hrtimer.c 45.8 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50

#include <asm/uaccess.h>

51 52
#include <trace/events/timer.h>

53 54
/*
 * The timer bases:
55
 *
56 57 58 59
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
60
 */
61
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
62
{
63 64

	.clock_base =
65
	{
66 67 68
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
69
			.resolution = KTIME_LOW_RES,
70 71 72 73
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
74
			.resolution = KTIME_LOW_RES,
75 76
		},
	}
77 78
};

79 80 81 82 83 84 85 86
static int hrtimer_clock_to_base_table[MAX_CLOCKS];

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}


87 88 89 90
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
91
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92 93
{
	ktime_t xtim, tomono;
94
	struct timespec xts, tom;
95

96
	get_xtime_and_monotonic_offset(&xts, &tom);
97

J
john stultz 已提交
98
	xtim = timespec_to_ktime(xts);
99
	tomono = timespec_to_ktime(tom);
100 101
	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time =
102
		ktime_add(xtim, tomono);
103 104
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
123 124 125
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
126
{
127
	struct hrtimer_clock_base *base;
128 129 130 131

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
132
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
133 134 135
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
136
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
137 138 139 140 141
		}
		cpu_relax();
	}
}

142 143 144 145 146 147 148

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
149 150
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
		return get_nohz_timer_target();
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

178 179 180
/*
 * Switch the timer base to the current CPU when possible.
 */
181
static inline struct hrtimer_clock_base *
182 183
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
184
{
185 186
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
187 188
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
189
	int basenum = hrtimer_clockid_to_base(base->index);
190

191 192
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
193
	new_base = &new_cpu_base->clock_base[basenum];
194 195 196

	if (base != new_base) {
		/*
197
		 * We are trying to move timer to new_base.
198 199 200 201 202 203 204
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
205
		if (unlikely(hrtimer_callback_running(timer)))
206 207 208 209
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
210 211
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
212

213 214
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
215 216
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
217 218
			timer->base = base;
			goto again;
219
		}
220 221 222 223 224 225 226
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

227
static inline struct hrtimer_clock_base *
228 229
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
230
	struct hrtimer_clock_base *base = timer->base;
231

232
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
233 234 235 236

	return base;
}

237
# define switch_hrtimer_base(t, b, p)	(b)
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
268 269

EXPORT_SYMBOL_GPL(ktime_add_ns);
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
294 295 296 297 298
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
299
u64 ktime_divns(const ktime_t kt, s64 div)
300
{
301
	u64 dclc;
302 303
	int sft = 0;

304
	dclc = ktime_to_ns(kt);
305 306 307 308 309 310 311 312
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
313
	return dclc;
314 315 316
}
#endif /* BITS_PER_LONG >= 64 */

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

334 335
EXPORT_SYMBOL_GPL(ktime_add_safe);

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
433
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
434 435 436 437 438 439 440 441 442 443 444 445

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
503
	return __this_cpu_read(hrtimer_bases.hres_active);
504 505 506 507 508 509 510
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
511 512
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
513 514 515
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
516
	ktime_t expires, expires_next;
517

518
	expires_next.tv64 = KTIME_MAX;
519 520 521

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;
522
		struct timerqueue_node *next;
523

524 525
		next = timerqueue_getnext(&base->active);
		if (!next)
526
			continue;
527 528
		timer = container_of(next, struct hrtimer, node);

529
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
530 531 532 533 534 535 536
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
537 538
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
539 540
	}

541 542 543 544 545
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
562
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
563
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
564 565
	int res;

566
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
567

568 569 570
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
571
	 * the callback is executed in the hrtimer_interrupt context. The
572 573 574 575 576 577
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

578 579 580 581 582 583 584 585 586
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

587 588 589 590 591 592 593 594 595 596
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
597 598 599 600 601 602 603
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
604
		cpu_base->expires_next = expires;
605 606 607 608 609 610 611 612 613 614 615 616
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
617
	struct timespec realtime_offset, wtm;
618 619 620 621

	if (!hrtimer_hres_active())
		return;

622
	get_xtime_and_monotonic_offset(&realtime_offset, &wtm);
623
	set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
624 625 626 627

