hrtimer.c 40.0 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/irq.h>
36 37 38 39 40
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
41
#include <linux/kallsyms.h>
42
#include <linux/interrupt.h>
43
#include <linux/tick.h>
44 45
#include <linux/seq_file.h>
#include <linux/err.h>
46
#include <linux/debugobjects.h>
47 48 49 50 51 52 53 54

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
55
ktime_t ktime_get(void)
56 57 58 59 60 61 62
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
63
EXPORT_SYMBOL_GPL(ktime_get);
64 65 66 67 68 69

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
70
ktime_t ktime_get_real(void)
71 72 73 74 75 76 77 78 79 80 81 82
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
83 84 85 86 87 88
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
89
 */
90
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
91
{
92 93

	.clock_base =
94
	{
95 96 97
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
98
			.resolution = KTIME_LOW_RES,
99 100 101 102
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
103
			.resolution = KTIME_LOW_RES,
104 105
		},
	}
106 107 108 109 110 111 112 113
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
114
 * in normalized timespec format in the variable pointed to by @ts.
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
131
EXPORT_SYMBOL_GPL(ktime_get_ts);
132

133 134 135 136
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
137
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
138 139
{
	ktime_t xtim, tomono;
140
	struct timespec xts, tom;
141 142 143 144
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
145
		xts = current_kernel_time();
146
		tom = wall_to_monotonic;
147 148
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
149
	xtim = timespec_to_ktime(xts);
150
	tomono = timespec_to_ktime(tom);
151 152 153
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
174 175 176
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
177
{
178
	struct hrtimer_clock_base *base;
179 180 181 182

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
183
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
184 185 186
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
187
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
188 189 190 191 192 193 194 195
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
196 197
static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
198
{
199 200
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
201

202 203
	new_cpu_base = &__get_cpu_var(hrtimer_bases);
	new_base = &new_cpu_base->clock_base[base->index];
204 205 206 207 208 209 210 211 212 213 214

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
215
		if (unlikely(hrtimer_callback_running(timer)))
216 217 218 219
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
220 221
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
222 223 224 225 226 227 228
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

229
static inline struct hrtimer_clock_base *
230 231
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
232
	struct hrtimer_clock_base *base = timer->base;
233

234
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
235 236 237 238

	return base;
}

239
# define switch_hrtimer_base(t, b)	(b)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
270 271

EXPORT_SYMBOL_GPL(ktime_add_ns);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
296 297 298 299 300
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
301
u64 ktime_divns(const ktime_t kt, s64 div)
302 303 304 305 306 307 308 309 310 311 312 313 314 315
{
	u64 dclc, inc, dns;
	int sft = 0;

	dclc = dns = ktime_to_ns(kt);
	inc = div;
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
316
	return dclc;
317 318 319
}
#endif /* BITS_PER_LONG >= 64 */

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/*
 * Check, whether the timer is on the callback pending list
 */
static inline int hrtimer_cb_pending(const struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_PENDING;
}

/*
 * Remove a timer from the callback pending list
 */
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
{
	list_del_init(&timer->cb_entry);
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
		expires = ktime_sub(timer->expires, base->offset);
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
	ktime_t expires = ktime_sub(timer->expires, base->offset);
	int res;

546 547
	WARN_ON_ONCE(timer->expires.tv64 < 0);

548 549 550
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
551
	 * the callback is executed in the hrtimer_interrupt context. The
552 553 554 555 556 557
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

558 559 560 561 562 563 564 565 566
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 0, 1);
}

629 630 631 632 633 634 635 636 637 638 639 640
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
	WARN_ON_ONCE(num_online_cpus() > 1);

	/* Retrigger the CPU local events: */
	retrigger_next_event(NULL);
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {

		/* Timer is expired, act upon the callback mode */
		switch(timer->cb_mode) {
		case HRTIMER_CB_IRQSAFE_NO_RESTART:
671
			debug_hrtimer_deactivate(timer);
672 673 674 675 676 677 678 679 680 681 682 683 684 685
			/*
			 * We can call the callback from here. No restart
			 * happens, so no danger of recursion
			 */
			BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
			return 1;
		case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
			/*
			 * This is solely for the sched tick emulation with
			 * dynamic tick support to ensure that we do not
			 * restart the tick right on the edge and end up with
			 * the tick timer in the softirq ! The calling site
			 * takes care of this.
			 */
686
			debug_hrtimer_deactivate(timer);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
			return 1;
		case HRTIMER_CB_IRQSAFE:
		case HRTIMER_CB_SOFTIRQ:
			/*
			 * Move everything else into the softirq pending list !
			 */
			list_add_tail(&timer->cb_entry,
				      &base->cpu_base->cb_pending);
			timer->state = HRTIMER_STATE_PENDING;
			return 1;
		default:
			BUG();
		}
	}
	return 0;
}

