hrtimer.c 45.4 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50

#include <asm/uaccess.h>

51 52
#include <trace/events/timer.h>

53 54
/*
 * The timer bases:
55 56 57 58 59 60
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
61
 */
62
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63
{
64 65

	.clock_base =
66
	{
67 68 69
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
70
			.resolution = KTIME_LOW_RES,
71 72 73 74
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
75
			.resolution = KTIME_LOW_RES,
76 77
		},
	}
78 79
};

80 81 82 83
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
84
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
85 86
{
	ktime_t xtim, tomono;
87
	struct timespec xts, tom;
88

89
	get_xtime_and_monotonic_offset(&xts, &tom);
90

J
john stultz 已提交
91
	xtim = timespec_to_ktime(xts);
92
	tomono = timespec_to_ktime(tom);
93 94 95
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
96 97
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
116 117 118
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
119
{
120
	struct hrtimer_clock_base *base;
121 122 123 124

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
125
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
126 127 128
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
129
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
130 131 132 133 134
		}
		cpu_relax();
	}
}

135 136 137 138 139 140 141

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
142 143
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
		return get_nohz_timer_target();
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

171 172 173
/*
 * Switch the timer base to the current CPU when possible.
 */
174
static inline struct hrtimer_clock_base *
175 176
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
177
{
178 179
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
180 181
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
182

183 184
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
185
	new_base = &new_cpu_base->clock_base[base->index];
186 187 188

	if (base != new_base) {
		/*
189
		 * We are trying to move timer to new_base.
190 191 192 193 194 195 196
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
197
		if (unlikely(hrtimer_callback_running(timer)))
198 199 200 201
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
202 203
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
204

205 206
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
207 208
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
209 210
			timer->base = base;
			goto again;
211
		}
212 213 214 215 216 217 218
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

219
static inline struct hrtimer_clock_base *
220 221
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
222
	struct hrtimer_clock_base *base = timer->base;
223

224
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
225 226 227 228

	return base;
}

229
# define switch_hrtimer_base(t, b, p)	(b)
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
260 261

EXPORT_SYMBOL_GPL(ktime_add_ns);
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
286 287 288 289 290
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
291
u64 ktime_divns(const ktime_t kt, s64 div)
292
{
293
	u64 dclc;
294 295
	int sft = 0;

296
	dclc = ktime_to_ns(kt);
297 298 299 300 301 302 303 304
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
305
	return dclc;
306 307 308
}
#endif /* BITS_PER_LONG >= 64 */

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

326 327
EXPORT_SYMBOL_GPL(ktime_add_safe);

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
425
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
426 427 428 429 430 431 432 433 434 435 436 437

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
495
	return __this_cpu_read(hrtimer_bases.hres_active);
496 497 498 499 500 501 502
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
503 504
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
505 506 507
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
508
	ktime_t expires, expires_next;
509

510
	expires_next.tv64 = KTIME_MAX;
511 512 513

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;
514
		struct timerqueue_node *next;
515

516 517
		next = timerqueue_getnext(&base->active);
		if (!next)
518
			continue;
519 520
		timer = container_of(next, struct hrtimer, node);

521
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
522 523 524 525 526 527 528
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
529 530
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
531 532
	}

533 534 535 536 537
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
554
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
555
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
556 557
	int res;

558
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
559

560 561 562
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
563
	 * the callback is executed in the hrtimer_interrupt context. The
564 565 566 567 568 569
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

570 571 572 573 574 575 576 577 578
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

579 580 581 582 583 584 585 586 587 588
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
589 590 591 592 593 594 595
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
596
		cpu_base->expires_next = expires;
597 598 599 600 601 602 603 604 605 606 607 608
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
609
	struct timespec realtime_offset, wtm;
610 611 612 613

	if (!hrtimer_hres_active())
		return;

614
	get_xtime_and_monotonic_offset(&realtime_offset, &wtm);
615
	set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
616 617 618 619

