hrtimer.c 45.8 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50

#include <asm/uaccess.h>

51 52
#include <trace/events/timer.h>

53 54
/*
 * The timer bases:
55 56 57 58 59 60
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
61
 */
62
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63
{
64 65

	.clock_base =
66
	{
67 68 69
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
70
			.resolution = KTIME_LOW_RES,
71 72 73 74
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
75
			.resolution = KTIME_LOW_RES,
76 77
		},
	}
78 79
};

80 81 82 83
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
84
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
85 86
{
	ktime_t xtim, tomono;
87
	struct timespec xts, tom;
88 89 90 91
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
92
		xts = __current_kernel_time();
93
		tom = __get_wall_to_monotonic();
94 95
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
96
	xtim = timespec_to_ktime(xts);
97
	tomono = timespec_to_ktime(tom);
98 99 100
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
101 102
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
121 122 123
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
124
{
125
	struct hrtimer_clock_base *base;
126 127 128 129

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
130
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 132 133
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
134
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
135 136 137 138 139
		}
		cpu_relax();
	}
}

140 141 142 143 144 145 146

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
147 148
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
		return get_nohz_timer_target();
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

176 177 178
/*
 * Switch the timer base to the current CPU when possible.
 */
179
static inline struct hrtimer_clock_base *
180 181
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
182
{
183 184
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
185 186
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
187

188 189
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
190
	new_base = &new_cpu_base->clock_base[base->index];
191 192 193

	if (base != new_base) {
		/*
194
		 * We are trying to move timer to new_base.
195 196 197 198 199 200 201
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
202
		if (unlikely(hrtimer_callback_running(timer)))
203 204 205 206
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
207 208
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
209

210 211
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
212 213
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
214 215
			timer->base = base;
			goto again;
216
		}
217 218 219 220 221 222 223
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

224
static inline struct hrtimer_clock_base *
225 226
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
227
	struct hrtimer_clock_base *base = timer->base;
228

229
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
230 231 232 233

	return base;
}

234
# define switch_hrtimer_base(t, b, p)	(b)
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
265 266

EXPORT_SYMBOL_GPL(ktime_add_ns);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
291 292 293 294 295
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
296
u64 ktime_divns(const ktime_t kt, s64 div)
297
{
298
	u64 dclc;
299 300
	int sft = 0;

301
	dclc = ktime_to_ns(kt);
302 303 304 305 306 307 308 309
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
310
	return dclc;
311 312 313
}
#endif /* BITS_PER_LONG >= 64 */

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

331 332
EXPORT_SYMBOL_GPL(ktime_add_safe);

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
430
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
431 432 433 434 435 436 437 438 439 440 441 442

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
508 509
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
510 511 512
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
513
	ktime_t expires, expires_next;
514

515
	expires_next.tv64 = KTIME_MAX;
516 517 518 519 520 521 522

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
523
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
524 525 526 527 528 529 530
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
531 532
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
533 534
	}

535 536 537 538 539
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
556
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
557
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
558 559
	int res;

560
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
561

562 563 564
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
565
	 * the callback is executed in the hrtimer_interrupt context. The
566 567 568 569 570 571
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

572 573 574 575 576 577 578 579 580
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

581 582 583 584 585 586 587 588 589 590
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
591 592 593 594 595 596 597
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
598
		cpu_base->expires_next = expires;
599 600 601 602 603 604 605 606 607 608 609 610
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
611
	struct timespec realtime_offset, wtm;
612 613 614 615 616 617 618
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
619
		wtm = __get_wall_to_monotonic();
620
	} while (read_seqretry(&xtime_lock, seq));
621
	set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
622 623 624 625

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
626
	raw_spin_lock(&base->lock);
627 628 629
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

630
	hrtimer_force_reprogram(base, 0);
631
	raw_spin_unlock(&base->lock);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
648
	on_each_cpu(retrigger_next_event, NULL, 1);
649 650
}

651 652 653 654 655 656
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
657 658 659
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

660 661 662
	retrigger_next_event(NULL);
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

679

680 681 682 683 684 685 686
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
687 688
					    struct hrtimer_clock_base *base,
					    int wakeup)
689 690
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
691
		if (wakeup) {
692
			raw_spin_unlock(&base->cpu_base->lock);
693
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
694
			raw_spin_lock(&base->cpu_base->lock);
695 696 697
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

698
		return 1;
699
	}
700

701 702 703 704 705 706
	return 0;
}

/*
 * Switch to high resolution mode
 */
707
static int hrtimer_switch_to_hres(void)
708
{
I
Ingo Molnar 已提交
709 710
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
711 712 713
	unsigned long flags;

	if (base->hres_active)
714
		return 1;
715 716 717 718 719

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
720 721
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
722
		return 0;
723 724 725 726 727 728 729 730 731 732
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
733
	return 1;
734 735 736 737 738 739
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
740
static inline int hrtimer_switch_to_hres(void) { return 0; }
741 742
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
743
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
744 745
					    struct hrtimer_clock_base *base,
					    int wakeup)
746 747 748 749 750 751 752 753
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

