hrtimer.c 47.0 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/irq.h>
36 37 38 39 40
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
41
#include <linux/kallsyms.h>
42
#include <linux/interrupt.h>
43
#include <linux/tick.h>
44 45
#include <linux/seq_file.h>
#include <linux/err.h>
46
#include <linux/debugobjects.h>
47 48 49 50 51 52 53 54

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
55
ktime_t ktime_get(void)
56 57 58 59 60 61 62
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
63
EXPORT_SYMBOL_GPL(ktime_get);
64 65 66 67 68 69

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
70
ktime_t ktime_get_real(void)
71 72 73 74 75 76 77 78 79 80 81 82
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
83 84 85 86 87 88
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
89
 */
90
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
91
{
92 93

	.clock_base =
94
	{
95 96 97
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
98
			.resolution = KTIME_LOW_RES,
99 100 101 102
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
103
			.resolution = KTIME_LOW_RES,
104 105
		},
	}
106 107 108 109 110 111 112 113
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
114
 * in normalized timespec format in the variable pointed to by @ts.
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
131
EXPORT_SYMBOL_GPL(ktime_get_ts);
132

133 134 135 136
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
137
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
138 139
{
	ktime_t xtim, tomono;
140
	struct timespec xts, tom;
141 142 143 144
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
145
		xts = current_kernel_time();
146
		tom = wall_to_monotonic;
147 148
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
149
	xtim = timespec_to_ktime(xts);
150
	tomono = timespec_to_ktime(tom);
151 152 153
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
174 175 176
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
177
{
178
	struct hrtimer_clock_base *base;
179 180 181 182

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
183
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
184 185 186
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
187
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
188 189 190 191 192 193 194 195
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
196 197
static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
198
{
199 200
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
201

202 203
	new_cpu_base = &__get_cpu_var(hrtimer_bases);
	new_base = &new_cpu_base->clock_base[base->index];
204 205 206 207 208 209 210 211 212 213 214

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
215
		if (unlikely(hrtimer_callback_running(timer)))
216 217 218 219
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
220 221
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
222 223 224 225 226 227 228
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

229
static inline struct hrtimer_clock_base *
230 231
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
232
	struct hrtimer_clock_base *base = timer->base;
233

234
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
235 236 237 238

	return base;
}

239
# define switch_hrtimer_base(t, b)	(b)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
270 271

EXPORT_SYMBOL_GPL(ktime_add_ns);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
296 297 298 299 300
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
301
u64 ktime_divns(const ktime_t kt, s64 div)
302
{
303
	u64 dclc;
304 305
	int sft = 0;

306
	dclc = ktime_to_ns(kt);
307 308 309 310 311 312 313 314
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
315
	return dclc;
316 317 318
}
#endif /* BITS_PER_LONG >= 64 */

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
/*
 * Check, whether the timer is on the callback pending list
 */
static inline int hrtimer_cb_pending(const struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_PENDING;
}

/*
 * Remove a timer from the callback pending list
 */
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
{
	list_del_init(&timer->cb_entry);
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
520
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
542
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
543 544
	int res;

545
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
546

547 548 549
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
550
	 * the callback is executed in the hrtimer_interrupt context. The
551 552 553 554 555 556
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

557 558 559 560 561 562 563 564 565
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
625
	on_each_cpu(retrigger_next_event, NULL, 1);
626 627
}

628 629 630 631 632 633 634 635 636 637
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
	/* Retrigger the CPU local events: */
	retrigger_next_event(NULL);
}

