hrtimer.c 44.5 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50

#include <asm/uaccess.h>

51 52
#include <trace/events/timer.h>

53 54
/*
 * The timer bases:
55 56 57 58 59 60
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
61
 */
62
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63
{
64 65

	.clock_base =
66
	{
67 68 69
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
70
			.resolution = KTIME_LOW_RES,
71 72 73 74
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
75
			.resolution = KTIME_LOW_RES,
76 77
		},
	}
78 79
};

80 81 82 83
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
84
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
85 86
{
	ktime_t xtim, tomono;
87
	struct timespec xts, tom;
88 89 90 91
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
92
		xts = current_kernel_time();
93
		tom = wall_to_monotonic;
94 95
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
96
	xtim = timespec_to_ktime(xts);
97
	tomono = timespec_to_ktime(tom);
98 99 100
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
101 102
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
121 122 123
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
124
{
125
	struct hrtimer_clock_base *base;
126 127 128 129

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
130
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 132 133
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
134
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
135 136 137 138 139
		}
		cpu_relax();
	}
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
		int preferred_cpu = get_nohz_load_balancer();

		if (preferred_cpu >= 0)
			return preferred_cpu;
	}
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

180 181 182
/*
 * Switch the timer base to the current CPU when possible.
 */
183
static inline struct hrtimer_clock_base *
184 185
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
186
{
187 188
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
189 190
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
191

192 193
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
194
	new_base = &new_cpu_base->clock_base[base->index];
195 196 197

	if (base != new_base) {
		/*
198
		 * We are trying to move timer to new_base.
199 200 201 202 203 204 205
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
206
		if (unlikely(hrtimer_callback_running(timer)))
207 208 209 210
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
211 212
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
213

214 215 216 217 218 219
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			spin_unlock(&new_base->cpu_base->lock);
			spin_lock(&base->cpu_base->lock);
			timer->base = base;
			goto again;
220
		}
221 222 223 224 225 226 227
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

228
static inline struct hrtimer_clock_base *
229 230
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
231
	struct hrtimer_clock_base *base = timer->base;
232

233
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
234 235 236 237

	return base;
}

238
# define switch_hrtimer_base(t, b, p)	(b)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
269 270

EXPORT_SYMBOL_GPL(ktime_add_ns);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
295 296 297 298 299
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
300
u64 ktime_divns(const ktime_t kt, s64 div)
301
{
302
	u64 dclc;
303 304
	int sft = 0;

305
	dclc = ktime_to_ns(kt);
306 307 308 309 310 311 312 313
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
314
	return dclc;
315 316 317
}
#endif /* BITS_PER_LONG >= 64 */

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

335 336
EXPORT_SYMBOL_GPL(ktime_add_safe);

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
434
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
435 436 437 438 439 440 441 442 443 444 445 446

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
512 513
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
514 515 516
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
517
	ktime_t expires, expires_next;
518

519
	expires_next.tv64 = KTIME_MAX;
520 521 522 523 524 525 526

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
527
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
528 529 530 531 532 533 534
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
535 536
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
537 538
	}

539 540 541 542 543
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
561
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
562 563
	int res;

564
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
565

566 567 568
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
569
	 * the callback is executed in the hrtimer_interrupt context. The
570 571 572 573 574 575
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

576 577 578 579 580 581 582 583 584
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

626
	hrtimer_force_reprogram(base, 0);
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
644
	on_each_cpu(retrigger_next_event, NULL, 1);
645 646
}

647 648 649 650 651 652
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
653 654 655
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

656 657 658
	retrigger_next_event(NULL);
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

675

676 677 678 679 680 681 682
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
683 684
					    struct hrtimer_clock_base *base,
					    int wakeup)
685 686
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
687 688 689 690 691 692 693
		if (wakeup) {
			spin_unlock(&base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			spin_lock(&base->cpu_base->lock);
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

694
		return 1;
695
	}
696

697 698 699 700 701 702
	return 0;
}

/*
 * Switch to high resolution mode
 */
703
static int hrtimer_switch_to_hres(void)
704
{
I
Ingo Molnar 已提交
705 706
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
707 708 709
	unsigned long flags;

	if (base->hres_active)
710
		return 1;
711 712 713 714 715

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
716 717
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
718
		return 0;
719 720 721 722 723 724 725 726 727 728
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
729
	return 1;
730 731 732 733 734 735
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
736
static inline int hrtimer_switch_to_hres(void) { return 0; }
737 738
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
739
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
740 741
					    struct hrtimer_clock_base *base,
					    int wakeup)
742 743 744 745 746 747 748 749
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

750 751 752 753 754 755 756 757 758 759 760 761
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

