hrtimer.c 44.7 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50 51 52 53 54 55

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
56
ktime_t ktime_get(void)
57 58 59 60 61 62 63
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
64
EXPORT_SYMBOL_GPL(ktime_get);
65 66 67 68 69 70

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
71
ktime_t ktime_get_real(void)
72 73 74 75 76 77 78 79 80 81 82 83
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
84 85 86 87 88 89
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
90
 */
91
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
92
{
93 94

	.clock_base =
95
	{
96 97 98
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
99
			.resolution = KTIME_LOW_RES,
100 101 102 103
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
104
			.resolution = KTIME_LOW_RES,
105 106
		},
	}
107 108 109 110 111 112 113 114
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
115
 * in normalized timespec format in the variable pointed to by @ts.
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
132
EXPORT_SYMBOL_GPL(ktime_get_ts);
133

134 135 136 137
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
138
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
139 140
{
	ktime_t xtim, tomono;
141
	struct timespec xts, tom;
142 143 144 145
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
146
		xts = current_kernel_time();
147
		tom = wall_to_monotonic;
148 149
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
150
	xtim = timespec_to_ktime(xts);
151
	tomono = timespec_to_ktime(tom);
152 153 154
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
155 156
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
175 176 177
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
178
{
179
	struct hrtimer_clock_base *base;
180 181 182 183

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
184
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
185 186 187
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
188
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
189 190 191 192 193 194 195 196
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
197
static inline struct hrtimer_clock_base *
198 199
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
200
{
201 202
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
203 204 205 206 207 208
	int cpu, preferred_cpu = -1;

	cpu = smp_processor_id();
#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
		preferred_cpu = get_nohz_load_balancer();
209 210 211 212 213 214 215 216 217 218 219 220 221
		if (preferred_cpu >= 0) {
			/*
			 * We must not check the expiry value when
			 * preferred_cpu is the current cpu. If base
			 * != new_base we would loop forever when the
			 * timer expires before the current programmed
			 * next timer event.
			 */
			if (preferred_cpu != cpu)
				cpu = preferred_cpu;
			else
				preferred_cpu = -1;
		}
222 223
	}
#endif
224

225 226
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
227
	new_base = &new_cpu_base->clock_base[base->index];
228 229 230 231 232 233 234 235 236 237 238

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
239
		if (unlikely(hrtimer_callback_running(timer)))
240 241 242 243
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
244 245
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

		/* Optimized away for NOHZ=n SMP=n */
		if (cpu == preferred_cpu) {
			/* Calculate clock monotonic expiry time */
#ifdef CONFIG_HIGH_RES_TIMERS
			ktime_t expires = ktime_sub(hrtimer_get_expires(timer),
							new_base->offset);
#else
			ktime_t expires = hrtimer_get_expires(timer);
#endif

			/*
			 * Get the next event on target cpu from the
			 * clock events layer.
			 * This covers the highres=off nohz=on case as well.
			 */
			ktime_t next = clockevents_get_next_event(cpu);

			ktime_t delta = ktime_sub(expires, next);

			/*
			 * We do not migrate the timer when it is expiring
			 * before the next event on the target cpu because
			 * we cannot reprogram the target cpu hardware and
			 * we would cause it to fire late.
			 */
			if (delta.tv64 < 0) {
				cpu = smp_processor_id();
				spin_unlock(&new_base->cpu_base->lock);
				spin_lock(&base->cpu_base->lock);
				timer->base = base;
				goto again;
			}
		}
280 281 282 283 284 285 286
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

287
static inline struct hrtimer_clock_base *
288 289
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
290
	struct hrtimer_clock_base *base = timer->base;
291

292
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
293 294 295 296

	return base;
}

297
# define switch_hrtimer_base(t, b, p)	(b)
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
328 329

EXPORT_SYMBOL_GPL(ktime_add_ns);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
354 355 356 357 358
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
359
u64 ktime_divns(const ktime_t kt, s64 div)
360
{
361
	u64 dclc;
362 363
	int sft = 0;

