hrtimer.c 46.0 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50

#include <asm/uaccess.h>

51 52
#include <trace/events/timer.h>

53 54
/*
 * The timer bases:
55 56 57 58 59 60
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
61
 */
62
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63
{
64 65

	.clock_base =
66
	{
67 68 69
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
70
			.resolution = KTIME_LOW_RES,
71 72 73 74
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
75
			.resolution = KTIME_LOW_RES,
76 77
		},
	}
78 79
};

80 81 82 83
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
84
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
85 86
{
	ktime_t xtim, tomono;
87
	struct timespec xts, tom;
88 89 90 91
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
92
		xts = __current_kernel_time();
93
		tom = __get_wall_to_monotonic();
94 95
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
96
	xtim = timespec_to_ktime(xts);
97
	tomono = timespec_to_ktime(tom);
98 99 100
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
101 102
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
121 122 123
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
124
{
125
	struct hrtimer_clock_base *base;
126 127 128 129

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
130
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 132 133
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
134
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
135 136 137 138 139
		}
		cpu_relax();
	}
}

140 141 142 143 144 145 146

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
147 148
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
		return get_nohz_timer_target();
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

176 177 178
/*
 * Switch the timer base to the current CPU when possible.
 */
179
static inline struct hrtimer_clock_base *
180 181
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
182
{
183 184
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
185 186
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
187

188 189
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
190
	new_base = &new_cpu_base->clock_base[base->index];
191 192 193

	if (base != new_base) {
		/*
194
		 * We are trying to move timer to new_base.
195 196 197 198 199 200 201
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
202
		if (unlikely(hrtimer_callback_running(timer)))
203 204 205 206
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
207 208
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
209

210 211
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
212 213
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
214 215
			timer->base = base;
			goto again;
216
		}
217 218 219 220 221 222 223
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

224
static inline struct hrtimer_clock_base *
225 226
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
227
	struct hrtimer_clock_base *base = timer->base;
228

229
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
230 231 232 233

	return base;
}

234
# define switch_hrtimer_base(t, b, p)	(b)
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
265 266

EXPORT_SYMBOL_GPL(ktime_add_ns);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
291 292 293 294 295
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
296
u64 ktime_divns(const ktime_t kt, s64 div)
297
{
298
	u64 dclc;
299 300
	int sft = 0;

301
	dclc = ktime_to_ns(kt);
302 303 304 305 306 307 308 309
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
310
	return dclc;
311 312 313
}
#endif /* BITS_PER_LONG >= 64 */

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

331 332
EXPORT_SYMBOL_GPL(ktime_add_safe);

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
430
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
431 432 433 434 435 436 437 438 439 440 441 442

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
508 509
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
510 511 512
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
513
	ktime_t expires, expires_next;
514

515
	expires_next.tv64 = KTIME_MAX;
516 517 518 519 520 521 522

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
523
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
524 525 526 527 528 529 530
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
531 532
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
533 534
	}

535 536 537 538 539
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
556
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
557
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
558 559
	int res;

560
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
561

562 563 564
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
565
	 * the callback is executed in the hrtimer_interrupt context. The
566 567 568 569 570 571
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

572 573 574 575 576 577 578 579 580
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

581 582 583 584 585 586 587 588 589 590
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
591 592 593 594 595 596 597
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
598
		cpu_base->expires_next = expires;
599 600 601 602 603 604 605 606 607 608 609 610
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
611
	struct timespec realtime_offset, wtm;
612 613 614 615 616 617 618
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
619
		wtm = __get_wall_to_monotonic();
620
	} while (read_seqretry(&xtime_lock, seq));
621
	set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
622 623 624 625

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
626
	raw_spin_lock(&base->lock);
627 628 629
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

630
	hrtimer_force_reprogram(base, 0);
631
	raw_spin_unlock(&base->lock);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
648
	on_each_cpu(retrigger_next_event, NULL, 1);
649 650
}

651 652 653 654 655 656
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
657 658 659
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

660 661 662
	retrigger_next_event(NULL);
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

679

680 681 682 683 684 685 686
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
687 688
					    struct hrtimer_clock_base *base,
					    int wakeup)
689 690
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
691
		if (wakeup) {
692
			raw_spin_unlock(&base->cpu_base->lock);
693
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
694
			raw_spin_lock(&base->cpu_base->lock);
695 696 697
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

698
		return 1;
699
	}
700

701 702 703 704 705 706
	return 0;
}

/*
 * Switch to high resolution mode
 */
707
static int hrtimer_switch_to_hres(void)
708
{
I
Ingo Molnar 已提交
709 710
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
711 712 713
	unsigned long flags;

	if (base->hres_active)
714
		return 1;
715 716 717 718 719

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
720 721
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
722
		return 0;
723 724 725 726 727 728 729 730 731 732
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
733
	return 1;
734 735 736 737 738 739
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
740
static inline int hrtimer_switch_to_hres(void) { return 0; }
741 742
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
743
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
744 745
					    struct hrtimer_clock_base *base,
					    int wakeup)
746 747 748 749 750 751 752 753
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

