hrtimer.c 45.4 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50

#include <asm/uaccess.h>

51 52
#include <trace/events/timer.h>

53 54
/*
 * The timer bases:
55 56 57 58 59 60
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
61
 */
62
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63
{
64 65

	.clock_base =
66
	{
67 68 69
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
70
			.resolution = KTIME_LOW_RES,
71 72 73 74
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
75
			.resolution = KTIME_LOW_RES,
76 77
		},
	}
78 79
};

80 81 82 83
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
84
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
85 86
{
	ktime_t xtim, tomono;
87
	struct timespec xts, tom;
88 89 90 91
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
92
		xts = current_kernel_time();
93
		tom = wall_to_monotonic;
94 95
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
96
	xtim = timespec_to_ktime(xts);
97
	tomono = timespec_to_ktime(tom);
98 99 100
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
101 102
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
121 122 123
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
124
{
125
	struct hrtimer_clock_base *base;
126 127 128 129

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
130
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 132 133
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
134
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
135 136 137 138 139
		}
		cpu_relax();
	}
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
		int preferred_cpu = get_nohz_load_balancer();

		if (preferred_cpu >= 0)
			return preferred_cpu;
	}
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

180 181 182
/*
 * Switch the timer base to the current CPU when possible.
 */
183
static inline struct hrtimer_clock_base *
184 185
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
186
{
187 188
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
189 190
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
191

192 193
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
194
	new_base = &new_cpu_base->clock_base[base->index];
195 196 197

	if (base != new_base) {
		/*
198
		 * We are trying to move timer to new_base.
199 200 201 202 203 204 205
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
206
		if (unlikely(hrtimer_callback_running(timer)))
207 208 209 210
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
211 212
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
213

214 215
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
216 217
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
218 219
			timer->base = base;
			goto again;
220
		}
221 222 223 224 225 226 227
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

228
static inline struct hrtimer_clock_base *
229 230
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
231
	struct hrtimer_clock_base *base = timer->base;
232

233
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
234 235 236 237

	return base;
}

238
# define switch_hrtimer_base(t, b, p)	(b)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
269 270

EXPORT_SYMBOL_GPL(ktime_add_ns);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
295 296 297 298 299
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
300
u64 ktime_divns(const ktime_t kt, s64 div)
301
{
302
	u64 dclc;
303 304
	int sft = 0;

305
	dclc = ktime_to_ns(kt);
306 307 308 309 310 311 312 313
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
314
	return dclc;
315 316 317
}
#endif /* BITS_PER_LONG >= 64 */

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

335 336
EXPORT_SYMBOL_GPL(ktime_add_safe);

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
434
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
435 436 437 438 439 440 441 442 443 444 445 446

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
512 513
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
514 515 516
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
517
	ktime_t expires, expires_next;
518

519
	expires_next.tv64 = KTIME_MAX;
520 521 522 523 524 525 526

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
527
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
528 529 530 531 532 533 534
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
535 536
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
537 538
	}

539 540 541 542 543
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
560
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
561
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
562 563
	int res;

564
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
565

566 567 568
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
569
	 * the callback is executed in the hrtimer_interrupt context. The
570 571 572 573 574 575
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

576 577 578 579 580 581 582 583 584
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

585 586 587 588 589 590 591 592 593 594
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
595 596 597 598 599 600 601
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
602
		cpu_base->expires_next = expires;
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
631
	raw_spin_lock(&base->lock);
632 633 634
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

635
	hrtimer_force_reprogram(base, 0);
636
	raw_spin_unlock(&base->lock);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
653
	on_each_cpu(retrigger_next_event, NULL, 1);
654 655
}

656 657 658 659 660 661
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
662 663 664
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

665 666 667
	retrigger_next_event(NULL);
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

684

685 686 687 688 689 690 691
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
692 693
					    struct hrtimer_clock_base *base,
					    int wakeup)
694 695
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
696
		if (wakeup) {
697
			raw_spin_unlock(&base->cpu_base->lock);
698
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
699
			raw_spin_lock(&base->cpu_base->lock);
700 701 702
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

703
		return 1;
704
	}
705

706 707 708 709 710 711
	return 0;
}

/*
 * Switch to high resolution mode
 */
712
static int hrtimer_switch_to_hres(void)
713
{
I
Ingo Molnar 已提交
714 715
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
716 717 718
	unsigned long flags;

	if (base->hres_active)
719
		return 1;
720 721 722 723 724

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
725 726
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
727
		return 0;
728 729 730 731 732 733 734 735 736 737
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
738
	return 1;
739 740 741 742 743 744
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
745
static inline int hrtimer_switch_to_hres(void) { return 0; }
746 747
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
748
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
749 750
					    struct hrtimer_clock_base *base,
					    int wakeup)
751 752 753 754 755 756 757 758
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