364
	dclc = ktime_to_ns(kt);
365 366 367 368 369 370 371 372
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
373
	return dclc;
374 375 376
}
#endif /* BITS_PER_LONG >= 64 */

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

394 395
EXPORT_SYMBOL_GPL(ktime_add_safe);

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
564
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
565 566 567 568 569 570 571
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
593
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
594 595
	int res;

596
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
597

598 599 600
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
601
	 * the callback is executed in the hrtimer_interrupt context. The
602 603 604 605 606 607
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

608 609 610 611 612 613 614 615 616
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
676
	on_each_cpu(retrigger_next_event, NULL, 1);
677 678
}

679 680 681 682 683 684
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
685 686 687
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

688 689 690
	retrigger_next_event(NULL);
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

707

708 709 710 711 712 713 714
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
715 716
					    struct hrtimer_clock_base *base,
					    int wakeup)
717 718
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
719 720 721 722 723 724 725
		if (wakeup) {
			spin_unlock(&base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			spin_lock(&base->cpu_base->lock);
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

726
		return 1;
727
	}
728

729 730 731 732 733 734
	return 0;
}

/*
 * Switch to high resolution mode
 */
735
static int hrtimer_switch_to_hres(void)
736
{
I
Ingo Molnar 已提交
737 738
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
739 740 741
	unsigned long flags;

	if (base->hres_active)
742
		return 1;
743 744 745 746 747

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
748 749
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
750
		return 0;
751 752 753 754 755 756 757 758 759 760
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
761
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
762
	       smp_processor_id());
763
	return 1;
764 765 766 767 768 769
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
770
static inline int hrtimer_switch_to_hres(void) { return 0; }
771 772
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
773 774
					    struct hrtimer_clock_base *base,
					    int wakeup)
775 776 777 778 779 780 781 782
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

783 784 785 786 787 788 789 790 791 792 793 794
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

795
/*
796
 * Counterpart to lock_hrtimer_base above:
797 798 799 800
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
801
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
802 803 804 805 806
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
807
 * @now:	forward past this time
808 809 810
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
811
 * Returns the number of overruns.
812
 */
D
Davide Libenzi 已提交
813
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
814
{
D
Davide Libenzi 已提交
815
	u64 orun = 1;
816
	ktime_t delta;
817

818
	delta = ktime_sub(now, hrtimer_get_expires(timer));
819 820 821 822

	if (delta.tv64 < 0)
		return 0;

823 824 825
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

826
	if (unlikely(delta.tv64 >= interval.tv64)) {
827
		s64 incr = ktime_to_ns(interval);
828 829

		orun = ktime_divns(delta, incr);
830 831
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
832 833 834 835 836 837 838
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
839
	hrtimer_add_expires(timer, interval);
840 841 842

	return orun;
}
S
Stas Sergeev 已提交
843
EXPORT_SYMBOL_GPL(hrtimer_forward);
844 845 846 847 848 849

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
850 851
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
852
 */
853 854
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
855 856 857 858
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
859
	int leftmost = 1;
860

861 862
	debug_hrtimer_activate(timer);

863 864 865 866 867 868 869 870 871 872
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
873 874
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
875
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
876
		} else {
877
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
878 879
			leftmost = 0;
		}
880 881 882
	}

	/*
883 884
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
885
	 */
886
	if (leftmost)
887 888
		base->first = &timer->node;

889 890
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
891 892 893 894 895
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
896 897

	return leftmost;
898
}
899 900 901 902 903

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
904 905 906 907 908
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
909
 */
910
static void __remove_hrtimer(struct hrtimer *timer,
911
			     struct hrtimer_clock_base *base,
912
			     unsigned long newstate, int reprogram)
913
{
914
	if (timer->state & HRTIMER_STATE_ENQUEUED) {
915 916 917 918 919 920 921 922 923 924 925 926
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
927
	timer->state = newstate;
928 929 930 931 932 933
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
934
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
935
{
936
	if (hrtimer_is_queued(timer)) {
937 938 939 940 941 942 943 944 945 946
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
947
		debug_hrtimer_deactivate(timer);
948
		timer_stats_hrtimer_clear_start_info(timer);
949 950 951
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
952 953 954 955 956
		return 1;
	}
	return 0;
}