754
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
755
{
756
#ifdef CONFIG_TIMER_STATS
757 758
	if (timer->start_site)
		return;
759
	timer->start_site = __builtin_return_address(0);
760 761
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
762 763 764 765 766 767 768 769
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
770
}
771 772 773 774 775 776 777 778

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
779
#endif
780
}
781

782
/*
783
 * Counterpart to lock_hrtimer_base above:
784 785 786 787
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
788
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
789 790 791 792 793
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
794
 * @now:	forward past this time
795 796 797
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
798
 * Returns the number of overruns.
799
 */
D
Davide Libenzi 已提交
800
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
801
{
D
Davide Libenzi 已提交
802
	u64 orun = 1;
803
	ktime_t delta;
804

805
	delta = ktime_sub(now, hrtimer_get_expires(timer));
806 807 808 809

	if (delta.tv64 < 0)
		return 0;

810 811 812
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

813
	if (unlikely(delta.tv64 >= interval.tv64)) {
814
		s64 incr = ktime_to_ns(interval);
815 816

		orun = ktime_divns(delta, incr);
817 818
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
819 820 821 822 823 824 825
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
826
	hrtimer_add_expires(timer, interval);
827 828 829

	return orun;
}
S
Stas Sergeev 已提交
830
EXPORT_SYMBOL_GPL(hrtimer_forward);
831 832 833 834 835 836

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
837 838
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
839
 */
840 841
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
842 843 844 845
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
846
	int leftmost = 1;
847

848
	debug_activate(timer);
849

850 851 852 853 854 855 856 857 858 859
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
860 861
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
862
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
863
		} else {
864
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
865 866
			leftmost = 0;
		}
867 868 869
	}

	/*
870 871
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
872
	 */
873
	if (leftmost)
874 875
		base->first = &timer->node;

876 877
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
878 879 880 881 882
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
883 884

	return leftmost;
885
}
886 887 888 889 890

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
891 892 893 894 895
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
896
 */
897
static void __remove_hrtimer(struct hrtimer *timer,
898
			     struct hrtimer_clock_base *base,
899
			     unsigned long newstate, int reprogram)
900
{
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

	/*
	 * Remove the timer from the rbtree and replace the first
	 * entry pointer if necessary.
	 */
	if (base->first == &timer->node) {
		base->first = rb_next(&timer->node);
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
919
		}
920
#endif
921
	}
922 923
	rb_erase(&timer->node, &base->active);
out:
924
	timer->state = newstate;
925 926 927 928 929 930
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
931
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
932
{
933
	if (hrtimer_is_queued(timer)) {
934
		unsigned long state;
935 936 937 938 939 940 941 942 943 944
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
945
		debug_deactivate(timer);
946
		timer_stats_hrtimer_clear_start_info(timer);
947
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
948 949 950 951 952 953 954
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
955 956 957 958 959
		return 1;
	}
	return 0;
}

960 961 962
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
963
{
964
	struct hrtimer_clock_base *base, *new_base;
965
	unsigned long flags;
966
	int ret, leftmost;
967 968 969 970 971 972 973

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
974
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
975

976
	if (mode & HRTIMER_MODE_REL) {
977
		tim = ktime_add_safe(tim, new_base->get_time());
978 979 980 981 982 983 984 985
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
986
		tim = ktime_add_safe(tim, base->resolution);
987 988
#endif
	}
989

990
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
991

992 993
	timer_stats_hrtimer_set_start_info(timer);

994 995
	leftmost = enqueue_hrtimer(timer, new_base);

996 997 998
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
999 1000
	 *
	 * XXX send_remote_softirq() ?
1001
	 */
1002
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
1003
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
1004 1005 1006 1007 1008

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1026 1027 1028
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1029
 * hrtimer_start - (re)start an hrtimer on the current CPU
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1041
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1042
}
1043
EXPORT_SYMBOL_GPL(hrtimer_start);
1044

1045

1046 1047 1048 1049 1050 1051 1052 1053
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1054
 *    cannot be stopped
1055 1056 1057
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1058
	struct hrtimer_clock_base *base;
1059 1060 1061 1062 1063
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1064
	if (!hrtimer_callback_running(timer))
1065 1066 1067 1068 1069 1070 1071
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1072
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1089
		cpu_relax();
1090 1091
	}
}
1092
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1103
	lock_hrtimer_base(timer, &flags);
1104
	rem = hrtimer_expires_remaining(timer);
1105 1106 1107 1108
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1109
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1110

