hrtimer.c 44.8 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50 51 52 53 54 55

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
56
ktime_t ktime_get(void)
57 58 59 60 61 62 63
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
64
EXPORT_SYMBOL_GPL(ktime_get);
65 66 67 68 69 70

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
71
ktime_t ktime_get_real(void)
72 73 74 75 76 77 78 79 80 81 82 83
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
84 85 86 87 88 89
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
90
 */
91
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
92
{
93 94

	.clock_base =
95
	{
96 97 98
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
99
			.resolution = KTIME_LOW_RES,
100 101 102 103
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
104
			.resolution = KTIME_LOW_RES,
105 106
		},
	}
107 108 109 110 111 112 113 114
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
115
 * in normalized timespec format in the variable pointed to by @ts.
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
132
EXPORT_SYMBOL_GPL(ktime_get_ts);
133

134 135 136 137
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
138
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
139 140
{
	ktime_t xtim, tomono;
141
	struct timespec xts, tom;
142 143 144 145
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
146
		xts = current_kernel_time();
147
		tom = wall_to_monotonic;
148 149
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
150
	xtim = timespec_to_ktime(xts);
151
	tomono = timespec_to_ktime(tom);
152 153 154
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
155 156
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
175 176 177
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
178
{
179
	struct hrtimer_clock_base *base;
180 181 182 183

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
184
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
185 186 187
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
188
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
189 190 191 192 193
		}
		cpu_relax();
	}
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
		int preferred_cpu = get_nohz_load_balancer();

		if (preferred_cpu >= 0)
			return preferred_cpu;
	}
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

234 235 236
/*
 * Switch the timer base to the current CPU when possible.
 */
237
static inline struct hrtimer_clock_base *
238 239
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
240
{
241 242
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
243 244
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
245

246 247
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
248
	new_base = &new_cpu_base->clock_base[base->index];
249 250 251

	if (base != new_base) {
		/*
252
		 * We are trying to move timer to new_base.
253 254 255 256 257 258 259
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
260
		if (unlikely(hrtimer_callback_running(timer)))
261 262 263 264
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
265 266
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
267

268 269 270 271 272 273
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			spin_unlock(&new_base->cpu_base->lock);
			spin_lock(&base->cpu_base->lock);
			timer->base = base;
			goto again;
274
		}
275 276 277 278 279 280 281
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

282
static inline struct hrtimer_clock_base *
283 284
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
285
	struct hrtimer_clock_base *base = timer->base;
286

287
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
288 289 290 291

	return base;
}

292
# define switch_hrtimer_base(t, b, p)	(b)
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
323 324

EXPORT_SYMBOL_GPL(ktime_add_ns);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
349 350 351 352 353
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
354
u64 ktime_divns(const ktime_t kt, s64 div)
355
{
356
	u64 dclc;
357 358
	int sft = 0;

359
	dclc = ktime_to_ns(kt);
360 361 362 363 364 365 366 367
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
368
	return dclc;
369 370 371
}
#endif /* BITS_PER_LONG >= 64 */

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

389 390
EXPORT_SYMBOL_GPL(ktime_add_safe);

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
559
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
560 561 562 563 564 565 566
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
588
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
589 590
	int res;

591
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
592

593 594 595
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
596
	 * the callback is executed in the hrtimer_interrupt context. The
597 598 599 600 601 602
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

603 604 605 606 607 608 609 610 611
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
671
	on_each_cpu(retrigger_next_event, NULL, 1);
672 673
}

674 675 676 677 678 679
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
680 681 682
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

683 684 685
	retrigger_next_event(NULL);
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

702

703 704 705 706 707 708 709
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
710 711
					    struct hrtimer_clock_base *base,
					    int wakeup)
712 713
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
714 715 716 717 718 719 720
		if (wakeup) {
			spin_unlock(&base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			spin_lock(&base->cpu_base->lock);
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

721
		return 1;
722
	}
723

724 725 726 727 728 729
	return 0;
}

/*
 * Switch to high resolution mode
 */
730
static int hrtimer_switch_to_hres(void)
731
{
I
Ingo Molnar 已提交
732 733
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
734 735 736
	unsigned long flags;

	if (base->hres_active)
737
		return 1;
738 739 740 741 742

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
743 744
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
745
		return 0;
746 747 748 749 750 751 752 753 754 755
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
756
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
757
	       smp_processor_id());
758
	return 1;
759 760 761 762 763 764
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
765
static inline int hrtimer_switch_to_hres(void) { return 0; }
766 767
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
768 769
					    struct hrtimer_clock_base *base,
					    int wakeup)
770 771 772 773 774 775 776 777
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

778 779 780 781 782 783 784 785 786 787 788 789
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

