hrtimer.c 21.1 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4 5 6
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2006, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006	    Timesys Corp., Thomas Gleixner <tglx@timesys.com>
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
#include <linux/interrupt.h>

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
49
ktime_t ktime_get(void)
50 51 52 53 54 55 56 57 58 59 60 61 62
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
63
ktime_t ktime_get_real(void)
64 65 66 67 68 69 70 71 72 73 74 75
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
76 77 78 79 80 81
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
82
 */
83
static DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
84
{
85 86

	.clock_base =
87
	{
88 89 90 91 92 93 94 95 96 97 98
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
			.resolution = KTIME_REALTIME_RES,
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
			.resolution = KTIME_MONOTONIC_RES,
		},
	}
99 100 101 102 103 104 105 106
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
107
 * in normalized timespec format in the variable pointed to by @ts.
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
124
EXPORT_SYMBOL_GPL(ktime_get_ts);
125

126 127 128 129
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
130
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
131 132
{
	ktime_t xtim, tomono;
J
john stultz 已提交
133
	struct timespec xts;
134 135 136 137
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
J
john stultz 已提交
138 139 140 141 142
#ifdef CONFIG_NO_HZ
		getnstimeofday(&xts);
#else
		xts = xtime;
#endif
143 144
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
145 146
	xtim = timespec_to_ktime(xts);
	tomono = timespec_to_ktime(wall_to_monotonic);
147 148 149
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
150 151
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/*
 * Helper function to check, whether the timer is on one of the queues
 */
static inline int hrtimer_is_queued(struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_ENQUEUED;
}

/*
 * Helper function to check, whether the timer is running the callback
 * function
 */
static inline int hrtimer_callback_running(struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_CALLBACK;
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
187 188 189
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
190
{
191
	struct hrtimer_clock_base *base;
192 193 194 195

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
196
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
197 198 199
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
200
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
201 202 203 204 205 206 207 208
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
209 210
static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
211
{
212 213
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
214

215 216
	new_cpu_base = &__get_cpu_var(hrtimer_bases);
	new_base = &new_cpu_base->clock_base[base->index];
217 218 219 220 221 222 223 224 225 226 227

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
228
		if (unlikely(timer->state & HRTIMER_STATE_CALLBACK))
229 230 231 232
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
233 234
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
235 236 237 238 239 240 241
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

242
static inline struct hrtimer_clock_base *
243 244
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
245
	struct hrtimer_clock_base *base = timer->base;
246

247
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

	return base;
}

#define switch_hrtimer_base(t, b)	(b)

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}

#else /* CONFIG_KTIME_SCALAR */

# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
291
static unsigned long ktime_divns(const ktime_t kt, s64 div)
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
{
	u64 dclc, inc, dns;
	int sft = 0;

	dclc = dns = ktime_to_ns(kt);
	inc = div;
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

	return (unsigned long) dclc;
}

#else /* BITS_PER_LONG < 64 */
# define ktime_divns(kt, div)		(unsigned long)((kt).tv64 / (div))
#endif /* BITS_PER_LONG >= 64 */

/*
 * Counterpart to lock_timer_base above:
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
319
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
320 321 322 323 324
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
325
 * @now:	forward past this time
326 327 328
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
329
 * Returns the number of overruns.
330 331
 */
unsigned long
332
hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
333 334
{
	unsigned long orun = 1;
335
	ktime_t delta;
336 337 338 339 340 341

	delta = ktime_sub(now, timer->expires);

	if (delta.tv64 < 0)
		return 0;

342 343 344
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

345
	if (unlikely(delta.tv64 >= interval.tv64)) {
346
		s64 incr = ktime_to_ns(interval);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

		orun = ktime_divns(delta, incr);
		timer->expires = ktime_add_ns(timer->expires, incr * orun);
		if (timer->expires.tv64 > now.tv64)
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
	timer->expires = ktime_add(timer->expires, interval);

	return orun;
}

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
 */
369 370
static void enqueue_hrtimer(struct hrtimer *timer,
			    struct hrtimer_clock_base *base)
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
		if (timer->expires.tv64 < entry->expires.tv64)
			link = &(*link)->rb_left;
388
		else
389 390 391 392
			link = &(*link)->rb_right;
	}

	/*
393 394
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
395 396 397
	 */
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
398 399 400 401 402
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
403

404 405 406 407
	if (!base->first || timer->expires.tv64 <
	    rb_entry(base->first, struct hrtimer, node)->expires.tv64)
		base->first = &timer->node;
}
408 409 410 411 412 413