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
628
	raw_spin_lock(&base->lock);
629
	base->clock_base[HRTIMER_BASE_REALTIME].offset =
630 631
		timespec_to_ktime(realtime_offset);

632
	hrtimer_force_reprogram(base, 0);
633
	raw_spin_unlock(&base->lock);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
650
	on_each_cpu(retrigger_next_event, NULL, 1);
651 652
}

653 654 655 656 657 658
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
659 660 661
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

662 663 664
	retrigger_next_event(NULL);
}

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

681

682 683 684 685 686 687 688
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
689 690
					    struct hrtimer_clock_base *base,
					    int wakeup)
691 692
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
693
		if (wakeup) {
694
			raw_spin_unlock(&base->cpu_base->lock);
695
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
696
			raw_spin_lock(&base->cpu_base->lock);
697 698 699
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

700
		return 1;
701
	}
702

703 704 705 706 707 708
	return 0;
}

/*
 * Switch to high resolution mode
 */
709
static int hrtimer_switch_to_hres(void)
710
{
I
Ingo Molnar 已提交
711 712
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
713 714 715
	unsigned long flags;

	if (base->hres_active)
716
		return 1;
717 718 719 720 721

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
722 723
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
724
		return 0;
725 726
	}
	base->hres_active = 1;
727 728
	base->clock_base[HRTIMER_BASE_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[HRTIMER_BASE_MONOTONIC].resolution = KTIME_HIGH_RES;
729 730 731 732 733 734

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
735
	return 1;
736 737 738 739 740 741
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
742
static inline int hrtimer_switch_to_hres(void) { return 0; }
743 744
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
745
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
746 747
					    struct hrtimer_clock_base *base,
					    int wakeup)
748 749 750 751 752 753 754 755
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

756
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
757
{
758
#ifdef CONFIG_TIMER_STATS
759 760
	if (timer->start_site)
		return;
761
	timer->start_site = __builtin_return_address(0);
762 763
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
764 765 766 767 768 769 770 771
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
772
}
773 774 775 776 777 778 779 780

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
781
#endif
782
}
783

784
/*
785
 * Counterpart to lock_hrtimer_base above:
786 787 788 789
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
790
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
791 792 793 794 795
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
796
 * @now:	forward past this time
797 798 799
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
800
 * Returns the number of overruns.
801
 */
D
Davide Libenzi 已提交
802
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
803
{
D
Davide Libenzi 已提交
804
	u64 orun = 1;
805
	ktime_t delta;
806

807
	delta = ktime_sub(now, hrtimer_get_expires(timer));
808 809 810 811

	if (delta.tv64 < 0)
		return 0;

812 813 814
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

815
	if (unlikely(delta.tv64 >= interval.tv64)) {
816
		s64 incr = ktime_to_ns(interval);
817 818

		orun = ktime_divns(delta, incr);
819 820
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
821 822 823 824 825 826 827
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
828
	hrtimer_add_expires(timer, interval);
829 830 831

	return orun;
}
S
Stas Sergeev 已提交
832
EXPORT_SYMBOL_GPL(hrtimer_forward);
833 834 835 836 837 838

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
839 840
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
841
 */
842 843
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
844
{
845
	debug_activate(timer);
846

847
	timerqueue_add(&base->active, &timer->node);
848

849 850 851 852 853
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
854

855
	return (&timer->node == base->active.next);
856
}
857 858 859 860 861

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
862 863 864 865 866
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
867
 */
868
static void __remove_hrtimer(struct hrtimer *timer,
869
			     struct hrtimer_clock_base *base,
870
			     unsigned long newstate, int reprogram)
871
{
872 873 874
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

875
	if (&timer->node == timerqueue_getnext(&base->active)) {
876 877 878 879 880 881 882 883 884
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
885
		}
886
#endif
887
	}
888
	timerqueue_del(&base->active, &timer->node);
889
out:
890
	timer->state = newstate;
891 892 893 894 895 896
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
897
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
898
{
899
	if (hrtimer_is_queued(timer)) {
900
		unsigned long state;
901 902 903 904 905 906 907 908 909 910
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
911
		debug_deactivate(timer);
912
		timer_stats_hrtimer_clear_start_info(timer);
913
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
914 915 916 917 918 919 920
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
921 922 923 924 925
		return 1;
	}
	return 0;
}