957 958 959
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
960
{
961
	struct hrtimer_clock_base *base, *new_base;
962
	unsigned long flags;
963
	int ret, leftmost;
964 965 966 967 968 969 970

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
971
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
972

973
	if (mode & HRTIMER_MODE_REL) {
974
		tim = ktime_add_safe(tim, new_base->get_time());
975 976 977 978 979 980 981 982
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
983
		tim = ktime_add_safe(tim, base->resolution);
984 985
#endif
	}
986

987
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
988

989 990
	timer_stats_hrtimer_set_start_info(timer);

991 992
	leftmost = enqueue_hrtimer(timer, new_base);

993 994 995
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
996 997
	 *
	 * XXX send_remote_softirq() ?
998
	 */
999
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
1000
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
1001 1002 1003 1004 1005

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1023 1024 1025
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1026
 * hrtimer_start - (re)start an hrtimer on the current CPU
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1038
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1039
}
1040
EXPORT_SYMBOL_GPL(hrtimer_start);
1041

1042

1043 1044 1045 1046 1047 1048 1049 1050
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1051
 *    cannot be stopped
1052 1053 1054
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1055
	struct hrtimer_clock_base *base;
1056 1057 1058 1059 1060
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1061
	if (!hrtimer_callback_running(timer))
1062 1063 1064 1065 1066 1067 1068
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1069
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1086
		cpu_relax();
1087 1088
	}
}
1089
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1090 1091 1092 1093 1094 1095 1096

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1097
	struct hrtimer_clock_base *base;
1098 1099 1100 1101
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1102
	rem = hrtimer_expires_remaining(timer);
1103 1104 1105 1106
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1107
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1108

1109
#ifdef CONFIG_NO_HZ
1110 1111 1112 1113 1114 1115 1116 1117
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1118 1119
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1120 1121 1122 1123
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1124 1125
	spin_lock_irqsave(&cpu_base->lock, flags);

1126 1127 1128
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1129

1130 1131
			if (!base->first)
				continue;
1132

1133
			timer = rb_entry(base->first, struct hrtimer, node);
1134
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1135 1136 1137 1138
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1139
	}
1140 1141 1142

	spin_unlock_irqrestore(&cpu_base->lock, flags);

1143 1144 1145 1146 1147 1148
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1149 1150
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1151
{
1152
	struct hrtimer_cpu_base *cpu_base;
1153

1154 1155
	memset(timer, 0, sizeof(struct hrtimer));

1156
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1157

1158
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1159 1160
		clock_id = CLOCK_MONOTONIC;

1161
	timer->base = &cpu_base->clock_base[clock_id];
1162
	INIT_LIST_HEAD(&timer->cb_entry);
1163
	hrtimer_init_timer_hres(timer);
1164 1165 1166 1167 1168 1169

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1170
}
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	__hrtimer_init(timer, clock_id, mode);
}
1184
EXPORT_SYMBOL_GPL(hrtimer_init);
1185 1186 1187 1188 1189 1190

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1191 1192
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1193 1194 1195
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1196
	struct hrtimer_cpu_base *cpu_base;
1197

1198 1199
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1200 1201 1202

	return 0;
}
1203
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1204

1205 1206 1207 1208 1209 1210 1211
static void __run_hrtimer(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1212 1213
	WARN_ON(!irqs_disabled());

1214
	debug_hrtimer_deactivate(timer);
1215 1216 1217
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1218 1219 1220 1221 1222 1223 1224 1225 1226

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
	spin_unlock(&cpu_base->lock);
	restart = fn(timer);
	spin_lock(&cpu_base->lock);
1227 1228

	/*
T
Thomas Gleixner 已提交
1229 1230 1231
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1232 1233 1234
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1235
		enqueue_hrtimer(timer, base);
1236 1237 1238 1239
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1240 1241
#ifdef CONFIG_HIGH_RES_TIMERS

