hrtimer.c 43.1 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47 48 49 50 51 52 53

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
54
ktime_t ktime_get(void)
55 56 57 58 59 60 61
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
62
EXPORT_SYMBOL_GPL(ktime_get);
63 64 65 66 67 68

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
69
ktime_t ktime_get_real(void)
70 71 72 73 74 75 76 77 78 79 80 81
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
82 83 84 85 86 87
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
88
 */
89
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
90
{
91 92

	.clock_base =
93
	{
94 95 96
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
97
			.resolution = KTIME_LOW_RES,
98 99 100 101
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
102
			.resolution = KTIME_LOW_RES,
103 104
		},
	}
105 106 107 108 109 110 111 112
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
113
 * in normalized timespec format in the variable pointed to by @ts.
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
130
EXPORT_SYMBOL_GPL(ktime_get_ts);
131

132 133 134 135
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
136
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
137 138
{
	ktime_t xtim, tomono;
139
	struct timespec xts, tom;
140 141 142 143
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
144
		xts = current_kernel_time();
145
		tom = wall_to_monotonic;
146 147
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
148
	xtim = timespec_to_ktime(xts);
149
	tomono = timespec_to_ktime(tom);
150 151 152
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
153 154
}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
173 174 175
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
176
{
177
	struct hrtimer_clock_base *base;
178 179 180 181

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
182
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
183 184 185
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
186
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
187 188 189 190 191 192 193 194
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
195
static inline struct hrtimer_clock_base *
196 197
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
198
{
199 200
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
201

202 203
	new_cpu_base = &__get_cpu_var(hrtimer_bases);
	new_base = &new_cpu_base->clock_base[base->index];
204 205 206 207 208 209 210 211 212 213 214

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
215
		if (unlikely(hrtimer_callback_running(timer)))
216 217 218 219
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
220 221
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
222 223 224 225 226 227 228
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

229
static inline struct hrtimer_clock_base *
230 231
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
232
	struct hrtimer_clock_base *base = timer->base;
233

234
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
235 236 237 238

	return base;
}

239
# define switch_hrtimer_base(t, b)	(b)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
270 271

EXPORT_SYMBOL_GPL(ktime_add_ns);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
296 297 298 299 300
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
301
u64 ktime_divns(const ktime_t kt, s64 div)
302
{
303
	u64 dclc;
304 305
	int sft = 0;

306
	dclc = ktime_to_ns(kt);
307 308 309 310 311 312 313 314
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
315
	return dclc;
316 317 318
}
#endif /* BITS_PER_LONG >= 64 */

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
504
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
505 506 507 508 509 510 511
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
533
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
534 535
	int res;

536
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
537

538 539 540
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
541
	 * the callback is executed in the hrtimer_interrupt context. The
542 543 544 545 546 547
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

548 549 550 551 552 553 554 555 556
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
616
	on_each_cpu(retrigger_next_event, NULL, 1);
617 618
}

619 620 621 622 623 624
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
625 626 627
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

628 629 630
	retrigger_next_event(NULL);
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

647

648 649 650 651 652 653 654
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
655 656
					    struct hrtimer_clock_base *base,
					    int wakeup)
657 658
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
659 660 661 662 663 664 665
		if (wakeup) {
			spin_unlock(&base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			spin_lock(&base->cpu_base->lock);
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

666
		return 1;
667
	}
668

669 670 671 672 673 674
	return 0;
}

/*
 * Switch to high resolution mode
 */
675
static int hrtimer_switch_to_hres(void)
676
{
I
Ingo Molnar 已提交
677 678
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
679 680 681
	unsigned long flags;

	if (base->hres_active)
682
		return 1;
683 684 685 686 687

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
688 689
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
690
		return 0;
691 692 693 694 695 696 697 698 699 700
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
701
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
702
	       smp_processor_id());
703
	return 1;
704 705 706 707 708 709
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
710
static inline int hrtimer_switch_to_hres(void) { return 0; }
711 712
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
713 714
					    struct hrtimer_clock_base *base,
					    int wakeup)
715 716 717 718 719 720 721 722
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

723 724 725 726 727 728 729 730 731 732 733 734
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

735
/*
736
 * Counterpart to lock_hrtimer_base above:
737 738 739 740
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
741
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
742 743 744 745 746
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
747
 * @now:	forward past this time
748 749 750
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
751
 * Returns the number of overruns.
752
 */
D
Davide Libenzi 已提交
753
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
754
{
D
Davide Libenzi 已提交
755
	u64 orun = 1;
756
	ktime_t delta;
757