762
/*
763
 * Counterpart to lock_hrtimer_base above:
764 765 766 767
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
768
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
769 770 771 772 773
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
774
 * @now:	forward past this time
775 776 777
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
778
 * Returns the number of overruns.
779
 */
D
Davide Libenzi 已提交
780
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
781
{
D
Davide Libenzi 已提交
782
	u64 orun = 1;
783
	ktime_t delta;
784

785
	delta = ktime_sub(now, hrtimer_get_expires(timer));
786 787 788 789

	if (delta.tv64 < 0)
		return 0;

790 791 792
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

793
	if (unlikely(delta.tv64 >= interval.tv64)) {
794
		s64 incr = ktime_to_ns(interval);
795 796

		orun = ktime_divns(delta, incr);
797 798
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
799 800 801 802 803 804 805
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
806
	hrtimer_add_expires(timer, interval);
807 808 809

	return orun;
}
S
Stas Sergeev 已提交
810
EXPORT_SYMBOL_GPL(hrtimer_forward);
811 812 813 814 815 816

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
817 818
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
819
 */
820 821
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
822 823 824 825
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
826
	int leftmost = 1;
827

828
	debug_activate(timer);
829

830 831 832 833 834 835 836 837 838 839
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
840 841
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
842
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
843
		} else {
844
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
845 846
			leftmost = 0;
		}
847 848 849
	}

	/*
850 851
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
852
	 */
853
	if (leftmost)
854 855
		base->first = &timer->node;

856 857
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
858 859 860 861 862
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
863 864

	return leftmost;
865
}
866 867 868 869 870

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
871 872 873 874 875
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
876
 */
877
static void __remove_hrtimer(struct hrtimer *timer,
878
			     struct hrtimer_clock_base *base,
879
			     unsigned long newstate, int reprogram)
880
{
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

	/*
	 * Remove the timer from the rbtree and replace the first
	 * entry pointer if necessary.
	 */
	if (base->first == &timer->node) {
		base->first = rb_next(&timer->node);
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
899
		}
900
#endif
901
	}
902 903
	rb_erase(&timer->node, &base->active);
out:
904
	timer->state = newstate;
905 906 907 908 909 910
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
911
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
912
{
913
	if (hrtimer_is_queued(timer)) {
914 915 916 917 918 919 920 921 922 923
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
924
		debug_deactivate(timer);
925
		timer_stats_hrtimer_clear_start_info(timer);
926 927 928
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
929 930 931 932 933
		return 1;
	}
	return 0;
}

934 935 936
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
937
{
938
	struct hrtimer_clock_base *base, *new_base;
939
	unsigned long flags;
940
	int ret, leftmost;
941 942 943 944 945 946 947

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
948
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
949

950
	if (mode & HRTIMER_MODE_REL) {
951
		tim = ktime_add_safe(tim, new_base->get_time());
952 953 954 955 956 957 958 959
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
960
		tim = ktime_add_safe(tim, base->resolution);
961 962
#endif
	}
963

964
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
965

966 967
	timer_stats_hrtimer_set_start_info(timer);

968 969
	leftmost = enqueue_hrtimer(timer, new_base);

970 971 972
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
973 974
	 *
	 * XXX send_remote_softirq() ?
975
	 */
976
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
977
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
978 979 980 981 982

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1000 1001 1002
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1003
 * hrtimer_start - (re)start an hrtimer on the current CPU
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1015
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1016
}
1017
EXPORT_SYMBOL_GPL(hrtimer_start);
1018

1019

1020 1021 1022 1023 1024 1025 1026 1027
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1028
 *    cannot be stopped
1029 1030 1031
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1032
	struct hrtimer_clock_base *base;
1033 1034 1035 1036 1037
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1038
	if (!hrtimer_callback_running(timer))
1039 1040 1041 1042 1043 1044 1045
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1046
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1063
		cpu_relax();
1064 1065
	}
}
1066
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1067 1068 1069 1070 1071 1072 1073

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1074
	struct hrtimer_clock_base *base;
1075 1076 1077 1078
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1079
	rem = hrtimer_expires_remaining(timer);
1080 1081 1082 1083
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1084
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1085

1086
#ifdef CONFIG_NO_HZ
1087 1088 1089 1090 1091 1092 1093 1094
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1095 1096
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1097 1098 1099 1100
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1101 1102
	spin_lock_irqsave(&cpu_base->lock, flags);

1103 1104 1105
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1106

1107 1108
			if (!base->first)
				continue;
1109

1110
			timer = rb_entry(base->first, struct hrtimer, node);
1111
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1112 1113 1114 1115
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1116
	}
1117 1118 1119

	spin_unlock_irqrestore(&cpu_base->lock, flags);

1120 1121 1122 1123 1124 1125
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1126 1127
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1128
{
1129
	struct hrtimer_cpu_base *cpu_base;
1130

1131 1132
	memset(timer, 0, sizeof(struct hrtimer));

1133
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1134

1135
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1136 1137
		clock_id = CLOCK_MONOTONIC;