/*
 * Switch to high resolution mode
 */
707
static int hrtimer_switch_to_hres(void)
708
{
I
Ingo Molnar 已提交
709 710
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
711 712 713
	unsigned long flags;

	if (base->hres_active)
714
		return 1;
715 716 717 718 719

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
720 721
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
722
		return 0;
723 724 725 726 727 728 729 730 731 732
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
733
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
734
	       smp_processor_id());
735
	return 1;
736 737
}

738 739 740 741 742
static inline void hrtimer_raise_softirq(void)
{
	raise_softirq(HRTIMER_SOFTIRQ);
}

743 744 745 746
#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
747
static inline int hrtimer_switch_to_hres(void) { return 0; }
748 749 750 751 752 753 754 755
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
756 757 758 759 760
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
{
	return 0;
}
761
static inline void hrtimer_raise_softirq(void) { }
762 763 764

#endif /* CONFIG_HIGH_RES_TIMERS */

765 766 767 768 769 770 771 772 773 774 775 776
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

777
/*
778
 * Counterpart to lock_hrtimer_base above:
779 780 781 782
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
783
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
784 785 786 787 788
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
789
 * @now:	forward past this time
790 791 792
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
793
 * Returns the number of overruns.
794
 */
D
Davide Libenzi 已提交
795
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
796
{
D
Davide Libenzi 已提交
797
	u64 orun = 1;
798
	ktime_t delta;
799 800 801 802 803 804

	delta = ktime_sub(now, timer->expires);

	if (delta.tv64 < 0)
		return 0;

805 806 807
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

808
	if (unlikely(delta.tv64 >= interval.tv64)) {
809
		s64 incr = ktime_to_ns(interval);
810 811 812 813 814 815 816 817 818 819 820

		orun = ktime_divns(delta, incr);
		timer->expires = ktime_add_ns(timer->expires, incr * orun);
		if (timer->expires.tv64 > now.tv64)
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
821
	timer->expires = ktime_add_safe(timer->expires, interval);
822 823 824

	return orun;
}
S
Stas Sergeev 已提交
825
EXPORT_SYMBOL_GPL(hrtimer_forward);
826 827 828 829 830 831 832

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
 */
833
static void enqueue_hrtimer(struct hrtimer *timer,
834
			    struct hrtimer_clock_base *base, int reprogram)
835 836 837 838
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
839
	int leftmost = 1;
840

841 842
	debug_hrtimer_activate(timer);

843 844 845 846 847 848 849 850 851 852
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
I
Ingo Molnar 已提交
853
		if (timer->expires.tv64 < entry->expires.tv64) {
854
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
855
		} else {
856
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
857 858
			leftmost = 0;
		}
859 860 861
	}

	/*
862 863
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
864
	 */
I
Ingo Molnar 已提交
865
	if (leftmost) {
866 867 868 869 870 871 872 873 874 875 876 877 878 879
		/*
		 * Reprogram the clock event device. When the timer is already
		 * expired hrtimer_enqueue_reprogram has either called the
		 * callback or added it to the pending list and raised the
		 * softirq.
		 *
		 * This is a NOP for !HIGHRES
		 */
		if (reprogram && hrtimer_enqueue_reprogram(timer, base))
			return;

		base->first = &timer->node;
	}

880 881
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
882 883 884 885 886
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
887
}
888 889 890 891 892

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
893 894 895 896 897
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
898
 */
899
static void __remove_hrtimer(struct hrtimer *timer,
900
			     struct hrtimer_clock_base *base,
901
			     unsigned long newstate, int reprogram)
902
{
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	/* High res. callback list. NOP for !HIGHRES */
	if (hrtimer_cb_pending(timer))
		hrtimer_remove_cb_pending(timer);
	else {
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
919
	timer->state = newstate;
920 921 922 923 924 925
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
926
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
927
{
928
	if (hrtimer_is_queued(timer)) {
929 930 931 932 933 934 935 936 937 938
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
939
		debug_hrtimer_deactivate(timer);
940
		timer_stats_hrtimer_clear_start_info(timer);
941 942 943
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
		return 1;
	}
	return 0;
}