758
	delta = ktime_sub(now, hrtimer_get_expires(timer));
759 760 761 762

	if (delta.tv64 < 0)
		return 0;

763 764 765
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

766
	if (unlikely(delta.tv64 >= interval.tv64)) {
767
		s64 incr = ktime_to_ns(interval);
768 769

		orun = ktime_divns(delta, incr);
770 771
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
772 773 774 775 776 777 778
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
779
	hrtimer_add_expires(timer, interval);
780 781 782

	return orun;
}
S
Stas Sergeev 已提交
783
EXPORT_SYMBOL_GPL(hrtimer_forward);
784 785 786 787 788 789

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
790 791
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
792
 */
793 794
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
795 796 797 798
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
799
	int leftmost = 1;
800

801 802
	debug_hrtimer_activate(timer);

803 804 805 806 807 808 809 810 811 812
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
813 814
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
815
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
816
		} else {
817
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
818 819
			leftmost = 0;
		}
820 821 822
	}

	/*
823 824
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
825
	 */
826
	if (leftmost)
827 828
		base->first = &timer->node;

829 830
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
831 832 833 834 835
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
836 837

	return leftmost;
838
}
839 840 841 842 843

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
844 845 846 847 848
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
849
 */
850
static void __remove_hrtimer(struct hrtimer *timer,
851
			     struct hrtimer_clock_base *base,
852
			     unsigned long newstate, int reprogram)
853
{
854
	if (timer->state & HRTIMER_STATE_ENQUEUED) {
855 856 857 858 859 860 861 862 863 864 865 866
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
867
	timer->state = newstate;
868 869 870 871 872 873
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
874
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
875
{
876
	if (hrtimer_is_queued(timer)) {
877 878 879 880 881 882 883 884 885 886
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
887
		debug_hrtimer_deactivate(timer);
888
		timer_stats_hrtimer_clear_start_info(timer);
889 890 891
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
892 893 894 895 896
		return 1;
	}
	return 0;
}

897 898 899
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
900
{
901
	struct hrtimer_clock_base *base, *new_base;
902
	unsigned long flags;
903
	int ret, leftmost;
904 905 906 907 908 909 910

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
911
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
912

913
	if (mode & HRTIMER_MODE_REL) {
914
		tim = ktime_add_safe(tim, new_base->get_time());
915 916 917 918 919 920 921 922
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
923
		tim = ktime_add_safe(tim, base->resolution);
924 925
#endif
	}
926

927
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
928

929 930
	timer_stats_hrtimer_set_start_info(timer);

931 932
	leftmost = enqueue_hrtimer(timer, new_base);

933 934 935
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
936 937
	 *
	 * XXX send_remote_softirq() ?
938
	 */
939
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
940
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
941 942 943 944 945

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
963 964 965
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
966
 * hrtimer_start - (re)start an hrtimer on the current CPU
967 968 969 970 971 972 973 974 975 976 977
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
978
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
979
}
980
EXPORT_SYMBOL_GPL(hrtimer_start);
981

982

983 984 985 986 987 988 989 990
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
991
 *    cannot be stopped
992 993 994
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
995
	struct hrtimer_clock_base *base;
996 997 998 999 1000
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1001
	if (!hrtimer_callback_running(timer))
1002 1003 1004 1005 1006 1007 1008
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1009
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1026
		cpu_relax();
1027 1028
	}
}
1029
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1030 1031 1032 1033 1034 1035 1036

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1037
	struct hrtimer_clock_base *base;
1038 1039 1040 1041
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1042
	rem = hrtimer_expires_remaining(timer);
1043 1044 1045 1046
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1047
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1048

1049
#ifdef CONFIG_NO_HZ
1050 1051 1052 1053 1054 1055 1056 1057
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1058 1059
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1060 1061 1062 1063
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1064 1065
	spin_lock_irqsave(&cpu_base->lock, flags);

1066 1067 1068
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1069

1070 1071
			if (!base->first)
				continue;
1072

1073
			timer = rb_entry(base->first, struct hrtimer, node);
1074
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1075 1076 1077 1078
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1079
	}
1080 1081 1082

	spin_unlock_irqrestore(&cpu_base->lock, flags);

1083 1084 1085 1086 1087 1088
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1089 1090
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1091
{
1092
	struct hrtimer_cpu_base *cpu_base;
1093

1094 1095
	memset(timer, 0, sizeof(struct hrtimer));

1096
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1097

1098
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1099 1100
		clock_id = CLOCK_MONOTONIC;

1101
	timer->base = &cpu_base->clock_base[clock_id];
1102
	INIT_LIST_HEAD(&timer->cb_entry);
1103
	hrtimer_init_timer_hres(timer);
1104 1105 1106 1107 1108 1109