759
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
760
{
761
#ifdef CONFIG_TIMER_STATS
762 763
	if (timer->start_site)
		return;
764
	timer->start_site = __builtin_return_address(0);
765 766
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
767 768 769 770 771 772 773 774
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
775
}
776 777 778 779 780 781 782 783

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
784
#endif
785
}
786

787
/*
788
 * Counterpart to lock_hrtimer_base above:
789 790 791 792
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
793
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
794 795 796 797 798
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
799
 * @now:	forward past this time
800 801 802
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
803
 * Returns the number of overruns.
804
 */
D
Davide Libenzi 已提交
805
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
806
{
D
Davide Libenzi 已提交
807
	u64 orun = 1;
808
	ktime_t delta;
809

810
	delta = ktime_sub(now, hrtimer_get_expires(timer));
811 812 813 814

	if (delta.tv64 < 0)
		return 0;

815 816 817
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

818
	if (unlikely(delta.tv64 >= interval.tv64)) {
819
		s64 incr = ktime_to_ns(interval);
820 821

		orun = ktime_divns(delta, incr);
822 823
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
824 825 826 827 828 829 830
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
831
	hrtimer_add_expires(timer, interval);
832 833 834

	return orun;
}
S
Stas Sergeev 已提交
835
EXPORT_SYMBOL_GPL(hrtimer_forward);
836 837 838 839 840 841

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
842 843
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
844
 */
845 846
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
847 848 849 850
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
851
	int leftmost = 1;
852

853
	debug_activate(timer);
854

855 856 857 858 859 860 861 862 863 864
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
865 866
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
867
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
868
		} else {
869
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
870 871
			leftmost = 0;
		}
872 873 874
	}

	/*
875 876
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
877
	 */
878
	if (leftmost)
879 880
		base->first = &timer->node;

881 882
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
883 884 885 886 887
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
888 889

	return leftmost;
890
}
891 892 893 894 895

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
896 897 898 899 900
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
901
 */
902
static void __remove_hrtimer(struct hrtimer *timer,
903
			     struct hrtimer_clock_base *base,
904
			     unsigned long newstate, int reprogram)
905
{
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

	/*
	 * Remove the timer from the rbtree and replace the first
	 * entry pointer if necessary.
	 */
	if (base->first == &timer->node) {
		base->first = rb_next(&timer->node);
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
924
		}
925
#endif
926
	}
927 928
	rb_erase(&timer->node, &base->active);
out:
929
	timer->state = newstate;
930 931 932 933 934 935
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
936
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
937
{
938
	if (hrtimer_is_queued(timer)) {
939 940 941 942 943 944 945 946 947 948
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
949
		debug_deactivate(timer);
950
		timer_stats_hrtimer_clear_start_info(timer);
951 952 953
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
954 955 956 957 958
		return 1;
	}
	return 0;
}

959 960 961
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
962
{
963
	struct hrtimer_clock_base *base, *new_base;
964
	unsigned long flags;
965
	int ret, leftmost;
966 967 968 969 970 971 972

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
973
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
974

975
	if (mode & HRTIMER_MODE_REL) {
976
		tim = ktime_add_safe(tim, new_base->get_time());
977 978 979 980 981 982 983 984
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
985
		tim = ktime_add_safe(tim, base->resolution);
986 987
#endif
	}
988

989
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
990

991 992
	timer_stats_hrtimer_set_start_info(timer);

993 994
	leftmost = enqueue_hrtimer(timer, new_base);

995 996 997
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
998 999
	 *
	 * XXX send_remote_softirq() ?
1000
	 */
1001
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
1002
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
1003 1004 1005 1006 1007

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1025 1026 1027
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1028
 * hrtimer_start - (re)start an hrtimer on the current CPU
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1040
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1041
}
1042
EXPORT_SYMBOL_GPL(hrtimer_start);
1043

1044

1045 1046 1047 1048 1049 1050 1051 1052
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1053
 *    cannot be stopped
1054 1055 1056
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1057
	struct hrtimer_clock_base *base;
1058 1059 1060 1061 1062
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1063
	if (!hrtimer_callback_running(timer))
1064 1065 1066 1067 1068 1069 1070
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1071
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1088
		cpu_relax();
1089 1090
	}
}
1091
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1092 1093 1094 1095 1096 1097 1098

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1099
	struct hrtimer_clock_base *base;
1100 1101 1102 1103
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1104
	rem = hrtimer_expires_remaining(timer);
1105 1106 1107 1108
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1109
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1110