1111
#ifdef CONFIG_NO_HZ
1112 1113 1114 1115 1116 1117 1118 1119
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1120 1121
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1122 1123 1124 1125
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1126
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1127

1128 1129 1130
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1131

1132 1133
			if (!base->first)
				continue;
1134

1135
			timer = rb_entry(base->first, struct hrtimer, node);
1136
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1137 1138 1139 1140
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1141
	}
1142

1143
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1144

1145 1146 1147 1148 1149 1150
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1151 1152
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1153
{
1154
	struct hrtimer_cpu_base *cpu_base;
1155

1156 1157
	memset(timer, 0, sizeof(struct hrtimer));

1158
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1159

1160
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1161 1162
		clock_id = CLOCK_MONOTONIC;

1163
	timer->base = &cpu_base->clock_base[clock_id];
1164
	hrtimer_init_timer_hres(timer);
1165 1166 1167 1168 1169 1170

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1171
}
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1182
	debug_init(timer, clock_id, mode);
1183 1184
	__hrtimer_init(timer, clock_id, mode);
}
1185
EXPORT_SYMBOL_GPL(hrtimer_init);
1186 1187 1188 1189 1190 1191

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1192 1193
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1194 1195 1196
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1197
	struct hrtimer_cpu_base *cpu_base;
1198

1199 1200
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1201 1202 1203

	return 0;
}
1204
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1205

1206
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1207 1208 1209 1210 1211 1212
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1213 1214
	WARN_ON(!irqs_disabled());

1215
	debug_deactivate(timer);
1216 1217 1218
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1219 1220 1221 1222 1223 1224

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1225
	raw_spin_unlock(&cpu_base->lock);
1226
	trace_hrtimer_expire_entry(timer, now);
1227
	restart = fn(timer);
1228
	trace_hrtimer_expire_exit(timer);
1229
	raw_spin_lock(&cpu_base->lock);
1230 1231

	/*
T
Thomas Gleixner 已提交
1232 1233 1234
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1235 1236 1237
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1238
		enqueue_hrtimer(timer, base);
1239
	}
1240 1241 1242

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1243 1244 1245
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
1256 1257
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1258 1259 1260 1261 1262

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1263 1264
	entry_time = now = ktime_get();
retry:
1265 1266
	expires_next.tv64 = KTIME_MAX;

1267
	raw_spin_lock(&cpu_base->lock);
1268 1269 1270 1271 1272 1273 1274 1275 1276
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1304 1305
				ktime_t expires;

1306
				expires = ktime_sub(hrtimer_get_expires(timer),
1307 1308 1309 1310 1311 1312
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1313
			__run_hrtimer(timer, &basenow);
1314 1315 1316 1317
		}
		base++;
	}

1318 1319 1320 1321
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1322
	cpu_base->expires_next = expires_next;
1323
	raw_spin_unlock(&cpu_base->lock);
1324 1325

	/* Reprogramming necessary ? */
1326 1327 1328 1329
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1330
	}
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
	 */
	now = ktime_get();
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1397
	unsigned long flags;
1398

1399
	local_irq_save(flags);
1400
	__hrtimer_peek_ahead_timers();
1401 1402 1403
	local_irq_restore(flags);
}

1404 1405 1406 1407 1408
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1409 1410 1411 1412 1413
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1414

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1437 1438
}

1439
/*
1440
 * Called from hardirq context every jiffy
1441
 */
1442
void hrtimer_run_queues(void)
1443
{
1444
	struct rb_node *node;
1445 1446 1447
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1448

1449
	if (hrtimer_hres_active())
1450 1451
		return;

1452 1453
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1454

1455
		if (!base->first)
1456
			continue;
1457

1458
		if (gettime) {
1459 1460
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1461
		}
1462

1463
		raw_spin_lock(&cpu_base->lock);
1464

1465 1466
		while ((node = base->first)) {
			struct hrtimer *timer;
1467

1468
			timer = rb_entry(node, struct hrtimer, node);
1469 1470
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1471 1472
				break;

1473
			__run_hrtimer(timer, &base->softirq_time);
1474
		}
1475
		raw_spin_unlock(&cpu_base->lock);
1476
	}
1477 1478
}

1479 1480 1481
/*
 * Sleep related functions:
 */
1482
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1495
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1496 1497 1498 1499
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1500
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1501

1502
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1503
{
1504
	hrtimer_init_sleeper(t, current);
1505

1506 1507
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1508
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1509 1510
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1511

1512 1513
		if (likely(t->task))
			schedule();
1514

1515
		hrtimer_cancel(&t->timer);
1516
		mode = HRTIMER_MODE_ABS;
1517 1518

	} while (t->task && !signal_pending(current));
1519

1520 1521
	__set_current_state(TASK_RUNNING);