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {

		/* Timer is expired, act upon the callback mode */
		switch(timer->cb_mode) {
		case HRTIMER_CB_IRQSAFE_NO_RESTART:
668
			debug_hrtimer_deactivate(timer);
669 670 671 672 673 674
			/*
			 * We can call the callback from here. No restart
			 * happens, so no danger of recursion
			 */
			BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
			return 1;
675 676
		case HRTIMER_CB_IRQSAFE_PERCPU:
		case HRTIMER_CB_IRQSAFE_UNLOCKED:
677 678 679 680 681
			/*
			 * This is solely for the sched tick emulation with
			 * dynamic tick support to ensure that we do not
			 * restart the tick right on the edge and end up with
			 * the tick timer in the softirq ! The calling site
682
			 * takes care of this. Also used for hrtimer sleeper !
683
			 */
684
			debug_hrtimer_deactivate(timer);
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
			return 1;
		case HRTIMER_CB_IRQSAFE:
		case HRTIMER_CB_SOFTIRQ:
			/*
			 * Move everything else into the softirq pending list !
			 */
			list_add_tail(&timer->cb_entry,
				      &base->cpu_base->cb_pending);
			timer->state = HRTIMER_STATE_PENDING;
			return 1;
		default:
			BUG();
		}
	}
	return 0;
}

/*
 * Switch to high resolution mode
 */
705
static int hrtimer_switch_to_hres(void)
706
{
I
Ingo Molnar 已提交
707 708
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
709 710 711
	unsigned long flags;

	if (base->hres_active)
712
		return 1;
713 714 715 716 717

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
718 719
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
720
		return 0;
721 722 723 724 725 726 727 728 729 730
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
731
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
732
	       smp_processor_id());
733
	return 1;
734 735
}

736 737 738 739 740
static inline void hrtimer_raise_softirq(void)
{
	raise_softirq(HRTIMER_SOFTIRQ);
}

741 742 743 744
#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
745
static inline int hrtimer_switch_to_hres(void) { return 0; }
746 747 748 749 750 751 752 753
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
754 755 756 757 758
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
{
	return 0;
}
759
static inline void hrtimer_raise_softirq(void) { }
760 761 762

#endif /* CONFIG_HIGH_RES_TIMERS */

763 764 765 766 767 768 769 770 771 772 773 774
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

775
/*
776
 * Counterpart to lock_hrtimer_base above:
777 778 779 780
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
781
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
782 783 784 785 786
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
787
 * @now:	forward past this time
788 789 790
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
791
 * Returns the number of overruns.
792
 */
D
Davide Libenzi 已提交
793
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
794
{
D
Davide Libenzi 已提交
795
	u64 orun = 1;
796
	ktime_t delta;
797

798
	delta = ktime_sub(now, hrtimer_get_expires(timer));
799 800 801 802

	if (delta.tv64 < 0)
		return 0;

803 804 805
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

806
	if (unlikely(delta.tv64 >= interval.tv64)) {
807
		s64 incr = ktime_to_ns(interval);
808 809

		orun = ktime_divns(delta, incr);
810 811
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
812 813 814 815 816 817 818
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
819
	hrtimer_add_expires(timer, interval);
820 821 822

	return orun;
}
S
Stas Sergeev 已提交
823
EXPORT_SYMBOL_GPL(hrtimer_forward);
824 825 826 827 828 829 830

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
 */
831
static void enqueue_hrtimer(struct hrtimer *timer,
832
			    struct hrtimer_clock_base *base, int reprogram)
833 834 835 836
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
837
	int leftmost = 1;
838

839 840
	debug_hrtimer_activate(timer);

841 842 843 844 845 846 847 848 849 850
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
851 852
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
853
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
854
		} else {
855
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
856 857
			leftmost = 0;
		}
858 859 860
	}

	/*
861 862
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
863
	 */
I
Ingo Molnar 已提交
864
	if (leftmost) {
865 866 867 868 869 870 871 872 873 874 875 876 877 878
		/*
		 * Reprogram the clock event device. When the timer is already
		 * expired hrtimer_enqueue_reprogram has either called the
		 * callback or added it to the pending list and raised the
		 * softirq.
		 *
		 * This is a NOP for !HIGHRES
		 */
		if (reprogram && hrtimer_enqueue_reprogram(timer, base))
			return;

		base->first = &timer->node;
	}

879 880
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
881 882 883 884 885
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
886
}
887 888 889 890 891