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
620
	raw_spin_lock(&base->lock);
621 622 623
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

624
	hrtimer_force_reprogram(base, 0);
625
	raw_spin_unlock(&base->lock);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
642
	on_each_cpu(retrigger_next_event, NULL, 1);
643 644
}

645 646 647 648 649 650
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
651 652 653
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

654 655 656
	retrigger_next_event(NULL);
}

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

673

674 675 676 677 678 679 680
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
681 682
					    struct hrtimer_clock_base *base,
					    int wakeup)
683 684
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
685
		if (wakeup) {
686
			raw_spin_unlock(&base->cpu_base->lock);
687
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
688
			raw_spin_lock(&base->cpu_base->lock);
689 690 691
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

692
		return 1;
693
	}
694

695 696 697 698 699 700
	return 0;
}

/*
 * Switch to high resolution mode
 */
701
static int hrtimer_switch_to_hres(void)
702
{
I
Ingo Molnar 已提交
703 704
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
705 706 707
	unsigned long flags;

	if (base->hres_active)
708
		return 1;
709 710 711 712 713

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
714 715
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
716
		return 0;
717 718 719 720 721 722 723 724 725 726
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
727
	return 1;
728 729 730 731 732 733
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
734
static inline int hrtimer_switch_to_hres(void) { return 0; }
735 736
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
737
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
738 739
					    struct hrtimer_clock_base *base,
					    int wakeup)
740 741 742 743 744 745 746 747
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

748
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
749
{
750
#ifdef CONFIG_TIMER_STATS
751 752
	if (timer->start_site)
		return;
753
	timer->start_site = __builtin_return_address(0);
754 755
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
756 757 758 759 760 761 762 763
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
764
}
765 766 767 768 769 770 771 772

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
773
#endif
774
}
775

776
/*
777
 * Counterpart to lock_hrtimer_base above:
778 779 780 781
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
782
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
783 784 785 786 787
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
788
 * @now:	forward past this time
789 790 791
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
792
 * Returns the number of overruns.
793
 */
D
Davide Libenzi 已提交
794
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
795
{
D
Davide Libenzi 已提交
796
	u64 orun = 1;
797
	ktime_t delta;
798

799
	delta = ktime_sub(now, hrtimer_get_expires(timer));
800 801 802 803

	if (delta.tv64 < 0)
		return 0;

804 805 806
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

807
	if (unlikely(delta.tv64 >= interval.tv64)) {
808
		s64 incr = ktime_to_ns(interval);
809 810

		orun = ktime_divns(delta, incr);
811 812
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
813 814 815 816 817 818 819
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
820
	hrtimer_add_expires(timer, interval);
821 822 823

	return orun;
}
S
Stas Sergeev 已提交
824
EXPORT_SYMBOL_GPL(hrtimer_forward);
825 826 827 828 829 830

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
831 832
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
833
 */
834 835
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
836
{
837
	debug_activate(timer);
838

839
	timerqueue_add(&base->active, &timer->node);
840

841 842 843 844 845
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
846

847
	return (&timer->node == base->active.next);
848
}
849 850 851 852 853

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
854 855 856 857 858
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
859
 */
860
static void __remove_hrtimer(struct hrtimer *timer,
861
			     struct hrtimer_clock_base *base,
862
			     unsigned long newstate, int reprogram)
863
{
864 865 866
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

867
	if (&timer->node == timerqueue_getnext(&base->active)) {
868 869 870 871 872 873 874 875 876
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
877
		}
878
#endif
879
	}
880
	timerqueue_del(&base->active, &timer->node);
881
out:
882
	timer->state = newstate;
883 884 885 886 887 888
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
889
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
890
{
891
	if (hrtimer_is_queued(timer)) {
892
		unsigned long state;
893 894 895 896 897 898 899 900 901 902
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
903
		debug_deactivate(timer);
904
		timer_stats_hrtimer_clear_start_info(timer);
905
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
906 907 908 909 910 911 912
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
913 914 915 916 917
		return 1;
	}
	return 0;
}