1111
#ifdef CONFIG_NO_HZ
1112 1113 1114 1115 1116 1117 1118 1119
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1120 1121
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1122 1123 1124 1125
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1126
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1127

1128 1129 1130
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1131

1132 1133
			if (!base->first)
				continue;
1134

1135
			timer = rb_entry(base->first, struct hrtimer, node);
1136
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1137 1138 1139 1140
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1141
	}
1142

1143
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1144

1145 1146 1147 1148 1149 1150
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1151 1152
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1153
{
1154
	struct hrtimer_cpu_base *cpu_base;
1155

1156 1157
	memset(timer, 0, sizeof(struct hrtimer));

1158
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1159

1160
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1161 1162
		clock_id = CLOCK_MONOTONIC;

1163
	timer->base = &cpu_base->clock_base[clock_id];
1164
	hrtimer_init_timer_hres(timer);
1165 1166 1167 1168 1169 1170

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1171
}
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1182
	debug_init(timer, clock_id, mode);
1183 1184
	__hrtimer_init(timer, clock_id, mode);
}
1185
EXPORT_SYMBOL_GPL(hrtimer_init);
1186 1187 1188 1189 1190 1191

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1192 1193
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1194 1195 1196
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1197
	struct hrtimer_cpu_base *cpu_base;
1198

1199 1200
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1201 1202 1203

	return 0;
}
1204
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1205

1206
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1207 1208 1209 1210 1211 1212
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1213 1214
	WARN_ON(!irqs_disabled());

1215
	debug_deactivate(timer);
1216 1217 1218
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1219 1220 1221 1222 1223 1224

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1225
	raw_spin_unlock(&cpu_base->lock);
1226
	trace_hrtimer_expire_entry(timer, now);
1227
	restart = fn(timer);
1228
	trace_hrtimer_expire_exit(timer);
1229
	raw_spin_lock(&cpu_base->lock);
1230 1231

	/*
T
Thomas Gleixner 已提交
1232 1233 1234
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1235 1236 1237
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1238
		enqueue_hrtimer(timer, base);
1239 1240 1241 1242
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
1253 1254
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1255 1256 1257 1258 1259

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1260 1261
	entry_time = now = ktime_get();
retry:
1262 1263
	expires_next.tv64 = KTIME_MAX;

1264
	raw_spin_lock(&cpu_base->lock);
1265 1266 1267 1268 1269 1270 1271 1272 1273
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1301 1302
				ktime_t expires;

1303
				expires = ktime_sub(hrtimer_get_expires(timer),
1304 1305 1306 1307 1308 1309
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1310
			__run_hrtimer(timer, &basenow);
1311 1312 1313 1314
		}
		base++;
	}

1315 1316 1317 1318
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1319
	cpu_base->expires_next = expires_next;
1320
	raw_spin_unlock(&cpu_base->lock);
1321 1322

	/* Reprogramming necessary ? */
1323 1324 1325 1326
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1327
	}
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
	 */
	now = ktime_get();
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1365 1366
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1394
	unsigned long flags;
1395

1396
	local_irq_save(flags);
1397
	__hrtimer_peek_ahead_timers();
1398 1399 1400
	local_irq_restore(flags);
}

1401 1402 1403 1404 1405
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1406 1407 1408 1409 1410
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1434 1435
}

1436
/*
1437
 * Called from hardirq context every jiffy
1438
 */
1439
void hrtimer_run_queues(void)
1440
{
1441
	struct rb_node *node;
1442 1443 1444
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1445

1446
	if (hrtimer_hres_active())
1447 1448
		return;

1449 1450
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1451

1452
		if (!base->first)
1453
			continue;
1454

1455
		if (gettime) {
1456 1457
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1458
		}
1459

1460
		raw_spin_lock(&cpu_base->lock);
1461

1462 1463
		while ((node = base->first)) {
			struct hrtimer *timer;
1464

1465
			timer = rb_entry(node, struct hrtimer, node);
1466 1467
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1468 1469
				break;

1470
			__run_hrtimer(timer, &base->softirq_time);
1471
		}
1472
		raw_spin_unlock(&cpu_base->lock);
1473
	}
1474 1475
}

1476 1477 1478
/*
 * Sleep related functions:
 */
1479
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1492
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1493 1494 1495 1496
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1497
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1498

1499
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1500
{
1501
	hrtimer_init_sleeper(t, current);
1502

1503 1504
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1505
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1506 1507
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1508

1509 1510
		if (likely(t->task))
			schedule();
1511

1512
		hrtimer_cancel(&t->timer);
1513
		mode = HRTIMER_MODE_ABS;
1514 1515

	} while (t->task && !signal_pending(current));
1516

1517 1518
	__set_current_state(TASK_RUNNING);