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
892 893 894 895 896
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
897
 */
898
static void __remove_hrtimer(struct hrtimer *timer,
899
			     struct hrtimer_clock_base *base,
900
			     unsigned long newstate, int reprogram)
901
{
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	/* High res. callback list. NOP for !HIGHRES */
	if (hrtimer_cb_pending(timer))
		hrtimer_remove_cb_pending(timer);
	else {
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
918
	timer->state = newstate;
919 920 921 922 923 924
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
925
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
926
{
927
	if (hrtimer_is_queued(timer)) {
928 929 930 931 932 933 934 935 936 937
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
938
		debug_hrtimer_deactivate(timer);
939
		timer_stats_hrtimer_clear_start_info(timer);
940 941 942
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
943 944 945 946 947 948
		return 1;
	}
	return 0;
}

/**
949
 * hrtimer_start_range_ns - (re)start an relative timer on the current CPU
950 951
 * @timer:	the timer to be added
 * @tim:	expiry time
952
 * @delta_ns:	"slack" range for the timer
953 954 955 956 957 958 959
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
960 961
hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns,
			const enum hrtimer_mode mode)
962
{
963
	struct hrtimer_clock_base *base, *new_base;
964
	unsigned long flags;
965
	int ret, raise;
966 967 968 969 970 971 972 973 974

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base);

975
	if (mode == HRTIMER_MODE_REL) {
976
		tim = ktime_add_safe(tim, new_base->get_time());
977 978 979 980 981 982 983 984
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
985
		tim = ktime_add_safe(tim, base->resolution);
986 987
#endif
	}
988

989
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
990

991 992
	timer_stats_hrtimer_set_start_info(timer);

993 994 995 996 997 998
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
	 */
	enqueue_hrtimer(timer, new_base,
			new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
999

1000 1001 1002 1003 1004 1005 1006
	/*
	 * The timer may be expired and moved to the cb_pending
	 * list. We can not raise the softirq with base lock held due
	 * to a possible deadlock with runqueue lock.
	 */
	raise = timer->state == HRTIMER_STATE_PENDING;

1007 1008 1009 1010 1011 1012 1013
	/*
	 * We use preempt_disable to prevent this task from migrating after
	 * setting up the softirq and raising it. Otherwise, if me migrate
	 * we will raise the softirq on the wrong CPU.
	 */
	preempt_disable();

1014 1015
	unlock_hrtimer_base(timer, &flags);

1016 1017
	if (raise)
		hrtimer_raise_softirq();
1018
	preempt_enable();
1019

1020 1021
	return ret;
}
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
 * hrtimer_start - (re)start an relative timer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
	return hrtimer_start_range_ns(timer, tim, 0, mode);
}
1039
EXPORT_SYMBOL_GPL(hrtimer_start);
1040

1041

1042 1043 1044 1045 1046 1047 1048 1049
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1050
 *    cannot be stopped
1051 1052 1053
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1054
	struct hrtimer_clock_base *base;
1055 1056 1057 1058 1059
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1060
	if (!hrtimer_callback_running(timer))
1061 1062 1063 1064 1065 1066 1067
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1068
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1085
		cpu_relax();
1086 1087
	}
}
1088
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1089 1090 1091 1092 1093 1094 1095

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1096
	struct hrtimer_clock_base *base;
1097 1098 1099 1100
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1101
	rem = hrtimer_expires_remaining(timer);
1102 1103 1104 1105
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1106
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1107

1108
#ifdef CONFIG_NO_HZ
1109 1110 1111 1112 1113 1114 1115 1116
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1117 1118
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1119 1120 1121 1122
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1123 1124
	spin_lock_irqsave(&cpu_base->lock, flags);

1125 1126 1127
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1128

1129 1130
			if (!base->first)
				continue;
1131

1132
			timer = rb_entry(base->first, struct hrtimer, node);
1133
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1134 1135 1136 1137
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1138
	}
1139 1140 1141

	spin_unlock_irqrestore(&cpu_base->lock, flags);

1142 1143 1144 1145 1146 1147
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1148 1149
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1150
{
1151
	struct hrtimer_cpu_base *cpu_base;
1152

1153 1154
	memset(timer, 0, sizeof(struct hrtimer));

1155
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1156

1157
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1158 1159
		clock_id = CLOCK_MONOTONIC;