918 919 920
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
921
{
922
	struct hrtimer_clock_base *base, *new_base;
923
	unsigned long flags;
924
	int ret, leftmost;
925 926 927 928 929 930 931

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
932
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
933

934
	if (mode & HRTIMER_MODE_REL) {
935
		tim = ktime_add_safe(tim, new_base->get_time());
936 937 938 939 940 941 942 943
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
944
		tim = ktime_add_safe(tim, base->resolution);
945 946
#endif
	}
947

948
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
949

950 951
	timer_stats_hrtimer_set_start_info(timer);

952 953
	leftmost = enqueue_hrtimer(timer, new_base);

954 955 956
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
957 958
	 *
	 * XXX send_remote_softirq() ?
959
	 */
960
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
961
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
962 963 964 965 966

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
984 985 986
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
987
 * hrtimer_start - (re)start an hrtimer on the current CPU
988 989 990 991 992 993 994 995 996 997 998
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
999
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1000
}
1001
EXPORT_SYMBOL_GPL(hrtimer_start);
1002

1003

1004 1005 1006 1007 1008 1009 1010 1011
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1012
 *    cannot be stopped
1013 1014 1015
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1016
	struct hrtimer_clock_base *base;
1017 1018 1019 1020 1021
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1022
	if (!hrtimer_callback_running(timer))
1023 1024 1025 1026 1027 1028 1029
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1030
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1047
		cpu_relax();
1048 1049
	}
}
1050
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1061
	lock_hrtimer_base(timer, &flags);
1062
	rem = hrtimer_expires_remaining(timer);
1063 1064 1065 1066
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1067
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1068

1069
#ifdef CONFIG_NO_HZ
1070 1071 1072 1073 1074 1075 1076 1077
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1078 1079
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1080 1081 1082 1083
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1084
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1085

1086 1087 1088
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1089
			struct timerqueue_node *next;
1090

1091 1092
			next = timerqueue_getnext(&base->active);
			if (!next)
1093
				continue;
1094

1095
			timer = container_of(next, struct hrtimer, node);
1096
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1097 1098 1099 1100
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1101
	}
1102

1103
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1104

1105 1106 1107 1108 1109 1110
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1111 1112
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1113
{
1114
	struct hrtimer_cpu_base *cpu_base;
1115

1116 1117
	memset(timer, 0, sizeof(struct hrtimer));

1118
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1119

1120
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1121 1122
		clock_id = CLOCK_MONOTONIC;

1123
	timer->base = &cpu_base->clock_base[clock_id];
1124
	hrtimer_init_timer_hres(timer);
1125
	timerqueue_init(&timer->node);
1126 1127 1128 1129 1130 1131

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1132
}
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1143
	debug_init(timer, clock_id, mode);
1144 1145
	__hrtimer_init(timer, clock_id, mode);
}
1146
EXPORT_SYMBOL_GPL(hrtimer_init);
1147 1148 1149 1150 1151 1152

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1153 1154
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1155 1156 1157
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1158
	struct hrtimer_cpu_base *cpu_base;
1159

1160 1161
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1162 1163 1164

	return 0;
}
1165
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1166

1167
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1168 1169 1170 1171 1172 1173
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1174 1175
	WARN_ON(!irqs_disabled());

1176
	debug_deactivate(timer);
1177 1178 1179
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1180 1181 1182 1183 1184 1185

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1186
	raw_spin_unlock(&cpu_base->lock);
1187
	trace_hrtimer_expire_entry(timer, now);
1188
	restart = fn(timer);
1189
	trace_hrtimer_expire_exit(timer);
1190
	raw_spin_lock(&cpu_base->lock);
1191 1192

	/*
T
Thomas Gleixner 已提交
1193 1194 1195
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1196 1197 1198
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1199
		enqueue_hrtimer(timer, base);
1200
	}
1201 1202 1203

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1204 1205 1206
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
1217 1218
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1219 1220 1221 1222 1223