1522
	return t->task == NULL;
1523 1524
}

1525 1526 1527 1528 1529
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1530
	rem = hrtimer_expires_remaining(timer);
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1541
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1542
{
1543
	struct hrtimer_sleeper t;
1544
	struct timespec __user  *rmtp;
1545
	int ret = 0;
1546

1547 1548
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1549
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1550

1551
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1552
		goto out;
1553

1554
	rmtp = restart->nanosleep.rmtp;
1555
	if (rmtp) {
1556
		ret = update_rmtp(&t.timer, rmtp);
1557
		if (ret <= 0)
1558
			goto out;
1559
	}
1560 1561

	/* The other values in restart are already filled in */
1562 1563 1564 1565
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1566 1567
}

1568
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1569 1570 1571
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1572
	struct hrtimer_sleeper t;
1573
	int ret = 0;
1574 1575 1576 1577 1578
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1579

1580
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1581
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1582
	if (do_nanosleep(&t, mode))
1583
		goto out;
1584

1585
	/* Absolute timers do not update the rmtp value and restart: */
1586 1587 1588 1589
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1590

1591
	if (rmtp) {
1592
		ret = update_rmtp(&t.timer, rmtp);
1593
		if (ret <= 0)
1594
			goto out;
1595
	}
1596 1597

	restart = &current_thread_info()->restart_block;
1598
	restart->fn = hrtimer_nanosleep_restart;
1599 1600
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1601
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1602

1603 1604 1605 1606
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1607 1608
}

1609 1610
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1611
{
1612
	struct timespec tu;
1613 1614 1615 1616 1617 1618 1619

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1620
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1621 1622
}

1623 1624 1625
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1626
static void __cpuinit init_hrtimers_cpu(int cpu)
1627
{
1628
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1629 1630
	int i;

1631
	raw_spin_lock_init(&cpu_base->lock);
1632 1633 1634 1635

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1636
	hrtimer_init_hres(cpu_base);
1637 1638 1639 1640
}

#ifdef CONFIG_HOTPLUG_CPU

1641
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1642
				struct hrtimer_clock_base *new_base)
1643 1644 1645 1646 1647 1648
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1649
		BUG_ON(hrtimer_callback_running(timer));
1650
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1651 1652 1653 1654 1655 1656 1657

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1658
		timer->base = new_base;
1659
		/*
T
Thomas Gleixner 已提交
1660 1661 1662 1663 1664 1665
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1666
		 */
1667
		enqueue_hrtimer(timer, new_base);
1668

T
Thomas Gleixner 已提交
1669 1670
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1671 1672 1673
	}
}

1674
static void migrate_hrtimers(int scpu)
1675
{
1676
	struct hrtimer_cpu_base *old_base, *new_base;
1677
	int i;
1678

1679 1680
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1681 1682 1683 1684

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1685 1686 1687 1688
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1689 1690
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1691

1692
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1693
		migrate_hrtimer_list(&old_base->clock_base[i],
1694
				     &new_base->clock_base[i]);
1695 1696
	}

1697 1698
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1699

1700 1701 1702
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1703
}
1704

1705 1706
#endif /* CONFIG_HOTPLUG_CPU */

1707
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1708 1709
					unsigned long action, void *hcpu)
{
1710
	int scpu = (long)hcpu;
1711 1712 1713 1714

	switch (action) {

	case CPU_UP_PREPARE:
1715
	case CPU_UP_PREPARE_FROZEN:
1716
		init_hrtimers_cpu(scpu);
1717 1718 1719
		break;

#ifdef CONFIG_HOTPLUG_CPU
1720 1721 1722 1723
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1724
	case CPU_DEAD:
1725
	case CPU_DEAD_FROZEN:
1726
	{
1727
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1728
		migrate_hrtimers(scpu);
1729
		break;
1730
	}
1731 1732 1733 1734 1735 1736 1737 1738 1739
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1740
static struct notifier_block __cpuinitdata hrtimers_nb = {
1741 1742 1743 1744 1745 1746 1747 1748
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1749 1750 1751
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1752 1753
}

1754
/**
1755
 * schedule_hrtimeout_range_clock - sleep until timeout
1756
 * @expires:	timeout value (ktime_t)
1757
 * @delta:	slack in expires timeout (ktime_t)
1758
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1759
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1760
 */
1761 1762 1763
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1785
	hrtimer_init_on_stack(&t.timer, clock, mode);
1786
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1787 1788 1789

	hrtimer_init_sleeper(&t, current);

1790
	hrtimer_start_expires(&t.timer, mode);
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1868
EXPORT_SYMBOL_GPL(schedule_hrtimeout);