hrtimer.c 45.6 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50

#include <asm/uaccess.h>

51 52
#include <trace/events/timer.h>

53 54
/*
 * The timer bases:
55 56 57 58 59 60
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
61
 */
62
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63
{
64 65

	.clock_base =
66
	{
67 68 69
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
70
			.resolution = KTIME_LOW_RES,
71 72 73 74
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
75
			.resolution = KTIME_LOW_RES,
76 77
		},
	}
78 79
};

80 81 82 83
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
84
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
85 86
{
	ktime_t xtim, tomono;
87
	struct timespec xts, tom;
88 89 90 91
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
92
		xts = __current_kernel_time();
93
		tom = __get_wall_to_monotonic();
94 95
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
96
	xtim = timespec_to_ktime(xts);
97
	tomono = timespec_to_ktime(tom);
98 99 100
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
101 102
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
121 122 123
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
124
{
125
	struct hrtimer_clock_base *base;
126 127 128 129

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
130
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 132 133
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
134
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
135 136 137 138 139
		}
		cpu_relax();
	}
}

140 141 142 143 144 145 146

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
147 148
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
		return get_nohz_timer_target();
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

176 177 178
/*
 * Switch the timer base to the current CPU when possible.
 */
179
static inline struct hrtimer_clock_base *
180 181
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
182
{
183 184
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
185 186
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
187

188 189
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
190
	new_base = &new_cpu_base->clock_base[base->index];
191 192 193

	if (base != new_base) {
		/*
194
		 * We are trying to move timer to new_base.
195 196 197 198 199 200 201
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
202
		if (unlikely(hrtimer_callback_running(timer)))
203 204 205 206
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
207 208
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
209

210 211
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
212 213
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
214 215
			timer->base = base;
			goto again;
216
		}
217 218 219 220 221 222 223
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

224
static inline struct hrtimer_clock_base *
225 226
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
227
	struct hrtimer_clock_base *base = timer->base;
228

229
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
230 231 232 233

	return base;
}

234
# define switch_hrtimer_base(t, b, p)	(b)
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
265 266

EXPORT_SYMBOL_GPL(ktime_add_ns);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
291 292 293 294 295
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
296
u64 ktime_divns(const ktime_t kt, s64 div)
297
{
298
	u64 dclc;
299 300
	int sft = 0;

301
	dclc = ktime_to_ns(kt);
302 303 304 305 306 307 308 309
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
310
	return dclc;
311 312 313
}
#endif /* BITS_PER_LONG >= 64 */

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

331 332
EXPORT_SYMBOL_GPL(ktime_add_safe);

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
430
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
431 432 433 434 435 436 437 438 439 440 441 442

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
500
	return __this_cpu_read(hrtimer_bases.hres_active);
501 502 503 504 505 506 507
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
508 509
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
510 511 512
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
513
	ktime_t expires, expires_next;
514

515
	expires_next.tv64 = KTIME_MAX;
516 517 518

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;
519
		struct timerqueue_node *next;
520

521 522
		next = timerqueue_getnext(&base->active);
		if (!next)
523
			continue;
524 525
		timer = container_of(next, struct hrtimer, node);

526
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
527 528 529 530 531 532 533
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
534 535
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
536 537
	}

538 539 540 541 542
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
559
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
560
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
561 562
	int res;

563
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
564

565 566 567
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
568
	 * the callback is executed in the hrtimer_interrupt context. The
569 570 571 572 573 574
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

575 576 577 578 579 580 581 582 583
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

584 585 586 587 588 589 590 591 592 593
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
594 595 596 597 598 599 600
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
601
		cpu_base->expires_next = expires;
602 603 604 605 606 607 608 609 610 611 612 613
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
614
	struct timespec realtime_offset, wtm;
615 616 617 618 619 620 621
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
622
		wtm = __get_wall_to_monotonic();
623
	} while (read_seqretry(&xtime_lock, seq));
624
	set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
625 626 627 628