1519
	return t->task == NULL;
1520 1521
}

1522 1523 1524 1525 1526
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1527
	rem = hrtimer_expires_remaining(timer);
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1538
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1539
{
1540
	struct hrtimer_sleeper t;
1541
	struct timespec __user  *rmtp;
1542
	int ret = 0;
1543

1544 1545
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1546
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1547

1548
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1549
		goto out;
1550

1551
	rmtp = restart->nanosleep.rmtp;
1552
	if (rmtp) {
1553
		ret = update_rmtp(&t.timer, rmtp);
1554
		if (ret <= 0)
1555
			goto out;
1556
	}
1557 1558

	/* The other values in restart are already filled in */
1559 1560 1561 1562
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1563 1564
}

1565
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1566 1567 1568
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1569
	struct hrtimer_sleeper t;
1570
	int ret = 0;
1571 1572 1573 1574 1575
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1576

1577
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1578
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1579
	if (do_nanosleep(&t, mode))
1580
		goto out;
1581

1582
	/* Absolute timers do not update the rmtp value and restart: */
1583 1584 1585 1586
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1587

1588
	if (rmtp) {
1589
		ret = update_rmtp(&t.timer, rmtp);
1590
		if (ret <= 0)
1591
			goto out;
1592
	}
1593 1594

	restart = &current_thread_info()->restart_block;
1595
	restart->fn = hrtimer_nanosleep_restart;
1596 1597
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1598
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1599

1600 1601 1602 1603
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1604 1605
}

1606 1607
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1608
{
1609
	struct timespec tu;
1610 1611 1612 1613 1614 1615 1616

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1617
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1618 1619
}

1620 1621 1622
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1623
static void __cpuinit init_hrtimers_cpu(int cpu)
1624
{
1625
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1626 1627
	int i;

1628
	raw_spin_lock_init(&cpu_base->lock);
1629 1630 1631 1632

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1633
	hrtimer_init_hres(cpu_base);
1634 1635 1636 1637
}

#ifdef CONFIG_HOTPLUG_CPU

1638
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1639
				struct hrtimer_clock_base *new_base)
1640 1641 1642 1643 1644 1645
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1646
		BUG_ON(hrtimer_callback_running(timer));
1647
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1648 1649 1650 1651 1652 1653 1654

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1655
		timer->base = new_base;
1656
		/*
T
Thomas Gleixner 已提交
1657 1658 1659 1660 1661 1662
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1663
		 */
1664
		enqueue_hrtimer(timer, new_base);
1665

T
Thomas Gleixner 已提交
1666 1667
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1668 1669 1670
	}
}

1671
static void migrate_hrtimers(int scpu)
1672
{
1673
	struct hrtimer_cpu_base *old_base, *new_base;
1674
	int i;
1675

1676 1677
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1678 1679 1680 1681

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1682 1683 1684 1685
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1686 1687
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1688

1689
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1690
		migrate_hrtimer_list(&old_base->clock_base[i],
1691
				     &new_base->clock_base[i]);
1692 1693
	}

1694 1695
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1696

1697 1698 1699
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1700
}
1701

1702 1703
#endif /* CONFIG_HOTPLUG_CPU */

1704
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1705 1706
					unsigned long action, void *hcpu)
{
1707
	int scpu = (long)hcpu;
1708 1709 1710 1711

	switch (action) {

	case CPU_UP_PREPARE:
1712
	case CPU_UP_PREPARE_FROZEN:
1713
		init_hrtimers_cpu(scpu);
1714 1715 1716
		break;

#ifdef CONFIG_HOTPLUG_CPU
1717 1718 1719 1720
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1721
	case CPU_DEAD:
1722
	case CPU_DEAD_FROZEN:
1723
	{
1724
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1725
		migrate_hrtimers(scpu);
1726
		break;
1727
	}
1728 1729 1730 1731 1732 1733 1734 1735 1736
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1737
static struct notifier_block __cpuinitdata hrtimers_nb = {
1738 1739 1740 1741 1742 1743 1744 1745
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1746 1747 1748
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1749 1750
}

1751
/**
1752
 * schedule_hrtimeout_range - sleep until timeout
1753
 * @expires:	timeout value (ktime_t)
1754
 * @delta:	slack in expires timeout (ktime_t)
1755 1756 1757 1758 1759 1760
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
1761 1762 1763 1764 1765
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1779
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
			       const enum hrtimer_mode mode)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1803
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1804 1805 1806

	hrtimer_init_sleeper(&t, current);

1807
	hrtimer_start_expires(&t.timer, mode);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1850
EXPORT_SYMBOL_GPL(schedule_hrtimeout);