3587 3588
	int err;

3589
	pmac_ohci_on(dev);
3590 3591 3592
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3593
	if (err) {
3594
		fw_error("pci_enable_device failed\n");
3595 3596 3597
		return err;
	}

3598 3599 3600 3601 3602 3603 3604
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3605 3606 3607 3608 3609
	err = ohci_enable(&ohci->card, NULL, 0);
	if (err)
		return err;

	ohci_resume_iso_dma(ohci);
3610

3611
	return 0;
3612 3613 3614
}
#endif

3615
static const struct pci_device_id pci_table[] = {
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3627 3628 3629 3630
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3631 3632 3633 3634 3635 3636
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3637 3638 3639 3640 3641
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);