790
/*
791
 * Counterpart to lock_hrtimer_base above:
792 793 794 795
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
796
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
797 798 799 800 801
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
802
 * @now:	forward past this time
803 804 805
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
806
 * Returns the number of overruns.
807
 */
D
Davide Libenzi 已提交
808
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
809
{
D
Davide Libenzi 已提交
810
	u64 orun = 1;
811
	ktime_t delta;
812

813
	delta = ktime_sub(now, hrtimer_get_expires(timer));
814 815 816 817

	if (delta.tv64 < 0)
		return 0;

818 819 820
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

821
	if (unlikely(delta.tv64 >= interval.tv64)) {
822
		s64 incr = ktime_to_ns(interval);
823 824

		orun = ktime_divns(delta, incr);
825 826
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
827 828 829 830 831 832 833
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
834
	hrtimer_add_expires(timer, interval);
835 836 837

	return orun;
}
S
Stas Sergeev 已提交
838
EXPORT_SYMBOL_GPL(hrtimer_forward);
839 840 841 842 843 844

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
845 846
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
847
 */
848 849
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
850 851 852 853
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
854
	int leftmost = 1;
855

856 857
	debug_hrtimer_activate(timer);

858 859 860 861 862 863 864 865 866 867
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
868 869
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
870
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
871
		} else {
872
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
873 874
			leftmost = 0;
		}
875 876 877
	}

	/*
878 879
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
880
	 */
881
	if (leftmost)
882 883
		base->first = &timer->node;

884 885
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
886 887 888 889 890
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
891 892

	return leftmost;
893
}
894 895 896 897 898

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
899 900 901 902 903
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
904
 */
905
static void __remove_hrtimer(struct hrtimer *timer,
906
			     struct hrtimer_clock_base *base,
907
			     unsigned long newstate, int reprogram)
908
{
909
	if (timer->state & HRTIMER_STATE_ENQUEUED) {
910 911 912 913 914 915 916 917 918 919 920 921
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
922
	timer->state = newstate;
923 924 925 926 927 928
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
929
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
930
{
931
	if (hrtimer_is_queued(timer)) {
932 933 934 935 936 937 938 939 940 941
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
942
		debug_hrtimer_deactivate(timer);
943
		timer_stats_hrtimer_clear_start_info(timer);
944 945 946
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
947 948 949 950 951
		return 1;
	}
	return 0;
}

952 953 954
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
955
{
956
	struct hrtimer_clock_base *base, *new_base;
957
	unsigned long flags;
958
	int ret, leftmost;
959 960 961 962 963 964 965

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
966
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
967

968
	if (mode & HRTIMER_MODE_REL) {
969
		tim = ktime_add_safe(tim, new_base->get_time());
970 971 972 973 974 975 976 977
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
978
		tim = ktime_add_safe(tim, base->resolution);
979 980
#endif
	}
981

982
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
983

984 985
	timer_stats_hrtimer_set_start_info(timer);

986 987
	leftmost = enqueue_hrtimer(timer, new_base);

988 989 990
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
991 992
	 *
	 * XXX send_remote_softirq() ?
993
	 */
994
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
995
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
996 997 998 999 1000

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1018 1019 1020
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1021
 * hrtimer_start - (re)start an hrtimer on the current CPU
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1033
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1034
}
1035
EXPORT_SYMBOL_GPL(hrtimer_start);
1036

1037

1038 1039 1040 1041 1042 1043 1044 1045
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1046
 *    cannot be stopped
1047 1048 1049
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1050
	struct hrtimer_clock_base *base;
1051 1052 1053 1054 1055
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1056
	if (!hrtimer_callback_running(timer))
1057 1058 1059 1060 1061 1062 1063
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1064
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1081
		cpu_relax();
1082 1083
	}
}
1084
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1085 1086 1087 1088 1089 1090 1091

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1092
	struct hrtimer_clock_base *base;
1093 1094 1095 1096
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1097
	rem = hrtimer_expires_remaining(timer);
1098 1099 1100 1101
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1102
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1103

1104
#ifdef CONFIG_NO_HZ
1105 1106 1107 1108 1109 1110 1111 1112
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1113 1114
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1115 1116 1117 1118
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1119 1120
	spin_lock_irqsave(&cpu_base->lock, flags);

1121 1122 1123
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1124

1125 1126
			if (!base->first)
				continue;
1127

1128
			timer = rb_entry(base->first, struct hrtimer, node);
1129
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1130 1131 1132 1133
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1134
	}
1135 1136 1137

	spin_unlock_irqrestore(&cpu_base->lock, flags);

1138 1139 1140 1141 1142 1143
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1144 1145
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1146
{
1147
	struct hrtimer_cpu_base *cpu_base;
1148

1149 1150
	memset(timer, 0, sizeof(struct hrtimer));

1151
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1152

1153
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1154 1155
		clock_id = CLOCK_MONOTONIC;