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
629
	raw_spin_lock(&base->lock);
630 631 632
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

633
	hrtimer_force_reprogram(base, 0);
634
	raw_spin_unlock(&base->lock);
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
651
	on_each_cpu(retrigger_next_event, NULL, 1);
652 653
}

654 655 656 657 658 659
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
660 661 662
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

663 664 665
	retrigger_next_event(NULL);
}

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

682

683 684 685 686 687 688 689
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
690 691
					    struct hrtimer_clock_base *base,
					    int wakeup)
692 693
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
694
		if (wakeup) {
695
			raw_spin_unlock(&base->cpu_base->lock);
696
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
697
			raw_spin_lock(&base->cpu_base->lock);
698 699 700
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

701
		return 1;
702
	}
703

704 705 706 707 708 709
	return 0;
}

/*
 * Switch to high resolution mode
 */
710
static int hrtimer_switch_to_hres(void)
711
{
I
Ingo Molnar 已提交
712 713
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
714 715 716
	unsigned long flags;

	if (base->hres_active)
717
		return 1;
718 719 720 721 722

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
723 724
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
725
		return 0;
726 727 728 729 730 731 732 733 734 735
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
736
	return 1;
737 738 739 740 741 742
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
743
static inline int hrtimer_switch_to_hres(void) { return 0; }
744 745
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
746
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
747 748
					    struct hrtimer_clock_base *base,
					    int wakeup)
749 750 751 752 753 754 755 756
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

757
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
758
{
759
#ifdef CONFIG_TIMER_STATS
760 761
	if (timer->start_site)
		return;
762
	timer->start_site = __builtin_return_address(0);
763 764
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
765 766 767 768 769 770 771 772
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
773
}
774 775 776 777 778 779 780 781

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
782
#endif
783
}
784

785
/*
786
 * Counterpart to lock_hrtimer_base above:
787 788 789 790
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
791
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
792 793 794 795 796
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
797
 * @now:	forward past this time
798 799 800
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
801
 * Returns the number of overruns.
802
 */
D
Davide Libenzi 已提交
803
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
804
{
D
Davide Libenzi 已提交
805
	u64 orun = 1;
806
	ktime_t delta;
807

808
	delta = ktime_sub(now, hrtimer_get_expires(timer));
809 810 811 812

	if (delta.tv64 < 0)
		return 0;

813 814 815
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

816
	if (unlikely(delta.tv64 >= interval.tv64)) {
817
		s64 incr = ktime_to_ns(interval);
818 819

		orun = ktime_divns(delta, incr);
820 821
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
822 823 824 825 826 827 828
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
829
	hrtimer_add_expires(timer, interval);
830 831 832

	return orun;
}
S
Stas Sergeev 已提交
833
EXPORT_SYMBOL_GPL(hrtimer_forward);
834 835 836 837 838 839

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
840 841
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
842
 */
843 844
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
845
{
846
	debug_activate(timer);
847

848
	timerqueue_add(&base->active, &timer->node);
849

850 851 852 853 854
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
855

856
	return (&timer->node == base->active.next);
857
}
858 859 860 861 862

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
863 864 865 866 867
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
868
 */
869
static void __remove_hrtimer(struct hrtimer *timer,
870
			     struct hrtimer_clock_base *base,
871
			     unsigned long newstate, int reprogram)
872
{
873 874 875
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

876
	if (&timer->node == timerqueue_getnext(&base->active)) {
877 878 879 880 881 882 883 884 885
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
886
		}
887
#endif
888
	}
889
	timerqueue_del(&base->active, &timer->node);
890
out:
891
	timer->state = newstate;
892 893 894 895 896 897
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
898
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
899
{
900
	if (hrtimer_is_queued(timer)) {
901
		unsigned long state;
902 903 904 905 906 907 908 909 910 911
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
912
		debug_deactivate(timer);
913
		timer_stats_hrtimer_clear_start_info(timer);
914
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
915 916 917 918 919 920 921
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
922 923 924 925 926
		return 1;
	}
	return 0;
}