/**
 * hrtimer_start - (re)start an relative timer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
962
	struct hrtimer_clock_base *base, *new_base;
963
	unsigned long flags;
964
	int ret, raise;
965 966 967 968 969 970 971 972 973

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base);

974
	if (mode == HRTIMER_MODE_REL) {
975
		tim = ktime_add_safe(tim, new_base->get_time());
976 977 978 979 980 981 982 983
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
984
		tim = ktime_add_safe(tim, base->resolution);
985 986
#endif
	}
987

988 989
	timer->expires = tim;

990 991
	timer_stats_hrtimer_set_start_info(timer);

992 993 994 995 996 997
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
	 */
	enqueue_hrtimer(timer, new_base,
			new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
998

999 1000 1001 1002 1003 1004 1005
	/*
	 * The timer may be expired and moved to the cb_pending
	 * list. We can not raise the softirq with base lock held due
	 * to a possible deadlock with runqueue lock.
	 */
	raise = timer->state == HRTIMER_STATE_PENDING;

1006 1007
	unlock_hrtimer_base(timer, &flags);

1008 1009 1010
	if (raise)
		hrtimer_raise_softirq();

1011 1012
	return ret;
}
1013
EXPORT_SYMBOL_GPL(hrtimer_start);
1014 1015 1016 1017 1018 1019 1020 1021 1022

/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1023
 *    cannot be stopped
1024 1025 1026
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1027
	struct hrtimer_clock_base *base;
1028 1029 1030 1031 1032
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1033
	if (!hrtimer_callback_running(timer))
1034 1035 1036 1037 1038 1039 1040
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1041
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1058
		cpu_relax();
1059 1060
	}
}
1061
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1062 1063 1064 1065 1066 1067 1068

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1069
	struct hrtimer_clock_base *base;
1070 1071 1072 1073
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1074
	rem = ktime_sub(timer->expires, base->get_time());
1075 1076 1077 1078
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1079
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1080

1081
#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
1082 1083 1084 1085 1086 1087 1088 1089
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1090 1091
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1092 1093 1094 1095
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1096 1097
	spin_lock_irqsave(&cpu_base->lock, flags);

1098 1099 1100
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1101

1102 1103
			if (!base->first)
				continue;
1104

1105 1106 1107 1108 1109 1110
			timer = rb_entry(base->first, struct hrtimer, node);
			delta.tv64 = timer->expires.tv64;
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1111
	}
1112 1113 1114

	spin_unlock_irqrestore(&cpu_base->lock, flags);

1115 1116 1117 1118 1119 1120
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1121 1122
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1123
{
1124
	struct hrtimer_cpu_base *cpu_base;
1125

1126 1127
	memset(timer, 0, sizeof(struct hrtimer));

1128
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1129

1130
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1131 1132
		clock_id = CLOCK_MONOTONIC;

1133
	timer->base = &cpu_base->clock_base[clock_id];
1134
	INIT_LIST_HEAD(&timer->cb_entry);
1135
	hrtimer_init_timer_hres(timer);
1136 1137 1138 1139 1140 1141

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1142
}
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	__hrtimer_init(timer, clock_id, mode);
}
1156
EXPORT_SYMBOL_GPL(hrtimer_init);
1157 1158 1159 1160 1161 1162

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1163 1164
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1165 1166 1167
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1168
	struct hrtimer_cpu_base *cpu_base;
1169

1170 1171
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1172 1173 1174

	return 0;
}
1175
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
{
	spin_lock_irq(&cpu_base->lock);

	while (!list_empty(&cpu_base->cb_pending)) {
		enum hrtimer_restart (*fn)(struct hrtimer *);
		struct hrtimer *timer;
		int restart;

		timer = list_entry(cpu_base->cb_pending.next,
				   struct hrtimer, cb_entry);