1156
	timer->base = &cpu_base->clock_base[clock_id];
1157
	INIT_LIST_HEAD(&timer->cb_entry);
1158
	hrtimer_init_timer_hres(timer);
1159 1160 1161 1162 1163 1164

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1165
}
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	__hrtimer_init(timer, clock_id, mode);
}
1179
EXPORT_SYMBOL_GPL(hrtimer_init);
1180 1181 1182 1183 1184 1185

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1186 1187
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1188 1189 1190
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1191
	struct hrtimer_cpu_base *cpu_base;
1192

1193 1194
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1195 1196 1197

	return 0;
}
1198
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1199

1200 1201 1202 1203 1204 1205 1206
static void __run_hrtimer(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1207 1208
	WARN_ON(!irqs_disabled());

1209
	debug_hrtimer_deactivate(timer);
1210 1211 1212
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1213 1214 1215 1216 1217 1218 1219 1220 1221

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
	spin_unlock(&cpu_base->lock);
	restart = fn(timer);
	spin_lock(&cpu_base->lock);
1222 1223

	/*
T
Thomas Gleixner 已提交
1224 1225 1226
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1227 1228 1229
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1230
		enqueue_hrtimer(timer, base);
1231 1232 1233 1234
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1235 1236
#ifdef CONFIG_HIGH_RES_TIMERS

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static int force_clock_reprogram;

/*
 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
 * is hanging, which could happen with something that slows the interrupt
 * such as the tracing. Then we force the clock reprogramming for each future
 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
 * threshold that we will overwrite.
 * The next tick event will be scheduled to 3 times we currently spend on
 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
 * 1/4 of their time to process the hrtimer interrupts. This is enough to
 * let it running without serious starvation.
 */

static inline void
hrtimer_interrupt_hanging(struct clock_event_device *dev,
			ktime_t try_time)
{
	force_clock_reprogram = 1;
	dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
	printk(KERN_WARNING "hrtimer: interrupt too slow, "
		"forcing clock min delta to %lu ns\n", dev->min_delta_ns);
}
1260 1261 1262 1263 1264 1265 1266 1267 1268
/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
1269
	int nr_retries = 0;
1270
	int i;
1271 1272 1273 1274 1275 1276

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
1277 1278 1279 1280
	/* 5 retries is enough to notice a hang */
	if (!(++nr_retries % 5))
		hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));

1281 1282 1283 1284
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	spin_lock(&cpu_base->lock);
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1322 1323
				ktime_t expires;

1324
				expires = ktime_sub(hrtimer_get_expires(timer),
1325 1326 1327 1328 1329 1330
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1331
			__run_hrtimer(timer);
1332 1333 1334 1335
		}
		base++;
	}

1336 1337 1338 1339
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1340
	cpu_base->expires_next = expires_next;
1341
	spin_unlock(&cpu_base->lock);
1342 1343 1344

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
1345
		if (tick_program_event(expires_next, force_clock_reprogram))
1346 1347 1348 1349
			goto retry;
	}
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1377
	unsigned long flags;
1378

1379
	local_irq_save(flags);
1380
	__hrtimer_peek_ahead_timers();
1381 1382 1383
	local_irq_restore(flags);
}

1384 1385 1386 1387 1388
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1389 1390 1391 1392 1393
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1394

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1417 1418
}

1419
/*
1420
 * Called from hardirq context every jiffy
1421
 */
1422
void hrtimer_run_queues(void)
1423
{
1424
	struct rb_node *node;
1425 1426 1427
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1428

1429
	if (hrtimer_hres_active())
1430 1431
		return;

1432 1433
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1434

1435
		if (!base->first)
1436
			continue;
1437

1438
		if (gettime) {
1439 1440
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1441
		}
1442

1443
		spin_lock(&cpu_base->lock);
1444

1445 1446
		while ((node = base->first)) {
			struct hrtimer *timer;
1447

1448
			timer = rb_entry(node, struct hrtimer, node);
1449 1450
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1451 1452 1453 1454 1455 1456
				break;

			__run_hrtimer(timer);
		}
		spin_unlock(&cpu_base->lock);
	}
1457 1458
}

1459 1460 1461
/*
 * Sleep related functions:
 */
1462
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1475
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1476 1477 1478 1479 1480
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}

1481
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1482
{
1483
	hrtimer_init_sleeper(t, current);
1484

1485 1486
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1487
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1488 1489
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1490

1491 1492
		if (likely(t->task))
			schedule();
1493

1494
		hrtimer_cancel(&t->timer);
1495
		mode = HRTIMER_MODE_ABS;
1496 1497

	} while (t->task && !signal_pending(current));
1498

1499 1500
	__set_current_state(TASK_RUNNING);