926 927 928
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
929
{
930
	struct hrtimer_clock_base *base, *new_base;
931
	unsigned long flags;
932
	int ret, leftmost;
933 934 935 936 937 938 939

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
940
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
941

942
	if (mode & HRTIMER_MODE_REL) {
943
		tim = ktime_add_safe(tim, new_base->get_time());
944 945 946 947 948 949 950 951
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
952
		tim = ktime_add_safe(tim, base->resolution);
953 954
#endif
	}
955

956
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
957

958 959
	timer_stats_hrtimer_set_start_info(timer);

960 961
	leftmost = enqueue_hrtimer(timer, new_base);

962 963 964
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
965 966
	 *
	 * XXX send_remote_softirq() ?
967
	 */
968
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
969
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
970 971 972 973 974

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
992 993 994
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
995
 * hrtimer_start - (re)start an hrtimer on the current CPU
996 997 998 999 1000 1001 1002 1003 1004 1005 1006
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1007
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1008
}
1009
EXPORT_SYMBOL_GPL(hrtimer_start);
1010

1011

1012 1013 1014 1015 1016 1017 1018 1019
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1020
 *    cannot be stopped
1021 1022 1023
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1024
	struct hrtimer_clock_base *base;
1025 1026 1027 1028 1029
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1030
	if (!hrtimer_callback_running(timer))
1031 1032 1033 1034 1035 1036 1037
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1038
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1055
		cpu_relax();
1056 1057
	}
}
1058
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1069
	lock_hrtimer_base(timer, &flags);
1070
	rem = hrtimer_expires_remaining(timer);
1071 1072 1073 1074
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1075
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1076

1077
#ifdef CONFIG_NO_HZ
1078 1079 1080 1081 1082 1083 1084 1085
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1086 1087
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1088 1089 1090 1091
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1092
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1093

1094 1095 1096
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1097
			struct timerqueue_node *next;
1098

1099 1100
			next = timerqueue_getnext(&base->active);
			if (!next)
1101
				continue;
1102

1103
			timer = container_of(next, struct hrtimer, node);
1104
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1105 1106 1107 1108
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1109
	}
1110

1111
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1112

1113 1114 1115 1116 1117 1118
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1119 1120
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1121
{
1122
	struct hrtimer_cpu_base *cpu_base;
1123
	int base;
1124

1125 1126
	memset(timer, 0, sizeof(struct hrtimer));

1127
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1128

1129
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1130 1131
		clock_id = CLOCK_MONOTONIC;

1132 1133
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1134
	hrtimer_init_timer_hres(timer);
1135
	timerqueue_init(&timer->node);
1136 1137 1138 1139 1140 1141

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1142
}
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1153
	debug_init(timer, clock_id, mode);
1154 1155
	__hrtimer_init(timer, clock_id, mode);
}
1156
EXPORT_SYMBOL_GPL(hrtimer_init);
1157 1158 1159 1160 1161 1162

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1163 1164
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1165 1166 1167
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1168
	struct hrtimer_cpu_base *cpu_base;
1169
	int base = hrtimer_clockid_to_base(which_clock);
1170

1171
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1172
	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1173 1174 1175

	return 0;
}
1176
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1177

1178
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1179 1180 1181 1182 1183 1184
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1185 1186
	WARN_ON(!irqs_disabled());

1187
	debug_deactivate(timer);
1188 1189 1190
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1191 1192 1193 1194 1195 1196

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1197
	raw_spin_unlock(&cpu_base->lock);
1198
	trace_hrtimer_expire_entry(timer, now);
1199
	restart = fn(timer);
1200
	trace_hrtimer_expire_exit(timer);
1201
	raw_spin_lock(&cpu_base->lock);
1202 1203

	/*
T
Thomas Gleixner 已提交
1204 1205 1206
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1207 1208 1209
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1210
		enqueue_hrtimer(timer, base);
1211
	}
1212 1213 1214