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
 */
414
static void __remove_hrtimer(struct hrtimer *timer,
415 416
			     struct hrtimer_clock_base *base,
			     unsigned long newstate)
417 418
{
	/*
419 420
	 * Remove the timer from the rbtree and replace the
	 * first entry pointer if necessary.
421
	 */
422 423
	if (base->first == &timer->node)
		base->first = rb_next(&timer->node);
424
	rb_erase(&timer->node, &base->active);
425
	timer->state = newstate;
426 427 428 429 430 431
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
432
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
433
{
434 435
	if (hrtimer_is_queued(timer)) {
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE);
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
		return 1;
	}
	return 0;
}

/**
 * hrtimer_start - (re)start an relative timer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
454
	struct hrtimer_clock_base *base, *new_base;
455 456 457 458 459 460 461 462 463 464 465
	unsigned long flags;
	int ret;

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base);

466
	if (mode == HRTIMER_MODE_REL) {
467
		tim = ktime_add(tim, new_base->get_time());
468 469 470 471 472 473 474 475 476 477 478
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
		tim = ktime_add(tim, base->resolution);
#endif
	}
479 480 481 482 483 484 485 486
	timer->expires = tim;

	enqueue_hrtimer(timer, new_base);

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
487
EXPORT_SYMBOL_GPL(hrtimer_start);
488 489 490 491 492 493 494 495 496

/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
497
 *    cannot be stopped
498 499 500
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
501
	struct hrtimer_clock_base *base;
502 503 504 505 506
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

507
	if (!hrtimer_callback_running(timer))
508 509 510 511 512 513 514
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
515
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
532
		cpu_relax();
533 534
	}
}
535
EXPORT_SYMBOL_GPL(hrtimer_cancel);
536 537 538 539 540 541 542

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
543
	struct hrtimer_clock_base *base;
544 545 546 547
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
548
	rem = ktime_sub(timer->expires, base->get_time());
549 550 551 552
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
553
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
554

555
#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
556 557 558 559 560 561 562 563
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
564 565
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
566 567 568 569
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

570 571 572
	spin_lock_irqsave(&cpu_base->lock, flags);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
573 574
		struct hrtimer *timer;

575
		if (!base->first)
576
			continue;
577

578 579 580 581 582 583
		timer = rb_entry(base->first, struct hrtimer, node);
		delta.tv64 = timer->expires.tv64;
		delta = ktime_sub(delta, base->get_time());
		if (delta.tv64 < mindelta.tv64)
			mindelta.tv64 = delta.tv64;
	}
584 585 586

	spin_unlock_irqrestore(&cpu_base->lock, flags);

587 588 589 590 591 592
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

593
/**
594 595
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
596
 * @clock_id:	the clock to be used
597
 * @mode:	timer mode abs/rel
598
 */
599 600
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
601
{
602
	struct hrtimer_cpu_base *cpu_base;
603

604 605
	memset(timer, 0, sizeof(struct hrtimer));

606
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
607

608
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
609 610
		clock_id = CLOCK_MONOTONIC;

611
	timer->base = &cpu_base->clock_base[clock_id];
612
}
613
EXPORT_SYMBOL_GPL(hrtimer_init);
614 615 616 617 618 619

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
620 621
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
622 623 624
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
625
	struct hrtimer_cpu_base *cpu_base;
626

627 628
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
629 630 631

	return 0;
}
632
EXPORT_SYMBOL_GPL(hrtimer_get_res);
633 634 635 636

/*
 * Expire the per base hrtimer-queue:
 */
637 638
static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
				     int index)
639
{
640
	struct rb_node *node;
641
	struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
642

643 644 645
	if (!base->first)
		return;

646 647 648
	if (base->get_softirq_time)
		base->softirq_time = base->get_softirq_time();

649
	spin_lock_irq(&cpu_base->lock);
650

651
	while ((node = base->first)) {
652
		struct hrtimer *timer;
653
		enum hrtimer_restart (*fn)(struct hrtimer *);
654 655
		int restart;

656
		timer = rb_entry(node, struct hrtimer, node);
657
		if (base->softirq_time.tv64 <= timer->expires.tv64)
658 659 660
			break;

		fn = timer->function;
661
		__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK);
662
		spin_unlock_irq(&cpu_base->lock);
663

664
		restart = fn(timer);
665

666
		spin_lock_irq(&cpu_base->lock);
667

668
		timer->state &= ~HRTIMER_STATE_CALLBACK;
669 670
		if (restart != HRTIMER_NORESTART) {
			BUG_ON(hrtimer_active(timer));
671
			enqueue_hrtimer(timer, base);
672
		}
673
	}
674
	spin_unlock_irq(&cpu_base->lock);
675 676 677 678 679 680 681
}

/*
 * Called from timer softirq every jiffy, expire hrtimers:
 */
void hrtimer_run_queues(void)
{
682
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
683 684
	int i;

685
	hrtimer_get_softirq_time(cpu_base);
686

687 688
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		run_hrtimer_queue(cpu_base, i);
689 690
}