1138
	timer->base = &cpu_base->clock_base[clock_id];
1139
	hrtimer_init_timer_hres(timer);
1140 1141 1142 1143 1144 1145

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1146
}
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1157
	debug_init(timer, clock_id, mode);
1158 1159
	__hrtimer_init(timer, clock_id, mode);
}
1160
EXPORT_SYMBOL_GPL(hrtimer_init);
1161 1162 1163 1164 1165 1166

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1167 1168
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1169 1170 1171
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1172
	struct hrtimer_cpu_base *cpu_base;
1173

1174 1175
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1176 1177 1178

	return 0;
}
1179
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1180

1181
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1182 1183 1184 1185 1186 1187
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1188 1189
	WARN_ON(!irqs_disabled());

1190
	debug_deactivate(timer);
1191 1192 1193
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1194 1195 1196 1197 1198 1199 1200

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
	spin_unlock(&cpu_base->lock);
1201
	trace_hrtimer_expire_entry(timer, now);
1202
	restart = fn(timer);
1203
	trace_hrtimer_expire_exit(timer);
1204
	spin_lock(&cpu_base->lock);
1205 1206

	/*
T
Thomas Gleixner 已提交
1207 1208 1209
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1210 1211 1212
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1213
		enqueue_hrtimer(timer, base);
1214 1215 1216 1217
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1218 1219
#ifdef CONFIG_HIGH_RES_TIMERS

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
static int force_clock_reprogram;

/*
 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
 * is hanging, which could happen with something that slows the interrupt
 * such as the tracing. Then we force the clock reprogramming for each future
 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
 * threshold that we will overwrite.
 * The next tick event will be scheduled to 3 times we currently spend on
 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
 * 1/4 of their time to process the hrtimer interrupts. This is enough to
 * let it running without serious starvation.
 */

static inline void
hrtimer_interrupt_hanging(struct clock_event_device *dev,
			ktime_t try_time)
{
	force_clock_reprogram = 1;
	dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
	printk(KERN_WARNING "hrtimer: interrupt too slow, "
1241 1242
	       "forcing clock min delta to %llu ns\n",
	       (unsigned long long) dev->min_delta_ns);
1243
}
1244 1245 1246 1247 1248 1249 1250 1251 1252
/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
1253
	int nr_retries = 0;
1254
	int i;
1255 1256 1257 1258 1259 1260

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
1261 1262 1263 1264
	/* 5 retries is enough to notice a hang */
	if (!(++nr_retries % 5))
		hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));

1265 1266 1267 1268
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	spin_lock(&cpu_base->lock);
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1306 1307
				ktime_t expires;

1308
				expires = ktime_sub(hrtimer_get_expires(timer),
1309 1310 1311 1312 1313 1314
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1315
			__run_hrtimer(timer, &basenow);
1316 1317 1318 1319
		}
		base++;
	}

1320 1321 1322 1323
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1324
	cpu_base->expires_next = expires_next;
1325
	spin_unlock(&cpu_base->lock);
1326 1327 1328

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
1329
		if (tick_program_event(expires_next, force_clock_reprogram))
1330 1331 1332 1333
			goto retry;
	}
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1361
	unsigned long flags;
1362

1363
	local_irq_save(flags);
1364
	__hrtimer_peek_ahead_timers();
1365 1366 1367
	local_irq_restore(flags);
}

1368 1369 1370 1371 1372
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1373 1374 1375 1376 1377
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1378

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1390

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1401 1402
}

1403
/*
1404
 * Called from hardirq context every jiffy
1405
 */
1406
void hrtimer_run_queues(void)
1407
{
1408
	struct rb_node *node;
1409 1410 1411
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1412

1413
	if (hrtimer_hres_active())
1414 1415
		return;

1416 1417
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1418

1419
		if (!base->first)
1420
			continue;
1421

1422
		if (gettime) {
1423 1424
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1425
		}
1426

1427
		spin_lock(&cpu_base->lock);
1428

1429 1430
		while ((node = base->first)) {
			struct hrtimer *timer;
1431

1432
			timer = rb_entry(node, struct hrtimer, node);
1433 1434
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1435 1436
				break;

1437
			__run_hrtimer(timer, &base->softirq_time);
1438 1439 1440
		}
		spin_unlock(&cpu_base->lock);
	}
1441 1442
}

1443 1444 1445
/*
 * Sleep related functions:
 */
1446
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1459
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1460 1461 1462 1463
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1464
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1465

1466
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1467
{
1468
	hrtimer_init_sleeper(t, current);
1469

1470 1471
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1472
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1473 1474
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1475

1476 1477
		if (likely(t->task))
			schedule();
1478

1479
		hrtimer_cancel(&t->timer);
1480
		mode = HRTIMER_MODE_ABS;
1481 1482

	} while (t->task && !signal_pending(current));
1483

1484 1485
	__set_current_state(TASK_RUNNING);