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1215 1216 1217
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
1228 1229
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1230 1231 1232 1233 1234

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1235 1236
	entry_time = now = ktime_get();
retry:
1237 1238
	expires_next.tv64 = KTIME_MAX;

1239
	raw_spin_lock(&cpu_base->lock);
1240 1241 1242 1243 1244 1245 1246 1247 1248
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1249 1250 1251 1252
	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
1253
		struct timerqueue_node *node;
1254 1255 1256

		basenow = ktime_add(now, base->offset);

1257
		while ((node = timerqueue_getnext(&base->active))) {
1258 1259
			struct hrtimer *timer;

1260
			timer = container_of(node, struct hrtimer, node);
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1276 1277
				ktime_t expires;

1278
				expires = ktime_sub(hrtimer_get_expires(timer),
1279 1280 1281 1282 1283 1284
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1285
			__run_hrtimer(timer, &basenow);
1286 1287 1288 1289
		}
		base++;
	}

1290 1291 1292 1293
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1294
	cpu_base->expires_next = expires_next;
1295
	raw_spin_unlock(&cpu_base->lock);
1296 1297

	/* Reprogramming necessary ? */
1298 1299 1300 1301
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1302
	}
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
	 */
	now = ktime_get();
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1340 1341
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1369
	unsigned long flags;
1370

1371
	local_irq_save(flags);
1372
	__hrtimer_peek_ahead_timers();
1373 1374 1375
	local_irq_restore(flags);
}

1376 1377 1378 1379 1380
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1381 1382 1383 1384 1385
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1386

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1409 1410
}

1411
/*
1412
 * Called from hardirq context every jiffy
1413
 */
1414
void hrtimer_run_queues(void)
1415
{
1416
	struct timerqueue_node *node;
1417 1418 1419
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1420

1421
	if (hrtimer_hres_active())
1422 1423
		return;

1424 1425
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1426
		if (!timerqueue_getnext(&base->active))
1427
			continue;
1428

1429
		if (gettime) {
1430 1431
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1432
		}
1433

1434
		raw_spin_lock(&cpu_base->lock);
1435

1436
		while ((node = timerqueue_getnext(&base->active))) {
1437
			struct hrtimer *timer;
1438

1439
			timer = container_of(node, struct hrtimer, node);
1440 1441
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1442 1443
				break;

1444
			__run_hrtimer(timer, &base->softirq_time);
1445
		}
1446
		raw_spin_unlock(&cpu_base->lock);
1447
	}
1448 1449
}

1450 1451 1452
/*
 * Sleep related functions:
 */
1453
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1466
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1467 1468 1469 1470
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1471
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1472

1473
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1474
{
1475
	hrtimer_init_sleeper(t, current);
1476

1477 1478
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1479
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1480 1481
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1482

1483 1484
		if (likely(t->task))
			schedule();
1485

1486
		hrtimer_cancel(&t->timer);
1487
		mode = HRTIMER_MODE_ABS;
1488 1489

	} while (t->task && !signal_pending(current));
1490

1491 1492
	__set_current_state(TASK_RUNNING);

1493
	return t->task == NULL;
1494 1495
}

1496 1497 1498 1499 1500
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1501
	rem = hrtimer_expires_remaining(timer);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1512
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1513
{
1514
	struct hrtimer_sleeper t;
1515
	struct timespec __user  *rmtp;
1516
	int ret = 0;
1517

1518 1519
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1520
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1521

1522
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1523
		goto out;
1524

1525
	rmtp = restart->nanosleep.rmtp;
1526
	if (rmtp) {
1527
		ret = update_rmtp(&t.timer, rmtp);
1528
		if (ret <= 0)
1529
			goto out;
1530
	}
1531 1532

	/* The other values in restart are already filled in */
1533 1534 1535 1536
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1537 1538
}

1539
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1540 1541 1542
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1543
	struct hrtimer_sleeper t;
1544
	int ret = 0;
1545 1546 1547 1548 1549
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1550

1551
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1552
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1553
	if (do_nanosleep(&t, mode))
1554
		goto out;
1555