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1224 1225
	entry_time = now = ktime_get();
retry:
1226 1227
	expires_next.tv64 = KTIME_MAX;

1228
	raw_spin_lock(&cpu_base->lock);
1229 1230 1231 1232 1233 1234 1235 1236 1237
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1238 1239 1240 1241
	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
1242
		struct timerqueue_node *node;
1243 1244 1245

		basenow = ktime_add(now, base->offset);

1246
		while ((node = timerqueue_getnext(&base->active))) {
1247 1248
			struct hrtimer *timer;

1249
			timer = container_of(node, struct hrtimer, node);
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1265 1266
				ktime_t expires;

1267
				expires = ktime_sub(hrtimer_get_expires(timer),
1268 1269 1270 1271 1272 1273
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1274
			__run_hrtimer(timer, &basenow);
1275 1276 1277 1278
		}
		base++;
	}

1279 1280 1281 1282
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1283
	cpu_base->expires_next = expires_next;
1284
	raw_spin_unlock(&cpu_base->lock);
1285 1286

	/* Reprogramming necessary ? */
1287 1288 1289 1290
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1291
	}
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
	 */
	now = ktime_get();
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1329 1330
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1358
	unsigned long flags;
1359

1360
	local_irq_save(flags);
1361
	__hrtimer_peek_ahead_timers();
1362 1363 1364
	local_irq_restore(flags);
}

1365 1366 1367 1368 1369
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1370 1371 1372 1373 1374
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1398 1399
}

1400
/*
1401
 * Called from hardirq context every jiffy
1402
 */
1403
void hrtimer_run_queues(void)
1404
{
1405
	struct timerqueue_node *node;
1406 1407 1408
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1409

1410
	if (hrtimer_hres_active())
1411 1412
		return;

1413 1414
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1415
		if (!timerqueue_getnext(&base->active))
1416
			continue;
1417

1418
		if (gettime) {
1419 1420
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1421
		}
1422

1423
		raw_spin_lock(&cpu_base->lock);
1424

1425
		while ((node = timerqueue_getnext(&base->active))) {
1426
			struct hrtimer *timer;
1427

1428
			timer = container_of(node, struct hrtimer, node);
1429 1430
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1431 1432
				break;

1433
			__run_hrtimer(timer, &base->softirq_time);
1434
		}
1435
		raw_spin_unlock(&cpu_base->lock);
1436
	}
1437 1438
}

1439 1440 1441
/*
 * Sleep related functions:
 */
1442
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1455
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1456 1457 1458 1459
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1460
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1461

1462
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1463
{
1464
	hrtimer_init_sleeper(t, current);
1465

1466 1467
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1468
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1469 1470
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1471

1472 1473
		if (likely(t->task))
			schedule();
1474

1475
		hrtimer_cancel(&t->timer);
1476
		mode = HRTIMER_MODE_ABS;
1477 1478

	} while (t->task && !signal_pending(current));
1479

1480 1481
	__set_current_state(TASK_RUNNING);

1482
	return t->task == NULL;
1483 1484
}

1485 1486 1487 1488 1489
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1490
	rem = hrtimer_expires_remaining(timer);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1501
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1502
{
1503
	struct hrtimer_sleeper t;
1504
	struct timespec __user  *rmtp;
1505
	int ret = 0;
1506

1507 1508
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1509
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1510

1511
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1512
		goto out;
1513

1514
	rmtp = restart->nanosleep.rmtp;
1515
	if (rmtp) {
1516
		ret = update_rmtp(&t.timer, rmtp);
1517
		if (ret <= 0)
1518
			goto out;
1519
	}
1520 1521

	/* The other values in restart are already filled in */
1522 1523 1524 1525
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1526 1527
}

1528
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1529 1530 1531
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1532
	struct hrtimer_sleeper t;
1533
	int ret = 0;
1534 1535 1536 1537 1538
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1539

1540
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1541
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1542
	if (do_nanosleep(&t, mode))
1543
		goto out;
1544