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
static int force_clock_reprogram;

/*
 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
 * is hanging, which could happen with something that slows the interrupt
 * such as the tracing. Then we force the clock reprogramming for each future
 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
 * threshold that we will overwrite.
 * The next tick event will be scheduled to 3 times we currently spend on
 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
 * 1/4 of their time to process the hrtimer interrupts. This is enough to
 * let it running without serious starvation.
 */

static inline void
hrtimer_interrupt_hanging(struct clock_event_device *dev,
			ktime_t try_time)
{
	force_clock_reprogram = 1;
	dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
	printk(KERN_WARNING "hrtimer: interrupt too slow, "
		"forcing clock min delta to %lu ns\n", dev->min_delta_ns);
}
1265 1266 1267 1268 1269 1270 1271 1272 1273
/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
1274
	int nr_retries = 0;
1275
	int i;
1276 1277 1278 1279 1280 1281

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
1282 1283 1284 1285
	/* 5 retries is enough to notice a hang */
	if (!(++nr_retries % 5))
		hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1319 1320
				ktime_t expires;

1321
				expires = ktime_sub(hrtimer_get_expires(timer),
1322 1323 1324 1325 1326 1327
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1328
			__run_hrtimer(timer);
1329 1330 1331 1332 1333 1334 1335 1336 1337
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
1338
		if (tick_program_event(expires_next, force_clock_reprogram))
1339 1340 1341 1342
			goto retry;
	}
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1370
	unsigned long flags;
1371

1372
	local_irq_save(flags);
1373
	__hrtimer_peek_ahead_timers();
1374 1375 1376
	local_irq_restore(flags);
}

1377 1378 1379 1380 1381
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1382 1383 1384 1385 1386
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1410 1411
}

1412
/*
1413
 * Called from hardirq context every jiffy
1414
 */
1415
void hrtimer_run_queues(void)
1416
{
1417
	struct rb_node *node;
1418 1419 1420
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1421

1422
	if (hrtimer_hres_active())
1423 1424
		return;

1425 1426
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1427

1428
		if (!base->first)
1429
			continue;
1430

1431
		if (gettime) {
1432 1433
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1434
		}
1435

1436
		spin_lock(&cpu_base->lock);
1437

1438 1439
		while ((node = base->first)) {
			struct hrtimer *timer;
1440

1441
			timer = rb_entry(node, struct hrtimer, node);
1442 1443
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1444 1445 1446 1447 1448 1449
				break;

			__run_hrtimer(timer);
		}
		spin_unlock(&cpu_base->lock);
	}
1450 1451
}

1452 1453 1454
/*
 * Sleep related functions:
 */
1455
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1468
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1469 1470 1471 1472 1473
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}

1474
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1475
{
1476
	hrtimer_init_sleeper(t, current);
1477

1478 1479
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1480
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1481 1482
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1483

1484 1485
		if (likely(t->task))
			schedule();
1486

1487
		hrtimer_cancel(&t->timer);
1488
		mode = HRTIMER_MODE_ABS;
1489 1490

	} while (t->task && !signal_pending(current));
1491

1492 1493
	__set_current_state(TASK_RUNNING);

1494
	return t->task == NULL;
1495 1496
}

1497 1498 1499 1500 1501
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1502
	rem = hrtimer_expires_remaining(timer);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1513
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1514
{
1515
	struct hrtimer_sleeper t;
1516
	struct timespec __user  *rmtp;
1517
	int ret = 0;
1518

1519 1520
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1521
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1522

1523
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1524
		goto out;
1525

1526
	rmtp = restart->nanosleep.rmtp;
1527
	if (rmtp) {
1528
		ret = update_rmtp(&t.timer, rmtp);
1529
		if (ret <= 0)
1530
			goto out;
1531
	}
1532 1533

	/* The other values in restart are already filled in */
1534 1535 1536 1537
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1538 1539
}

1540
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1541 1542 1543
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1544
	struct hrtimer_sleeper t;
1545
	int ret = 0;
1546 1547 1548 1549 1550
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1551