1556
	/* Absolute timers do not update the rmtp value and restart: */
1557 1558 1559 1560
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1561

1562
	if (rmtp) {
1563
		ret = update_rmtp(&t.timer, rmtp);
1564
		if (ret <= 0)
1565
			goto out;
1566
	}
1567 1568

	restart = &current_thread_info()->restart_block;
1569
	restart->fn = hrtimer_nanosleep_restart;
1570 1571
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1572
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1573

1574 1575 1576 1577
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1578 1579
}

1580 1581
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1582
{
1583
	struct timespec tu;
1584 1585 1586 1587 1588 1589 1590

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1591
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1592 1593
}

1594 1595 1596
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1597
static void __cpuinit init_hrtimers_cpu(int cpu)
1598
{
1599
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1600 1601
	int i;

1602
	raw_spin_lock_init(&cpu_base->lock);
1603

1604
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1605
		cpu_base->clock_base[i].cpu_base = cpu_base;
1606 1607
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1608

1609
	hrtimer_init_hres(cpu_base);
1610 1611 1612 1613
}

#ifdef CONFIG_HOTPLUG_CPU

1614
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1615
				struct hrtimer_clock_base *new_base)
1616 1617
{
	struct hrtimer *timer;
1618
	struct timerqueue_node *node;
1619

1620 1621
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1622
		BUG_ON(hrtimer_callback_running(timer));
1623
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1624 1625 1626 1627 1628 1629 1630

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1631
		timer->base = new_base;
1632
		/*
T
Thomas Gleixner 已提交
1633 1634 1635 1636 1637 1638
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1639
		 */
1640
		enqueue_hrtimer(timer, new_base);
1641

T
Thomas Gleixner 已提交
1642 1643
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1644 1645 1646
	}
}

1647
static void migrate_hrtimers(int scpu)
1648
{
1649
	struct hrtimer_cpu_base *old_base, *new_base;
1650
	int i;
1651

1652 1653
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1654 1655 1656 1657

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1658 1659 1660 1661
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1662 1663
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1664

1665
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1666
		migrate_hrtimer_list(&old_base->clock_base[i],
1667
				     &new_base->clock_base[i]);
1668 1669
	}

1670 1671
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1672

1673 1674 1675
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1676
}
1677

1678 1679
#endif /* CONFIG_HOTPLUG_CPU */

1680
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1681 1682
					unsigned long action, void *hcpu)
{
1683
	int scpu = (long)hcpu;
1684 1685 1686 1687

	switch (action) {

	case CPU_UP_PREPARE:
1688
	case CPU_UP_PREPARE_FROZEN:
1689
		init_hrtimers_cpu(scpu);
1690 1691 1692
		break;

#ifdef CONFIG_HOTPLUG_CPU
1693 1694 1695 1696
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1697
	case CPU_DEAD:
1698
	case CPU_DEAD_FROZEN:
1699
	{
1700
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1701
		migrate_hrtimers(scpu);
1702
		break;
1703
	}
1704 1705 1706 1707 1708 1709 1710 1711 1712
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1713
static struct notifier_block __cpuinitdata hrtimers_nb = {
1714 1715 1716 1717 1718
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
1719 1720 1721
	hrtimer_clock_to_base_table[CLOCK_REALTIME] = HRTIMER_BASE_REALTIME;
	hrtimer_clock_to_base_table[CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC;

1722 1723 1724
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1725 1726 1727
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1728 1729
}

1730
/**
1731
 * schedule_hrtimeout_range_clock - sleep until timeout
1732
 * @expires:	timeout value (ktime_t)
1733
 * @delta:	slack in expires timeout (ktime_t)
1734
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1735
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1736
 */
1737 1738 1739
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1753
	 * A NULL parameter means "infinite"
1754 1755 1756 1757 1758 1759 1760
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1761
	hrtimer_init_on_stack(&t.timer, clock, mode);
1762
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1763 1764 1765

	hrtimer_init_sleeper(&t, current);

1766
	hrtimer_start_expires(&t.timer, mode);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1844
EXPORT_SYMBOL_GPL(schedule_hrtimeout);