1545
	/* Absolute timers do not update the rmtp value and restart: */
1546 1547 1548 1549
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1550

1551
	if (rmtp) {
1552
		ret = update_rmtp(&t.timer, rmtp);
1553
		if (ret <= 0)
1554
			goto out;
1555
	}
1556 1557

	restart = &current_thread_info()->restart_block;
1558
	restart->fn = hrtimer_nanosleep_restart;
1559 1560
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1561
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1562

1563 1564 1565 1566
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1567 1568
}

1569 1570
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1571
{
1572
	struct timespec tu;
1573 1574 1575 1576 1577 1578 1579

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1580
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1581 1582
}

1583 1584 1585
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1586
static void __cpuinit init_hrtimers_cpu(int cpu)
1587
{
1588
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1589 1590
	int i;

1591
	raw_spin_lock_init(&cpu_base->lock);
1592

1593
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1594
		cpu_base->clock_base[i].cpu_base = cpu_base;
1595 1596
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1597

1598
	hrtimer_init_hres(cpu_base);
1599 1600 1601 1602
}

#ifdef CONFIG_HOTPLUG_CPU

1603
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1604
				struct hrtimer_clock_base *new_base)
1605 1606
{
	struct hrtimer *timer;
1607
	struct timerqueue_node *node;
1608

1609 1610
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1611
		BUG_ON(hrtimer_callback_running(timer));
1612
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1613 1614 1615 1616 1617 1618 1619

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1620
		timer->base = new_base;
1621
		/*
T
Thomas Gleixner 已提交
1622 1623 1624 1625 1626 1627
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1628
		 */
1629
		enqueue_hrtimer(timer, new_base);
1630

T
Thomas Gleixner 已提交
1631 1632
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1633 1634 1635
	}
}

1636
static void migrate_hrtimers(int scpu)
1637
{
1638
	struct hrtimer_cpu_base *old_base, *new_base;
1639
	int i;
1640

1641 1642
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1643 1644 1645 1646

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1647 1648 1649 1650
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1651 1652
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1653

1654
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1655
		migrate_hrtimer_list(&old_base->clock_base[i],
1656
				     &new_base->clock_base[i]);
1657 1658
	}

1659 1660
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1661

1662 1663 1664
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1665
}
1666

1667 1668
#endif /* CONFIG_HOTPLUG_CPU */

1669
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1670 1671
					unsigned long action, void *hcpu)
{
1672
	int scpu = (long)hcpu;
1673 1674 1675 1676

	switch (action) {

	case CPU_UP_PREPARE:
1677
	case CPU_UP_PREPARE_FROZEN:
1678
		init_hrtimers_cpu(scpu);
1679 1680 1681
		break;

#ifdef CONFIG_HOTPLUG_CPU
1682 1683 1684 1685
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1686
	case CPU_DEAD:
1687
	case CPU_DEAD_FROZEN:
1688
	{
1689
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1690
		migrate_hrtimers(scpu);
1691
		break;
1692
	}
1693 1694 1695 1696 1697 1698 1699 1700 1701
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1702
static struct notifier_block __cpuinitdata hrtimers_nb = {
1703 1704 1705 1706 1707 1708 1709 1710
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1711 1712 1713
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1714 1715
}

1716
/**
1717
 * schedule_hrtimeout_range_clock - sleep until timeout
1718
 * @expires:	timeout value (ktime_t)
1719
 * @delta:	slack in expires timeout (ktime_t)
1720
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1721
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1722
 */
1723 1724 1725
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1739
	 * A NULL parameter means "infinite"
1740 1741 1742 1743 1744 1745 1746
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1747
	hrtimer_init_on_stack(&t.timer, clock, mode);
1748
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1749 1750 1751

	hrtimer_init_sleeper(&t, current);

1752
	hrtimer_start_expires(&t.timer, mode);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1830
EXPORT_SYMBOL_GPL(schedule_hrtimeout);