1552
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1553
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1554
	if (do_nanosleep(&t, mode))
1555
		goto out;
1556

1557
	/* Absolute timers do not update the rmtp value and restart: */
1558 1559 1560 1561
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1562

1563
	if (rmtp) {
1564
		ret = update_rmtp(&t.timer, rmtp);
1565
		if (ret <= 0)
1566
			goto out;
1567
	}
1568 1569

	restart = &current_thread_info()->restart_block;
1570
	restart->fn = hrtimer_nanosleep_restart;
1571 1572
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1573
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1574

1575 1576 1577 1578
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1579 1580
}

1581 1582
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1583
{
1584
	struct timespec tu;
1585 1586 1587 1588 1589 1590 1591

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1592
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1593 1594
}

1595 1596 1597
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1598
static void __cpuinit init_hrtimers_cpu(int cpu)
1599
{
1600
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1601 1602
	int i;

1603 1604 1605 1606 1607
	spin_lock_init(&cpu_base->lock);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1608
	hrtimer_init_hres(cpu_base);
1609 1610 1611 1612
}

#ifdef CONFIG_HOTPLUG_CPU

1613
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1614
				struct hrtimer_clock_base *new_base)
1615 1616 1617 1618 1619 1620
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1621
		BUG_ON(hrtimer_callback_running(timer));
1622
		debug_hrtimer_deactivate(timer);
T
Thomas Gleixner 已提交
1623 1624 1625 1626 1627 1628 1629

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1630
		timer->base = new_base;
1631
		/*
T
Thomas Gleixner 已提交
1632 1633 1634 1635 1636 1637
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1638
		 */
1639
		enqueue_hrtimer(timer, new_base);
1640

T
Thomas Gleixner 已提交
1641 1642
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1643 1644 1645
	}
}

1646
static void migrate_hrtimers(int scpu)
1647
{
1648
	struct hrtimer_cpu_base *old_base, *new_base;
1649
	int i;
1650

1651 1652
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1653 1654 1655 1656

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1657 1658 1659 1660
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1661
	spin_lock(&new_base->lock);
1662
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1663

1664
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1665
		migrate_hrtimer_list(&old_base->clock_base[i],
1666
				     &new_base->clock_base[i]);
1667 1668
	}

1669
	spin_unlock(&old_base->lock);
1670
	spin_unlock(&new_base->lock);
1671

1672 1673 1674
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1675
}
1676

1677 1678
#endif /* CONFIG_HOTPLUG_CPU */

1679
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1680 1681
					unsigned long action, void *hcpu)
{
1682
	int scpu = (long)hcpu;
1683 1684 1685 1686

	switch (action) {

	case CPU_UP_PREPARE:
1687
	case CPU_UP_PREPARE_FROZEN:
1688
		init_hrtimers_cpu(scpu);
1689 1690 1691
		break;

#ifdef CONFIG_HOTPLUG_CPU
1692 1693 1694 1695
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1696
	case CPU_DEAD:
1697
	case CPU_DEAD_FROZEN:
1698
	{
1699
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1700
		migrate_hrtimers(scpu);
1701
		break;
1702
	}
1703 1704 1705 1706 1707 1708 1709 1710 1711
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1712
static struct notifier_block __cpuinitdata hrtimers_nb = {
1713 1714 1715 1716 1717 1718 1719 1720
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1721 1722 1723
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1724 1725
}

1726
/**
1727
 * schedule_hrtimeout_range - sleep until timeout
1728
 * @expires:	timeout value (ktime_t)
1729
 * @delta:	slack in expires timeout (ktime_t)
1730 1731 1732 1733 1734 1735
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
1736 1737 1738 1739 1740
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1754
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
			       const enum hrtimer_mode mode)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1778
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1779 1780 1781

	hrtimer_init_sleeper(&t, current);

1782
	hrtimer_start_expires(&t.timer, mode);
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1825
EXPORT_SYMBOL_GPL(schedule_hrtimeout);