927 928 929
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
930
{
931
	struct hrtimer_clock_base *base, *new_base;
932
	unsigned long flags;
933
	int ret, leftmost;
934 935 936 937 938 939 940

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
941
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
942

943
	if (mode & HRTIMER_MODE_REL) {
944
		tim = ktime_add_safe(tim, new_base->get_time());
945 946 947 948 949 950 951 952
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
953
		tim = ktime_add_safe(tim, base->resolution);
954 955
#endif
	}
956

957
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
958

959 960
	timer_stats_hrtimer_set_start_info(timer);

961 962
	leftmost = enqueue_hrtimer(timer, new_base);

963 964 965
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
966 967
	 *
	 * XXX send_remote_softirq() ?
968
	 */
969
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
970
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
971 972 973 974 975

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
993 994 995
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
996
 * hrtimer_start - (re)start an hrtimer on the current CPU
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1008
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1009
}
1010
EXPORT_SYMBOL_GPL(hrtimer_start);
1011

1012

1013 1014 1015 1016 1017 1018 1019 1020
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1021
 *    cannot be stopped
1022 1023 1024
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1025
	struct hrtimer_clock_base *base;
1026 1027 1028 1029 1030
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1031
	if (!hrtimer_callback_running(timer))
1032 1033 1034 1035 1036 1037 1038
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1039
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1056
		cpu_relax();
1057 1058
	}
}
1059
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1070
	lock_hrtimer_base(timer, &flags);
1071
	rem = hrtimer_expires_remaining(timer);
1072 1073 1074 1075
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1076
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1077

1078
#ifdef CONFIG_NO_HZ
1079 1080 1081 1082 1083 1084 1085 1086
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1087 1088
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1089 1090 1091 1092
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1093
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1094

1095 1096 1097
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1098
			struct timerqueue_node *next;
1099

1100 1101
			next = timerqueue_getnext(&base->active);
			if (!next)
1102
				continue;
1103

1104
			timer = container_of(next, struct hrtimer, node);
1105
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1106 1107 1108 1109
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1110
	}
1111

1112
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1113

1114 1115 1116 1117 1118 1119
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1120 1121
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1122
{
1123
	struct hrtimer_cpu_base *cpu_base;
1124

1125 1126
	memset(timer, 0, sizeof(struct hrtimer));

1127
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1128

1129
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1130 1131
		clock_id = CLOCK_MONOTONIC;

1132
	timer->base = &cpu_base->clock_base[clock_id];
1133
	hrtimer_init_timer_hres(timer);
1134
	timerqueue_init(&timer->node);
1135 1136 1137 1138 1139 1140

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1141
}
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1152
	debug_init(timer, clock_id, mode);
1153 1154
	__hrtimer_init(timer, clock_id, mode);
}
1155
EXPORT_SYMBOL_GPL(hrtimer_init);
1156 1157 1158 1159 1160 1161

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1162 1163
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1164 1165 1166
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1167
	struct hrtimer_cpu_base *cpu_base;
1168

1169 1170
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1171 1172 1173

	return 0;
}
1174
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1175

1176
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1177 1178 1179 1180 1181 1182
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1183 1184
	WARN_ON(!irqs_disabled());

1185
	debug_deactivate(timer);
1186 1187 1188
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1189 1190 1191 1192 1193 1194

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1195
	raw_spin_unlock(&cpu_base->lock);
1196
	trace_hrtimer_expire_entry(timer, now);
1197
	restart = fn(timer);
1198
	trace_hrtimer_expire_exit(timer);
1199
	raw_spin_lock(&cpu_base->lock);
1200 1201

	/*
T
Thomas Gleixner 已提交
1202 1203 1204
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1205 1206 1207
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1208
		enqueue_hrtimer(timer, base);
1209
	}
1210 1211 1212

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1213 1214 1215
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
1226 1227
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1228 1229 1230 1231 1232