754
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
755
{
756
#ifdef CONFIG_TIMER_STATS
757 758
	if (timer->start_site)
		return;
759
	timer->start_site = __builtin_return_address(0);
760 761
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
762 763 764 765 766 767 768 769
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
770
}
771 772 773 774 775 776 777 778

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
779
#endif
780
}
781

782
/*
783
 * Counterpart to lock_hrtimer_base above:
784 785 786 787
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
788
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
789 790 791 792 793
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
794
 * @now:	forward past this time
795 796 797
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
798
 * Returns the number of overruns.
799
 */
D
Davide Libenzi 已提交
800
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
801
{
D
Davide Libenzi 已提交
802
	u64 orun = 1;
803
	ktime_t delta;
804

805
	delta = ktime_sub(now, hrtimer_get_expires(timer));
806 807 808 809

	if (delta.tv64 < 0)
		return 0;

810 811 812
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

813
	if (unlikely(delta.tv64 >= interval.tv64)) {
814
		s64 incr = ktime_to_ns(interval);
815 816

		orun = ktime_divns(delta, incr);
817 818
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
819 820 821 822 823 824 825
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
826
	hrtimer_add_expires(timer, interval);
827 828 829

	return orun;
}
S
Stas Sergeev 已提交
830
EXPORT_SYMBOL_GPL(hrtimer_forward);
831 832 833 834 835 836

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
837 838
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
839
 */
840 841
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
842 843 844 845
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
846
	int leftmost = 1;
847

848
	debug_activate(timer);
849

850 851 852 853 854 855 856 857 858 859
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
860 861
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
862
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
863
		} else {
864
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
865 866
			leftmost = 0;
		}
867 868 869
	}

	/*
870 871
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
872
	 */
873
	if (leftmost)
874 875
		base->first = &timer->node;

876 877
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
878 879 880 881 882
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
883 884

	return leftmost;
885
}
886 887 888 889 890

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
891 892 893 894 895
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
896
 */
897
static void __remove_hrtimer(struct hrtimer *timer,
898
			     struct hrtimer_clock_base *base,
899
			     unsigned long newstate, int reprogram)
900
{
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

	/*
	 * Remove the timer from the rbtree and replace the first
	 * entry pointer if necessary.
	 */
	if (base->first == &timer->node) {
		base->first = rb_next(&timer->node);
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
919
		}
920
#endif
921
	}
922 923
	rb_erase(&timer->node, &base->active);
out:
924
	timer->state = newstate;
925 926 927 928 929 930
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
931
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
932
{
933
	if (hrtimer_is_queued(timer)) {
934 935 936 937 938 939 940 941 942 943
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
944
		debug_deactivate(timer);
945
		timer_stats_hrtimer_clear_start_info(timer);
946 947 948
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
949 950 951 952 953
		return 1;
	}
	return 0;
}

954 955 956
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
957
{
958
	struct hrtimer_clock_base *base, *new_base;
959
	unsigned long flags;
960
	int ret, leftmost;
961 962 963 964 965 966 967

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
968
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
969

970
	if (mode & HRTIMER_MODE_REL) {
971
		tim = ktime_add_safe(tim, new_base->get_time());
972 973 974 975 976 977 978 979
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
980
		tim = ktime_add_safe(tim, base->resolution);
981 982
#endif
	}
983

984
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
985

986 987
	timer_stats_hrtimer_set_start_info(timer);

988 989
	leftmost = enqueue_hrtimer(timer, new_base);

990 991 992
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
993 994
	 *
	 * XXX send_remote_softirq() ?
995
	 */
996
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
997
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
998 999 1000 1001 1002

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1020 1021 1022
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1023
 * hrtimer_start - (re)start an hrtimer on the current CPU
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1035
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1036
}
1037
EXPORT_SYMBOL_GPL(hrtimer_start);
1038

1039

1040 1041 1042 1043 1044 1045 1046 1047
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1048
 *    cannot be stopped
1049 1050 1051
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1052
	struct hrtimer_clock_base *base;
1053 1054 1055 1056 1057
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1058
	if (!hrtimer_callback_running(timer))
1059 1060 1061 1062 1063 1064 1065
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1066
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1083
		cpu_relax();
1084 1085
	}
}
1086
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1087 1088 1089 1090 1091 1092 1093

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1094
	struct hrtimer_clock_base *base;
1095 1096 1097 1098
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1099
	rem = hrtimer_expires_remaining(timer);
1100 1101 1102 1103
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1104
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1105