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1110
}
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	__hrtimer_init(timer, clock_id, mode);
}
1124
EXPORT_SYMBOL_GPL(hrtimer_init);
1125 1126 1127 1128 1129 1130

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1131 1132
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1133 1134 1135
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1136
	struct hrtimer_cpu_base *cpu_base;
1137

1138 1139
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1140 1141 1142

	return 0;
}
1143
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1144

1145 1146 1147 1148 1149 1150 1151
static void __run_hrtimer(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1152 1153
	WARN_ON(!irqs_disabled());

1154
	debug_hrtimer_deactivate(timer);
1155 1156 1157
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1158 1159 1160 1161 1162 1163 1164 1165 1166

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
	spin_unlock(&cpu_base->lock);
	restart = fn(timer);
	spin_lock(&cpu_base->lock);
1167 1168

	/*
T
Thomas Gleixner 已提交
1169 1170 1171
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1172 1173 1174
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1175
		enqueue_hrtimer(timer, base);
1176 1177 1178 1179
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1180 1181
#ifdef CONFIG_HIGH_RES_TIMERS

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
static int force_clock_reprogram;

/*
 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
 * is hanging, which could happen with something that slows the interrupt
 * such as the tracing. Then we force the clock reprogramming for each future
 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
 * threshold that we will overwrite.
 * The next tick event will be scheduled to 3 times we currently spend on
 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
 * 1/4 of their time to process the hrtimer interrupts. This is enough to
 * let it running without serious starvation.
 */

static inline void
hrtimer_interrupt_hanging(struct clock_event_device *dev,
			ktime_t try_time)
{
	force_clock_reprogram = 1;
	dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
	printk(KERN_WARNING "hrtimer: interrupt too slow, "
		"forcing clock min delta to %lu ns\n", dev->min_delta_ns);
}
1205 1206 1207 1208 1209 1210 1211 1212 1213
/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
1214
	int nr_retries = 0;
1215
	int i;
1216 1217 1218 1219 1220 1221

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
1222 1223 1224 1225
	/* 5 retries is enough to notice a hang */
	if (!(++nr_retries % 5))
		hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1259 1260
				ktime_t expires;

1261
				expires = ktime_sub(hrtimer_get_expires(timer),
1262 1263 1264 1265 1266 1267
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1268
			__run_hrtimer(timer);
1269 1270 1271 1272 1273 1274 1275 1276 1277
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
1278
		if (tick_program_event(expires_next, force_clock_reprogram))
1279 1280 1281 1282
			goto retry;
	}
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1310
	unsigned long flags;
1311

1312
	local_irq_save(flags);
1313
	__hrtimer_peek_ahead_timers();
1314 1315 1316
	local_irq_restore(flags);
}

1317 1318 1319 1320 1321
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1322 1323 1324 1325 1326
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1327

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1350 1351
}

1352
/*
1353
 * Called from hardirq context every jiffy
1354
 */
1355
void hrtimer_run_queues(void)
1356
{
1357
	struct rb_node *node;
1358 1359 1360
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1361

1362
	if (hrtimer_hres_active())
1363 1364
		return;

1365 1366
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1367

1368
		if (!base->first)
1369
			continue;
1370

1371
		if (gettime) {
1372 1373
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1374
		}
1375

1376
		spin_lock(&cpu_base->lock);
1377

1378 1379
		while ((node = base->first)) {
			struct hrtimer *timer;
1380

1381
			timer = rb_entry(node, struct hrtimer, node);
1382 1383
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1384 1385 1386 1387 1388 1389
				break;

			__run_hrtimer(timer);
		}
		spin_unlock(&cpu_base->lock);
	}
1390 1391
}

1392 1393 1394
/*
 * Sleep related functions:
 */
1395
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1408
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1409 1410 1411 1412 1413
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}

1414
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1415
{
1416
	hrtimer_init_sleeper(t, current);
1417

1418 1419
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1420
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1421 1422
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1423

1424 1425
		if (likely(t->task))
			schedule();
1426

1427
		hrtimer_cancel(&t->timer);
1428
		mode = HRTIMER_MODE_ABS;
1429 1430

	} while (t->task && !signal_pending(current));
1431

1432 1433
	__set_current_state(TASK_RUNNING);

1434
	return t->task == NULL;
1435 1436
}

1437 1438 1439 1440 1441
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1442
	rem = hrtimer_expires_remaining(timer);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1453
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1454
{
1455
	struct hrtimer_sleeper t;
1456
	struct timespec __user  *rmtp;
1457
	int ret = 0;
1458