1160
	timer->base = &cpu_base->clock_base[clock_id];
1161
	INIT_LIST_HEAD(&timer->cb_entry);
1162
	hrtimer_init_timer_hres(timer);
1163 1164 1165 1166 1167 1168

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1169
}
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	__hrtimer_init(timer, clock_id, mode);
}
1183
EXPORT_SYMBOL_GPL(hrtimer_init);
1184 1185 1186 1187 1188 1189

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1190 1191
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1192 1193 1194
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1195
	struct hrtimer_cpu_base *cpu_base;
1196

1197 1198
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1199 1200 1201

	return 0;
}
1202
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
{
	spin_lock_irq(&cpu_base->lock);

	while (!list_empty(&cpu_base->cb_pending)) {
		enum hrtimer_restart (*fn)(struct hrtimer *);
		struct hrtimer *timer;
		int restart;

		timer = list_entry(cpu_base->cb_pending.next,
				   struct hrtimer, cb_entry);

1216
		debug_hrtimer_deactivate(timer);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		timer_stats_account_hrtimer(timer);

		fn = timer->function;
		__remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
		spin_unlock_irq(&cpu_base->lock);

		restart = fn(timer);

		spin_lock_irq(&cpu_base->lock);

		timer->state &= ~HRTIMER_STATE_CALLBACK;
		if (restart == HRTIMER_RESTART) {
			BUG_ON(hrtimer_active(timer));
			/*
			 * Enqueue the timer, allow reprogramming of the event
			 * device
			 */
			enqueue_hrtimer(timer, timer->base, 1);
		} else if (hrtimer_active(timer)) {
			/*
			 * If the timer was rearmed on another CPU, reprogram
			 * the event device.
			 */
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
			struct hrtimer_clock_base *base = timer->base;

			if (base->first == &timer->node &&
			    hrtimer_reprogram(timer, base)) {
				/*
				 * Timer is expired. Thus move it from tree to
				 * pending list again.
				 */
				__remove_hrtimer(timer, base,
						 HRTIMER_STATE_PENDING, 0);
				list_add_tail(&timer->cb_entry,
					      &base->cpu_base->cb_pending);
			}
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		}
	}
	spin_unlock_irq(&cpu_base->lock);
}

static void __run_hrtimer(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1265
	debug_hrtimer_deactivate(timer);
1266 1267 1268 1269
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);

	fn = timer->function;
1270 1271
	if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
	    timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED) {
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		/*
		 * Used for scheduler timers, avoid lock inversion with
		 * rq->lock and tasklist_lock.
		 *
		 * These timers are required to deal with enqueue expiry
		 * themselves and are not allowed to migrate.
		 */
		spin_unlock(&cpu_base->lock);
		restart = fn(timer);
		spin_lock(&cpu_base->lock);
	} else
		restart = fn(timer);

	/*
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
	 * reprogramming of the event hardware. This happens at the end of this
	 * function anyway.
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
		enqueue_hrtimer(timer, base, 0);
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
	int i, raise = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1348 1349
				ktime_t expires;

1350
				expires = ktime_sub(hrtimer_get_expires(timer),
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

			/* Move softirq callbacks to the pending list */
			if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
				__remove_hrtimer(timer, base,
						 HRTIMER_STATE_PENDING, 0);
				list_add_tail(&timer->cb_entry,
					      &base->cpu_base->cb_pending);
				raise = 1;
				continue;
			}

1367
			__run_hrtimer(timer);
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
		if (tick_program_event(expires_next, 0))
			goto retry;
	}

	/* Raise softirq ? */
	if (raise)
		raise_softirq(HRTIMER_SOFTIRQ);
}

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
	unsigned long flags;
	struct tick_device *td;
	struct clock_event_device *dev;
1400 1401

	if (!hrtimer_hres_active())
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		return;

	local_irq_save(flags);
	td = &__get_cpu_var(tick_cpu_device);
	if (!td)
		goto out;
	dev = td->evtdev;
	if (!dev)
		goto out;
	hrtimer_interrupt(dev);
out:
	local_irq_restore(flags);
}

1416 1417
static void run_hrtimer_softirq(struct softirq_action *h)
{
1418 1419
	run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
}
1420