1501
	return t->task == NULL;
1502 1503
}

1504 1505 1506 1507 1508
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1509
	rem = hrtimer_expires_remaining(timer);
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1520
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1521
{
1522
	struct hrtimer_sleeper t;
1523
	struct timespec __user  *rmtp;
1524
	int ret = 0;
1525

1526 1527
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1528
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1529

1530
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1531
		goto out;
1532

1533
	rmtp = restart->nanosleep.rmtp;
1534
	if (rmtp) {
1535
		ret = update_rmtp(&t.timer, rmtp);
1536
		if (ret <= 0)
1537
			goto out;
1538
	}
1539 1540

	/* The other values in restart are already filled in */
1541 1542 1543 1544
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1545 1546
}

1547
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1548 1549 1550
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1551
	struct hrtimer_sleeper t;
1552
	int ret = 0;
1553 1554 1555 1556 1557
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1558

1559
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1560
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1561
	if (do_nanosleep(&t, mode))
1562
		goto out;
1563

1564
	/* Absolute timers do not update the rmtp value and restart: */
1565 1566 1567 1568
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1569

1570
	if (rmtp) {
1571
		ret = update_rmtp(&t.timer, rmtp);
1572
		if (ret <= 0)
1573
			goto out;
1574
	}
1575 1576

	restart = &current_thread_info()->restart_block;
1577
	restart->fn = hrtimer_nanosleep_restart;
1578 1579
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1580
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1581

1582 1583 1584 1585
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1586 1587
}

1588 1589
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1590
{
1591
	struct timespec tu;
1592 1593 1594 1595 1596 1597 1598

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1599
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1600 1601
}

1602 1603 1604
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1605
static void __cpuinit init_hrtimers_cpu(int cpu)
1606
{
1607
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1608 1609
	int i;

1610 1611 1612 1613 1614
	spin_lock_init(&cpu_base->lock);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1615
	hrtimer_init_hres(cpu_base);
1616 1617 1618 1619
}

#ifdef CONFIG_HOTPLUG_CPU

1620
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1621
				struct hrtimer_clock_base *new_base)
1622 1623 1624 1625 1626 1627
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1628
		BUG_ON(hrtimer_callback_running(timer));
1629
		debug_hrtimer_deactivate(timer);
T
Thomas Gleixner 已提交
1630 1631 1632 1633 1634 1635 1636

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1637
		timer->base = new_base;
1638
		/*
T
Thomas Gleixner 已提交
1639 1640 1641 1642 1643 1644
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1645
		 */
1646
		enqueue_hrtimer(timer, new_base);
1647

T
Thomas Gleixner 已提交
1648 1649
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1650 1651 1652
	}
}

1653
static void migrate_hrtimers(int scpu)
1654
{
1655
	struct hrtimer_cpu_base *old_base, *new_base;
1656
	int i;
1657

1658 1659
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1660 1661 1662 1663

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1664 1665 1666 1667
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1668
	spin_lock(&new_base->lock);
1669
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1670

1671
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1672
		migrate_hrtimer_list(&old_base->clock_base[i],
1673
				     &new_base->clock_base[i]);
1674 1675
	}

1676
	spin_unlock(&old_base->lock);
1677
	spin_unlock(&new_base->lock);
1678

1679 1680 1681
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1682
}
1683

1684 1685
#endif /* CONFIG_HOTPLUG_CPU */

1686
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1687 1688
					unsigned long action, void *hcpu)
{
1689
	int scpu = (long)hcpu;
1690 1691 1692 1693

	switch (action) {

	case CPU_UP_PREPARE:
1694
	case CPU_UP_PREPARE_FROZEN:
1695
		init_hrtimers_cpu(scpu);
1696 1697 1698
		break;

#ifdef CONFIG_HOTPLUG_CPU
1699 1700 1701 1702
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1703
	case CPU_DEAD:
1704
	case CPU_DEAD_FROZEN:
1705
	{
1706
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1707
		migrate_hrtimers(scpu);
1708
		break;
1709
	}
1710 1711 1712 1713 1714 1715 1716 1717 1718
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1719
static struct notifier_block __cpuinitdata hrtimers_nb = {
1720 1721 1722 1723 1724 1725 1726 1727
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1728 1729 1730
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1731 1732
}

1733
/**
1734
 * schedule_hrtimeout_range - sleep until timeout
1735
 * @expires:	timeout value (ktime_t)
1736
 * @delta:	slack in expires timeout (ktime_t)
1737 1738 1739 1740 1741 1742
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
1743 1744 1745 1746 1747
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1761
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
			       const enum hrtimer_mode mode)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1785
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1786 1787 1788

	hrtimer_init_sleeper(&t, current);

1789
	hrtimer_start_expires(&t.timer, mode);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1832
EXPORT_SYMBOL_GPL(schedule_hrtimeout);