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1233 1234
	entry_time = now = ktime_get();
retry:
1235 1236
	expires_next.tv64 = KTIME_MAX;

1237
	raw_spin_lock(&cpu_base->lock);
1238 1239 1240 1241 1242 1243 1244 1245 1246
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1247 1248 1249 1250
	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
1251
		struct timerqueue_node *node;
1252 1253 1254

		basenow = ktime_add(now, base->offset);

1255
		while ((node = timerqueue_getnext(&base->active))) {
1256 1257
			struct hrtimer *timer;

1258
			timer = container_of(node, struct hrtimer, node);
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1274 1275
				ktime_t expires;

1276
				expires = ktime_sub(hrtimer_get_expires(timer),
1277 1278 1279 1280 1281 1282
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1283
			__run_hrtimer(timer, &basenow);
1284 1285 1286 1287
		}
		base++;
	}

1288 1289 1290 1291
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1292
	cpu_base->expires_next = expires_next;
1293
	raw_spin_unlock(&cpu_base->lock);
1294 1295

	/* Reprogramming necessary ? */
1296 1297 1298 1299
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1300
	}
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
	 */
	now = ktime_get();
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1367
	unsigned long flags;
1368

1369
	local_irq_save(flags);
1370
	__hrtimer_peek_ahead_timers();
1371 1372 1373
	local_irq_restore(flags);
}

1374 1375 1376 1377 1378
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1379 1380 1381 1382 1383
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1407 1408
}

1409
/*
1410
 * Called from hardirq context every jiffy
1411
 */
1412
void hrtimer_run_queues(void)
1413
{
1414
	struct timerqueue_node *node;
1415 1416 1417
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1418

1419
	if (hrtimer_hres_active())
1420 1421
		return;

1422 1423
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1424
		if (!timerqueue_getnext(&base->active))
1425
			continue;
1426

1427
		if (gettime) {
1428 1429
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1430
		}
1431

1432
		raw_spin_lock(&cpu_base->lock);
1433

1434
		while ((node = timerqueue_getnext(&base->active))) {
1435
			struct hrtimer *timer;
1436

1437
			timer = container_of(node, struct hrtimer, node);
1438 1439
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1440 1441
				break;

1442
			__run_hrtimer(timer, &base->softirq_time);
1443
		}
1444
		raw_spin_unlock(&cpu_base->lock);
1445
	}
1446 1447
}

1448 1449 1450
/*
 * Sleep related functions:
 */
1451
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1464
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1465 1466 1467 1468
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1469
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1470

1471
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1472
{
1473
	hrtimer_init_sleeper(t, current);
1474

1475 1476
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1477
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1478 1479
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1480

1481 1482
		if (likely(t->task))
			schedule();
1483

1484
		hrtimer_cancel(&t->timer);
1485
		mode = HRTIMER_MODE_ABS;
1486 1487

	} while (t->task && !signal_pending(current));
1488

1489 1490
	__set_current_state(TASK_RUNNING);

1491
	return t->task == NULL;
1492 1493
}

1494 1495 1496 1497 1498
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1499
	rem = hrtimer_expires_remaining(timer);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1510
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1511
{
1512
	struct hrtimer_sleeper t;
1513
	struct timespec __user  *rmtp;
1514
	int ret = 0;
1515

1516 1517
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1518
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1519

1520
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1521
		goto out;
1522

1523
	rmtp = restart->nanosleep.rmtp;
1524
	if (rmtp) {
1525
		ret = update_rmtp(&t.timer, rmtp);
1526
		if (ret <= 0)
1527
			goto out;
1528
	}
1529 1530

	/* The other values in restart are already filled in */
1531 1532 1533 1534
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1535 1536
}

1537
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1538 1539 1540
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1541
	struct hrtimer_sleeper t;
1542
	int ret = 0;
1543 1544 1545 1546 1547
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1548

1549
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1550
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1551
	if (do_nanosleep(&t, mode))
1552
		goto out;
1553