1106
#ifdef CONFIG_NO_HZ
1107 1108 1109 1110 1111 1112 1113 1114
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1115 1116
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1117 1118 1119 1120
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1121
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1122

1123 1124 1125
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1126

1127 1128
			if (!base->first)
				continue;
1129

1130
			timer = rb_entry(base->first, struct hrtimer, node);
1131
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1132 1133 1134 1135
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1136
	}
1137

1138
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1139

1140 1141 1142 1143 1144 1145
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1146 1147
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1148
{
1149
	struct hrtimer_cpu_base *cpu_base;
1150

1151 1152
	memset(timer, 0, sizeof(struct hrtimer));

1153
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1154

1155
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1156 1157
		clock_id = CLOCK_MONOTONIC;

1158
	timer->base = &cpu_base->clock_base[clock_id];
1159
	hrtimer_init_timer_hres(timer);
1160 1161 1162 1163 1164 1165

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1166
}
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1177
	debug_init(timer, clock_id, mode);
1178 1179
	__hrtimer_init(timer, clock_id, mode);
}
1180
EXPORT_SYMBOL_GPL(hrtimer_init);
1181 1182 1183 1184 1185 1186

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1187 1188
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1189 1190 1191
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1192
	struct hrtimer_cpu_base *cpu_base;
1193

1194 1195
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1196 1197 1198

	return 0;
}
1199
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1200

1201
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1202 1203 1204 1205 1206 1207
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1208 1209
	WARN_ON(!irqs_disabled());

1210
	debug_deactivate(timer);
1211 1212 1213
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1214 1215 1216 1217 1218 1219

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1220
	raw_spin_unlock(&cpu_base->lock);
1221
	trace_hrtimer_expire_entry(timer, now);
1222
	restart = fn(timer);
1223
	trace_hrtimer_expire_exit(timer);
1224
	raw_spin_lock(&cpu_base->lock);
1225 1226

	/*
T
Thomas Gleixner 已提交
1227 1228 1229
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1230 1231 1232
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1233
		enqueue_hrtimer(timer, base);
1234 1235 1236 1237
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
1248 1249
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1250 1251 1252 1253 1254

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1255 1256
	entry_time = now = ktime_get();
retry:
1257 1258
	expires_next.tv64 = KTIME_MAX;

1259
	raw_spin_lock(&cpu_base->lock);
1260 1261 1262 1263 1264 1265 1266 1267 1268
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1296 1297
				ktime_t expires;

1298
				expires = ktime_sub(hrtimer_get_expires(timer),
1299 1300 1301 1302 1303 1304
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1305
			__run_hrtimer(timer, &basenow);
1306 1307 1308 1309
		}
		base++;
	}

1310 1311 1312 1313
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1314
	cpu_base->expires_next = expires_next;
1315
	raw_spin_unlock(&cpu_base->lock);
1316 1317

	/* Reprogramming necessary ? */
1318 1319 1320 1321
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1322
	}
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
	 */
	now = ktime_get();
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1360 1361
}

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1389
	unsigned long flags;
1390

1391
	local_irq_save(flags);
1392
	__hrtimer_peek_ahead_timers();
1393 1394 1395
	local_irq_restore(flags);
}

1396 1397 1398 1399 1400
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1401 1402 1403 1404 1405
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1429 1430
}

1431
/*
1432
 * Called from hardirq context every jiffy
1433
 */
1434
void hrtimer_run_queues(void)
1435
{
1436
	struct rb_node *node;
1437 1438 1439
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1440

1441
	if (hrtimer_hres_active())
1442 1443
		return;

1444 1445
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1446

1447
		if (!base->first)
1448
			continue;
1449

1450
		if (gettime) {
1451 1452
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1453
		}
1454

1455
		raw_spin_lock(&cpu_base->lock);
1456

1457 1458
		while ((node = base->first)) {
			struct hrtimer *timer;
1459

1460
			timer = rb_entry(node, struct hrtimer, node);
1461 1462
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1463 1464
				break;

1465
			__run_hrtimer(timer, &base->softirq_time);
1466
		}
1467
		raw_spin_unlock(&cpu_base->lock);
1468
	}
1469 1470
}

1471 1472 1473
/*
 * Sleep related functions:
 */
1474
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1487
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1488 1489 1490 1491
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1492
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1493

1494
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1495
{
1496
	hrtimer_init_sleeper(t, current);
1497

1498 1499
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1500
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1501 1502
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1503

1504 1505
		if (likely(t->task))
			schedule();
1506

1507
		hrtimer_cancel(&t->timer);
1508
		mode = HRTIMER_MODE_ABS;
1509 1510

	} while (t->task && !signal_pending(current));
1511

1512 1513
	__set_current_state(TASK_RUNNING);