1189
		debug_hrtimer_deactivate(timer);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
		timer_stats_account_hrtimer(timer);

		fn = timer->function;
		__remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
		spin_unlock_irq(&cpu_base->lock);

		restart = fn(timer);

		spin_lock_irq(&cpu_base->lock);

		timer->state &= ~HRTIMER_STATE_CALLBACK;
		if (restart == HRTIMER_RESTART) {
			BUG_ON(hrtimer_active(timer));
			/*
			 * Enqueue the timer, allow reprogramming of the event
			 * device
			 */
			enqueue_hrtimer(timer, timer->base, 1);
		} else if (hrtimer_active(timer)) {
			/*
			 * If the timer was rearmed on another CPU, reprogram
			 * the event device.
			 */
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
			struct hrtimer_clock_base *base = timer->base;

			if (base->first == &timer->node &&
			    hrtimer_reprogram(timer, base)) {
				/*
				 * Timer is expired. Thus move it from tree to
				 * pending list again.
				 */
				__remove_hrtimer(timer, base,
						 HRTIMER_STATE_PENDING, 0);
				list_add_tail(&timer->cb_entry,
					      &base->cpu_base->cb_pending);
			}
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		}
	}
	spin_unlock_irq(&cpu_base->lock);
}

static void __run_hrtimer(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1238
	debug_hrtimer_deactivate(timer);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);

	fn = timer->function;
	if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) {
		/*
		 * Used for scheduler timers, avoid lock inversion with
		 * rq->lock and tasklist_lock.
		 *
		 * These timers are required to deal with enqueue expiry
		 * themselves and are not allowed to migrate.
		 */
		spin_unlock(&cpu_base->lock);
		restart = fn(timer);
		spin_lock(&cpu_base->lock);
	} else
		restart = fn(timer);

	/*
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
	 * reprogramming of the event hardware. This happens at the end of this
	 * function anyway.
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
		enqueue_hrtimer(timer, base, 0);
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
	int i, raise = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

			if (basenow.tv64 < timer->expires.tv64) {
				ktime_t expires;

				expires = ktime_sub(timer->expires,
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

			/* Move softirq callbacks to the pending list */
			if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
				__remove_hrtimer(timer, base,
						 HRTIMER_STATE_PENDING, 0);
				list_add_tail(&timer->cb_entry,
					      &base->cpu_base->cb_pending);
				raise = 1;
				continue;
			}

1326
			__run_hrtimer(timer);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
		if (tick_program_event(expires_next, 0))
			goto retry;
	}

	/* Raise softirq ? */
	if (raise)
		raise_softirq(HRTIMER_SOFTIRQ);
}

static void run_hrtimer_softirq(struct softirq_action *h)
{
1347 1348
	run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
}
1349

1350
#endif	/* CONFIG_HIGH_RES_TIMERS */
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1362

1363 1364
	if (hrtimer_hres_active())
		return;
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1376

1377
	run_hrtimer_pending(cpu_base);
1378 1379
}

1380
/*
1381
 * Called from hardirq context every jiffy
1382
 */
1383
void hrtimer_run_queues(void)
1384
{
1385
	struct rb_node *node;
1386 1387 1388
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1389

1390
	if (hrtimer_hres_active())
1391 1392
		return;

1393 1394
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1395

1396
		if (!base->first)
1397
			continue;
1398

1399 1400 1401
		if (base->get_softirq_time)
			base->softirq_time = base->get_softirq_time();
		else if (gettime) {
1402 1403
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1404
		}
1405

1406
		spin_lock(&cpu_base->lock);
1407

1408 1409
		while ((node = base->first)) {
			struct hrtimer *timer;
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
			timer = rb_entry(node, struct hrtimer, node);
			if (base->softirq_time.tv64 <= timer->expires.tv64)
				break;

			if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
				__remove_hrtimer(timer, base,
					HRTIMER_STATE_PENDING, 0);
				list_add_tail(&timer->cb_entry,
					&base->cpu_base->cb_pending);
				continue;
			}
1422

1423 1424 1425 1426
			__run_hrtimer(timer);
		}
		spin_unlock(&cpu_base->lock);
	}
1427 1428
}

1429 1430 1431
/*
 * Sleep related functions:
 */
1432
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1445
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1446 1447 1448
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
1449
#ifdef CONFIG_HIGH_RES_TIMERS
P
Peter Zijlstra 已提交
1450
	sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1451
#endif
1452 1453
}

1454
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1455
{
1456
	hrtimer_init_sleeper(t, current);
1457

1458 1459 1460
	do {
		set_current_state(TASK_INTERRUPTIBLE);
		hrtimer_start(&t->timer, t->timer.expires, mode);
P
Peter Zijlstra 已提交
1461 1462
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1463

1464 1465
		if (likely(t->task))
			schedule();
1466

1467
		hrtimer_cancel(&t->timer);
1468
		mode = HRTIMER_MODE_ABS;
1469 1470

	} while (t->task && !signal_pending(current));
1471

1472 1473
	__set_current_state(TASK_RUNNING);