1554
	/* Absolute timers do not update the rmtp value and restart: */
1555 1556 1557 1558
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1559

1560
	if (rmtp) {
1561
		ret = update_rmtp(&t.timer, rmtp);
1562
		if (ret <= 0)
1563
			goto out;
1564
	}
1565 1566

	restart = &current_thread_info()->restart_block;
1567
	restart->fn = hrtimer_nanosleep_restart;
1568 1569
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1570
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1571

1572 1573 1574 1575
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1576 1577
}

1578 1579
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1580
{
1581
	struct timespec tu;
1582 1583 1584 1585 1586 1587 1588

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1589
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1590 1591
}

1592 1593 1594
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1595
static void __cpuinit init_hrtimers_cpu(int cpu)
1596
{
1597
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1598 1599
	int i;

1600
	raw_spin_lock_init(&cpu_base->lock);
1601

1602
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1603
		cpu_base->clock_base[i].cpu_base = cpu_base;
1604 1605
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1606

1607
	hrtimer_init_hres(cpu_base);
1608 1609 1610 1611
}

#ifdef CONFIG_HOTPLUG_CPU

1612
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1613
				struct hrtimer_clock_base *new_base)
1614 1615
{
	struct hrtimer *timer;
1616
	struct timerqueue_node *node;
1617

1618 1619
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1620
		BUG_ON(hrtimer_callback_running(timer));
1621
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1622 1623 1624 1625 1626 1627 1628

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1629
		timer->base = new_base;
1630
		/*
T
Thomas Gleixner 已提交
1631 1632 1633 1634 1635 1636
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1637
		 */
1638
		enqueue_hrtimer(timer, new_base);
1639

T
Thomas Gleixner 已提交
1640 1641
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1642 1643 1644
	}
}

1645
static void migrate_hrtimers(int scpu)
1646
{
1647
	struct hrtimer_cpu_base *old_base, *new_base;
1648
	int i;
1649

1650 1651
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1652 1653 1654 1655

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1656 1657 1658 1659
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1660 1661
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1662

1663
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1664
		migrate_hrtimer_list(&old_base->clock_base[i],
1665
				     &new_base->clock_base[i]);
1666 1667
	}

1668 1669
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1670

1671 1672 1673
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1674
}
1675

1676 1677
#endif /* CONFIG_HOTPLUG_CPU */

1678
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1679 1680
					unsigned long action, void *hcpu)
{
1681
	int scpu = (long)hcpu;
1682 1683 1684 1685

	switch (action) {

	case CPU_UP_PREPARE:
1686
	case CPU_UP_PREPARE_FROZEN:
1687
		init_hrtimers_cpu(scpu);
1688 1689 1690
		break;

#ifdef CONFIG_HOTPLUG_CPU
1691 1692 1693 1694
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1695
	case CPU_DEAD:
1696
	case CPU_DEAD_FROZEN:
1697
	{
1698
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1699
		migrate_hrtimers(scpu);
1700
		break;
1701
	}
1702 1703 1704 1705 1706 1707 1708 1709 1710
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1711
static struct notifier_block __cpuinitdata hrtimers_nb = {
1712 1713 1714 1715 1716 1717 1718 1719
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1720 1721 1722
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1723 1724
}

1725
/**
1726
 * schedule_hrtimeout_range_clock - sleep until timeout
1727
 * @expires:	timeout value (ktime_t)
1728
 * @delta:	slack in expires timeout (ktime_t)
1729
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1730
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1731
 */
1732 1733 1734
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1748
	 * A NULL parameter means "infinite"
1749 1750 1751 1752 1753 1754 1755
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1756
	hrtimer_init_on_stack(&t.timer, clock, mode);
1757
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1758 1759 1760

	hrtimer_init_sleeper(&t, current);

1761
	hrtimer_start_expires(&t.timer, mode);
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1839
EXPORT_SYMBOL_GPL(schedule_hrtimeout);