1514
	return t->task == NULL;
1515 1516
}

1517 1518 1519 1520 1521
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1522
	rem = hrtimer_expires_remaining(timer);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1533
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1534
{
1535
	struct hrtimer_sleeper t;
1536
	struct timespec __user  *rmtp;
1537
	int ret = 0;
1538

1539 1540
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1541
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1542

1543
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1544
		goto out;
1545

1546
	rmtp = restart->nanosleep.rmtp;
1547
	if (rmtp) {
1548
		ret = update_rmtp(&t.timer, rmtp);
1549
		if (ret <= 0)
1550
			goto out;
1551
	}
1552 1553

	/* The other values in restart are already filled in */
1554 1555 1556 1557
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1558 1559
}

1560
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1561 1562 1563
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1564
	struct hrtimer_sleeper t;
1565
	int ret = 0;
1566 1567 1568 1569 1570
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1571

1572
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1573
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1574
	if (do_nanosleep(&t, mode))
1575
		goto out;
1576

1577
	/* Absolute timers do not update the rmtp value and restart: */
1578 1579 1580 1581
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1582

1583
	if (rmtp) {
1584
		ret = update_rmtp(&t.timer, rmtp);
1585
		if (ret <= 0)
1586
			goto out;
1587
	}
1588 1589

	restart = &current_thread_info()->restart_block;
1590
	restart->fn = hrtimer_nanosleep_restart;
1591 1592
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1593
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1594

1595 1596 1597 1598
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1599 1600
}

1601 1602
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1603
{
1604
	struct timespec tu;
1605 1606 1607 1608 1609 1610 1611

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1612
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1613 1614
}

1615 1616 1617
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1618
static void __cpuinit init_hrtimers_cpu(int cpu)
1619
{
1620
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1621 1622
	int i;

1623
	raw_spin_lock_init(&cpu_base->lock);
1624 1625 1626 1627

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1628
	hrtimer_init_hres(cpu_base);
1629 1630 1631 1632
}

#ifdef CONFIG_HOTPLUG_CPU

1633
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1634
				struct hrtimer_clock_base *new_base)
1635 1636 1637 1638 1639 1640
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1641
		BUG_ON(hrtimer_callback_running(timer));
1642
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1643 1644 1645 1646 1647 1648 1649

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1650
		timer->base = new_base;
1651
		/*
T
Thomas Gleixner 已提交
1652 1653 1654 1655 1656 1657
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1658
		 */
1659
		enqueue_hrtimer(timer, new_base);
1660

T
Thomas Gleixner 已提交
1661 1662
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1663 1664 1665
	}
}

1666
static void migrate_hrtimers(int scpu)
1667
{
1668
	struct hrtimer_cpu_base *old_base, *new_base;
1669
	int i;
1670

1671 1672
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1673 1674 1675 1676

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1677 1678 1679 1680
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1681 1682
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1683

1684
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1685
		migrate_hrtimer_list(&old_base->clock_base[i],
1686
				     &new_base->clock_base[i]);
1687 1688
	}

1689 1690
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1691

1692 1693 1694
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1695
}
1696

1697 1698
#endif /* CONFIG_HOTPLUG_CPU */

1699
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1700 1701
					unsigned long action, void *hcpu)
{
1702
	int scpu = (long)hcpu;
1703 1704 1705 1706

	switch (action) {

	case CPU_UP_PREPARE:
1707
	case CPU_UP_PREPARE_FROZEN:
1708
		init_hrtimers_cpu(scpu);
1709 1710 1711
		break;

#ifdef CONFIG_HOTPLUG_CPU
1712 1713 1714 1715
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1716
	case CPU_DEAD:
1717
	case CPU_DEAD_FROZEN:
1718
	{
1719
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1720
		migrate_hrtimers(scpu);
1721
		break;
1722
	}
1723 1724 1725 1726 1727 1728 1729 1730 1731
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1732
static struct notifier_block __cpuinitdata hrtimers_nb = {
1733 1734 1735 1736 1737 1738 1739 1740
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1741 1742 1743
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1744 1745
}

1746
/**
1747
 * schedule_hrtimeout_range_clock - sleep until timeout
1748
 * @expires:	timeout value (ktime_t)
1749
 * @delta:	slack in expires timeout (ktime_t)
1750
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1751
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1752
 */
1753 1754 1755
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1777
	hrtimer_init_on_stack(&t.timer, clock, mode);
1778
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1779 1780 1781

	hrtimer_init_sleeper(&t, current);

1782
	hrtimer_start_expires(&t.timer, mode);
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1860
EXPORT_SYMBOL_GPL(schedule_hrtimeout);