1486
	return t->task == NULL;
1487 1488
}

1489 1490 1491 1492 1493
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1494
	rem = hrtimer_expires_remaining(timer);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1505
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1506
{
1507
	struct hrtimer_sleeper t;
1508
	struct timespec __user  *rmtp;
1509
	int ret = 0;
1510

1511 1512
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1513
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1514

1515
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1516
		goto out;
1517

1518
	rmtp = restart->nanosleep.rmtp;
1519
	if (rmtp) {
1520
		ret = update_rmtp(&t.timer, rmtp);
1521
		if (ret <= 0)
1522
			goto out;
1523
	}
1524 1525

	/* The other values in restart are already filled in */
1526 1527 1528 1529
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1530 1531
}

1532
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1533 1534 1535
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1536
	struct hrtimer_sleeper t;
1537
	int ret = 0;
1538 1539 1540 1541 1542
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1543

1544
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1545
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1546
	if (do_nanosleep(&t, mode))
1547
		goto out;
1548

1549
	/* Absolute timers do not update the rmtp value and restart: */
1550 1551 1552 1553
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1554

1555
	if (rmtp) {
1556
		ret = update_rmtp(&t.timer, rmtp);
1557
		if (ret <= 0)
1558
			goto out;
1559
	}
1560 1561

	restart = &current_thread_info()->restart_block;
1562
	restart->fn = hrtimer_nanosleep_restart;
1563 1564
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1565
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1566

1567 1568 1569 1570
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1571 1572
}

1573 1574
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1575
{
1576
	struct timespec tu;
1577 1578 1579 1580 1581 1582 1583

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1584
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1585 1586
}

1587 1588 1589
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1590
static void __cpuinit init_hrtimers_cpu(int cpu)
1591
{
1592
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1593 1594
	int i;

1595 1596 1597 1598 1599
	spin_lock_init(&cpu_base->lock);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1600
	hrtimer_init_hres(cpu_base);
1601 1602 1603 1604
}

#ifdef CONFIG_HOTPLUG_CPU

1605
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1606
				struct hrtimer_clock_base *new_base)
1607 1608 1609 1610 1611 1612
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1613
		BUG_ON(hrtimer_callback_running(timer));
1614
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1615 1616 1617 1618 1619 1620 1621

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1622
		timer->base = new_base;
1623
		/*
T
Thomas Gleixner 已提交
1624 1625 1626 1627 1628 1629
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1630
		 */
1631
		enqueue_hrtimer(timer, new_base);
1632

T
Thomas Gleixner 已提交
1633 1634
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1635 1636 1637
	}
}

1638
static void migrate_hrtimers(int scpu)
1639
{
1640
	struct hrtimer_cpu_base *old_base, *new_base;
1641
	int i;
1642

1643 1644
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1645 1646 1647 1648

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1649 1650 1651 1652
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1653
	spin_lock(&new_base->lock);
1654
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1655

1656
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1657
		migrate_hrtimer_list(&old_base->clock_base[i],
1658
				     &new_base->clock_base[i]);
1659 1660
	}

1661
	spin_unlock(&old_base->lock);
1662
	spin_unlock(&new_base->lock);
1663

1664 1665 1666
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1667
}
1668

1669 1670
#endif /* CONFIG_HOTPLUG_CPU */

1671
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1672 1673
					unsigned long action, void *hcpu)
{
1674
	int scpu = (long)hcpu;
1675 1676 1677 1678

	switch (action) {

	case CPU_UP_PREPARE:
1679
	case CPU_UP_PREPARE_FROZEN:
1680
		init_hrtimers_cpu(scpu);
1681 1682 1683
		break;

#ifdef CONFIG_HOTPLUG_CPU
1684 1685 1686 1687
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1688
	case CPU_DEAD:
1689
	case CPU_DEAD_FROZEN:
1690
	{
1691
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1692
		migrate_hrtimers(scpu);
1693
		break;
1694
	}
1695 1696 1697 1698 1699 1700 1701 1702 1703
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1704
static struct notifier_block __cpuinitdata hrtimers_nb = {
1705 1706 1707 1708 1709 1710 1711 1712
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1713 1714 1715
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1716 1717
}

1718
/**
1719
 * schedule_hrtimeout_range - sleep until timeout
1720
 * @expires:	timeout value (ktime_t)
1721
 * @delta:	slack in expires timeout (ktime_t)
1722 1723 1724 1725 1726 1727
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
1728 1729 1730 1731 1732
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1746
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
			       const enum hrtimer_mode mode)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1770
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1771 1772 1773

	hrtimer_init_sleeper(&t, current);

1774
	hrtimer_start_expires(&t.timer, mode);
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1817
EXPORT_SYMBOL_GPL(schedule_hrtimeout);