691 692 693
/*
 * Sleep related functions:
 */
694
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
695 696 697 698 699 700 701 702 703 704 705 706
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

707
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
708 709 710 711 712
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}

713
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
714
{
715
	hrtimer_init_sleeper(t, current);
716

717 718 719 720 721 722
	do {
		set_current_state(TASK_INTERRUPTIBLE);
		hrtimer_start(&t->timer, t->timer.expires, mode);

		schedule();

723
		hrtimer_cancel(&t->timer);
724
		mode = HRTIMER_MODE_ABS;
725 726

	} while (t->task && !signal_pending(current));
727

728
	return t->task == NULL;
729 730
}

731
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
732
{
733
	struct hrtimer_sleeper t;
734 735
	struct timespec __user *rmtp;
	struct timespec tu;
736
	ktime_t time;
737 738 739

	restart->fn = do_no_restart_syscall;

740
	hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
741
	t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
742

743
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
744 745
		return 0;

746
	rmtp = (struct timespec __user *) restart->arg1;
747 748 749 750 751 752 753 754
	if (rmtp) {
		time = ktime_sub(t.timer.expires, t.timer.base->get_time());
		if (time.tv64 <= 0)
			return 0;
		tu = ktime_to_timespec(time);
		if (copy_to_user(rmtp, &tu, sizeof(tu)))
			return -EFAULT;
	}
755

756
	restart->fn = hrtimer_nanosleep_restart;
757 758 759 760 761 762 763 764 765

	/* The other values in restart are already filled in */
	return -ERESTART_RESTARTBLOCK;
}

long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
766
	struct hrtimer_sleeper t;
767 768 769
	struct timespec tu;
	ktime_t rem;

770 771 772
	hrtimer_init(&t.timer, clockid, mode);
	t.timer.expires = timespec_to_ktime(*rqtp);
	if (do_nanosleep(&t, mode))
773 774
		return 0;

775
	/* Absolute timers do not update the rmtp value and restart: */
776
	if (mode == HRTIMER_MODE_ABS)
777 778
		return -ERESTARTNOHAND;

779 780 781 782 783 784 785 786
	if (rmtp) {
		rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
		if (rem.tv64 <= 0)
			return 0;
		tu = ktime_to_timespec(rem);
		if (copy_to_user(rmtp, &tu, sizeof(tu)))
			return -EFAULT;
	}
787 788

	restart = &current_thread_info()->restart_block;
789 790 791 792 793
	restart->fn = hrtimer_nanosleep_restart;
	restart->arg0 = (unsigned long) t.timer.base->index;
	restart->arg1 = (unsigned long) rmtp;
	restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
	restart->arg3 = t.timer.expires.tv64 >> 32;
794 795 796 797

	return -ERESTART_RESTARTBLOCK;
}

798 799 800 801 802 803 804 805 806 807 808
asmlinkage long
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
{
	struct timespec tu;

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

809
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
810 811
}

812 813 814 815 816
/*
 * Functions related to boot-time initialization:
 */
static void __devinit init_hrtimers_cpu(int cpu)
{
817
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
818 819
	int i;

820 821 822 823 824 825
	spin_lock_init(&cpu_base->lock);
	lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

826 827 828 829
}

#ifdef CONFIG_HOTPLUG_CPU

830 831
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
				struct hrtimer_clock_base *new_base)
832 833 834 835 836 837
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
838 839
		BUG_ON(timer->state & HRTIMER_STATE_CALLBACK);
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE);
840 841 842 843 844 845 846
		timer->base = new_base;
		enqueue_hrtimer(timer, new_base);
	}
}

static void migrate_hrtimers(int cpu)
{
847
	struct hrtimer_cpu_base *old_base, *new_base;
848 849 850
	int i;

	BUG_ON(cpu_online(cpu));
851 852
	old_base = &per_cpu(hrtimer_bases, cpu);
	new_base = &get_cpu_var(hrtimer_bases);
853 854 855

	local_irq_disable();

856 857
	spin_lock(&new_base->lock);
	spin_lock(&old_base->lock);
858

859 860 861
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		migrate_hrtimer_list(&old_base->clock_base[i],
				     &new_base->clock_base[i]);
862
	}
863 864
	spin_unlock(&old_base->lock);
	spin_unlock(&new_base->lock);
865 866 867 868 869 870

	local_irq_enable();
	put_cpu_var(hrtimer_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

871
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
872 873 874 875 876 877 878 879 880 881 882 883
					unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
		init_hrtimers_cpu(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
884
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
885 886 887 888 889 890 891 892 893 894 895
		migrate_hrtimers(cpu);
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

896
static struct notifier_block __cpuinitdata hrtimers_nb = {
897 898 899 900 901 902 903 904 905 906
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}