1474
	return t->task == NULL;
1475 1476
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

	rem = ktime_sub(timer->expires, timer->base->get_time());
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1493
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1494
{
1495
	struct hrtimer_sleeper t;
1496
	struct timespec __user  *rmtp;
1497
	int ret = 0;
1498

1499 1500
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1501
	t.timer.expires.tv64 = restart->nanosleep.expires;
1502

1503
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1504
		goto out;
1505

1506
	rmtp = restart->nanosleep.rmtp;
1507
	if (rmtp) {
1508
		ret = update_rmtp(&t.timer, rmtp);
1509
		if (ret <= 0)
1510
			goto out;
1511
	}
1512 1513

	/* The other values in restart are already filled in */
1514 1515 1516 1517
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1518 1519
}

1520
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1521 1522 1523
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1524
	struct hrtimer_sleeper t;
1525
	int ret = 0;
1526

1527
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1528 1529
	t.timer.expires = timespec_to_ktime(*rqtp);
	if (do_nanosleep(&t, mode))
1530
		goto out;
1531

1532
	/* Absolute timers do not update the rmtp value and restart: */
1533 1534 1535 1536
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1537

1538
	if (rmtp) {
1539
		ret = update_rmtp(&t.timer, rmtp);
1540
		if (ret <= 0)
1541
			goto out;
1542
	}
1543 1544

	restart = &current_thread_info()->restart_block;
1545
	restart->fn = hrtimer_nanosleep_restart;
1546 1547 1548
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
	restart->nanosleep.expires = t.timer.expires.tv64;
1549

1550 1551 1552 1553
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1554 1555
}

1556 1557 1558
asmlinkage long
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
{
1559
	struct timespec tu;
1560 1561 1562 1563 1564 1565 1566

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1567
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1568 1569
}

1570 1571 1572
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1573
static void __cpuinit init_hrtimers_cpu(int cpu)
1574
{
1575
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1576 1577
	int i;

1578 1579 1580 1581 1582
	spin_lock_init(&cpu_base->lock);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1583
	INIT_LIST_HEAD(&cpu_base->cb_pending);
1584
	hrtimer_init_hres(cpu_base);
1585 1586 1587 1588
}

#ifdef CONFIG_HOTPLUG_CPU

1589 1590
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
				struct hrtimer_clock_base *new_base)
1591 1592 1593 1594 1595 1596
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1597
		BUG_ON(hrtimer_callback_running(timer));
1598
		debug_hrtimer_deactivate(timer);
1599
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1600
		timer->base = new_base;
1601 1602 1603 1604
		/*
		 * Enqueue the timer. Allow reprogramming of the event device
		 */
		enqueue_hrtimer(timer, new_base, 1);
1605 1606 1607 1608 1609
	}
}

static void migrate_hrtimers(int cpu)
{
1610
	struct hrtimer_cpu_base *old_base, *new_base;
1611 1612 1613
	int i;

	BUG_ON(cpu_online(cpu));
1614 1615
	old_base = &per_cpu(hrtimer_bases, cpu);
	new_base = &get_cpu_var(hrtimer_bases);
1616

1617 1618
	tick_cancel_sched_timer(cpu);

1619
	local_irq_disable();
1620 1621
	spin_lock(&new_base->lock);
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1622

1623 1624 1625
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		migrate_hrtimer_list(&old_base->clock_base[i],
				     &new_base->clock_base[i]);
1626 1627
	}

1628 1629
	spin_unlock(&old_base->lock);
	spin_unlock(&new_base->lock);
1630 1631 1632 1633 1634
	local_irq_enable();
	put_cpu_var(hrtimer_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

1635
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1636 1637
					unsigned long action, void *hcpu)
{
1638
	unsigned int cpu = (long)hcpu;
1639 1640 1641 1642

	switch (action) {

	case CPU_UP_PREPARE:
1643
	case CPU_UP_PREPARE_FROZEN:
1644 1645 1646 1647 1648
		init_hrtimers_cpu(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1649
	case CPU_DEAD_FROZEN:
1650
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
		migrate_hrtimers(cpu);
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1662
static struct notifier_block __cpuinitdata hrtimers_nb = {
1663 1664 1665 1666 1667 1668 1669 1670
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1671 1672 1673
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
#endif
1674 1675
}