1459 1460
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1461
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1462

1463
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1464
		goto out;
1465

1466
	rmtp = restart->nanosleep.rmtp;
1467
	if (rmtp) {
1468
		ret = update_rmtp(&t.timer, rmtp);
1469
		if (ret <= 0)
1470
			goto out;
1471
	}
1472 1473

	/* The other values in restart are already filled in */
1474 1475 1476 1477
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1478 1479
}

1480
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1481 1482 1483
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1484
	struct hrtimer_sleeper t;
1485
	int ret = 0;
1486 1487 1488 1489 1490
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1491

1492
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1493
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1494
	if (do_nanosleep(&t, mode))
1495
		goto out;
1496

1497
	/* Absolute timers do not update the rmtp value and restart: */
1498 1499 1500 1501
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1502

1503
	if (rmtp) {
1504
		ret = update_rmtp(&t.timer, rmtp);
1505
		if (ret <= 0)
1506
			goto out;
1507
	}
1508 1509

	restart = &current_thread_info()->restart_block;
1510
	restart->fn = hrtimer_nanosleep_restart;
1511 1512
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1513
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1514

1515 1516 1517 1518
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1519 1520
}

1521 1522
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1523
{
1524
	struct timespec tu;
1525 1526 1527 1528 1529 1530 1531

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1532
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1533 1534
}

1535 1536 1537
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1538
static void __cpuinit init_hrtimers_cpu(int cpu)
1539
{
1540
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1541 1542
	int i;

1543 1544 1545 1546 1547
	spin_lock_init(&cpu_base->lock);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1548
	hrtimer_init_hres(cpu_base);
1549 1550 1551 1552
}

#ifdef CONFIG_HOTPLUG_CPU

1553
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1554
				struct hrtimer_clock_base *new_base)
1555 1556 1557 1558 1559 1560
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1561
		BUG_ON(hrtimer_callback_running(timer));
1562
		debug_hrtimer_deactivate(timer);
T
Thomas Gleixner 已提交
1563 1564 1565 1566 1567 1568 1569

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1570
		timer->base = new_base;
1571
		/*
T
Thomas Gleixner 已提交
1572 1573 1574 1575 1576 1577
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1578
		 */
1579
		enqueue_hrtimer(timer, new_base);
1580

T
Thomas Gleixner 已提交
1581 1582
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1583 1584 1585
	}
}

1586
static void migrate_hrtimers(int scpu)
1587
{
1588
	struct hrtimer_cpu_base *old_base, *new_base;
1589
	int i;
1590

1591 1592
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1593 1594 1595 1596

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1597 1598 1599 1600
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1601
	spin_lock(&new_base->lock);
1602
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1603

1604
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1605
		migrate_hrtimer_list(&old_base->clock_base[i],
1606
				     &new_base->clock_base[i]);
1607 1608
	}

1609
	spin_unlock(&old_base->lock);
1610
	spin_unlock(&new_base->lock);
1611

1612 1613 1614
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1615
}
1616

1617 1618
#endif /* CONFIG_HOTPLUG_CPU */

1619
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1620 1621
					unsigned long action, void *hcpu)
{
1622
	int scpu = (long)hcpu;
1623 1624 1625 1626

	switch (action) {

	case CPU_UP_PREPARE:
1627
	case CPU_UP_PREPARE_FROZEN:
1628
		init_hrtimers_cpu(scpu);
1629 1630 1631
		break;

#ifdef CONFIG_HOTPLUG_CPU
1632 1633 1634 1635
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1636
	case CPU_DEAD:
1637
	case CPU_DEAD_FROZEN:
1638
	{
1639
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1640
		migrate_hrtimers(scpu);
1641
		break;
1642
	}
1643 1644 1645 1646 1647 1648 1649 1650 1651
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1652
static struct notifier_block __cpuinitdata hrtimers_nb = {
1653 1654 1655 1656 1657 1658 1659 1660
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1661 1662 1663
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1664 1665
}

1666
/**
1667
 * schedule_hrtimeout_range - sleep until timeout
1668
 * @expires:	timeout value (ktime_t)
1669
 * @delta:	slack in expires timeout (ktime_t)
1670 1671 1672 1673 1674 1675
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
1676 1677 1678 1679 1680
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1694
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
			       const enum hrtimer_mode mode)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1718
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1719 1720 1721

	hrtimer_init_sleeper(&t, current);

1722
	hrtimer_start_expires(&t.timer, mode);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1765
EXPORT_SYMBOL_GPL(schedule_hrtimeout);