1421
#endif	/* CONFIG_HIGH_RES_TIMERS */
1422

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1433

1434 1435
	if (hrtimer_hres_active())
		return;
1436

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1447

1448
	run_hrtimer_pending(cpu_base);
1449 1450
}

1451
/*
1452
 * Called from hardirq context every jiffy
1453
 */
1454
void hrtimer_run_queues(void)
1455
{
1456
	struct rb_node *node;
1457 1458 1459
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1460

1461
	if (hrtimer_hres_active())
1462 1463
		return;

1464 1465
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1466

1467
		if (!base->first)
1468
			continue;
1469

1470 1471 1472
		if (base->get_softirq_time)
			base->softirq_time = base->get_softirq_time();
		else if (gettime) {
1473 1474
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1475
		}
1476

1477
		spin_lock(&cpu_base->lock);
1478

1479 1480
		while ((node = base->first)) {
			struct hrtimer *timer;
1481

1482
			timer = rb_entry(node, struct hrtimer, node);
1483 1484
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1485 1486 1487 1488 1489 1490 1491 1492 1493
				break;

			if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
				__remove_hrtimer(timer, base,
					HRTIMER_STATE_PENDING, 0);
				list_add_tail(&timer->cb_entry,
					&base->cpu_base->cb_pending);
				continue;
			}
1494

1495 1496 1497 1498
			__run_hrtimer(timer);
		}
		spin_unlock(&cpu_base->lock);
	}
1499 1500
}

1501 1502 1503
/*
 * Sleep related functions:
 */
1504
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1517
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1518 1519 1520
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
1521
#ifdef CONFIG_HIGH_RES_TIMERS
1522
	sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
1523
#endif
1524 1525
}

1526
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1527
{
1528
	hrtimer_init_sleeper(t, current);
1529

1530 1531
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1532
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1533 1534
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1535

1536 1537
		if (likely(t->task))
			schedule();
1538

1539
		hrtimer_cancel(&t->timer);
1540
		mode = HRTIMER_MODE_ABS;
1541 1542

	} while (t->task && !signal_pending(current));
1543

1544 1545
	__set_current_state(TASK_RUNNING);

1546
	return t->task == NULL;
1547 1548
}

1549 1550 1551 1552 1553
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1554
	rem = hrtimer_expires_remaining(timer);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1565
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1566
{
1567
	struct hrtimer_sleeper t;
1568
	struct timespec __user  *rmtp;
1569
	int ret = 0;
1570

1571 1572
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1573
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1574

1575
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1576
		goto out;
1577

1578
	rmtp = restart->nanosleep.rmtp;
1579
	if (rmtp) {
1580
		ret = update_rmtp(&t.timer, rmtp);
1581
		if (ret <= 0)
1582
			goto out;
1583
	}
1584 1585

	/* The other values in restart are already filled in */
1586 1587 1588 1589
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1590 1591
}

1592
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1593 1594 1595
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1596
	struct hrtimer_sleeper t;
1597
	int ret = 0;
1598 1599 1600 1601 1602
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1603

1604
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1605
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1606
	if (do_nanosleep(&t, mode))
1607
		goto out;
1608

1609
	/* Absolute timers do not update the rmtp value and restart: */
1610 1611 1612 1613
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1614

1615
	if (rmtp) {
1616
		ret = update_rmtp(&t.timer, rmtp);
1617
		if (ret <= 0)
1618
			goto out;
1619
	}
1620 1621

	restart = &current_thread_info()->restart_block;
1622
	restart->fn = hrtimer_nanosleep_restart;
1623 1624
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1625
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1626

1627 1628 1629 1630
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1631 1632
}

1633 1634 1635
asmlinkage long
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
{
1636
	struct timespec tu;
1637 1638 1639 1640 1641 1642 1643

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1644
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1645 1646
}

1647 1648 1649
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1650
static void __cpuinit init_hrtimers_cpu(int cpu)
1651
{
1652
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1653 1654
	int i;

1655 1656 1657 1658 1659
	spin_lock_init(&cpu_base->lock);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1660
	INIT_LIST_HEAD(&cpu_base->cb_pending);
1661
	hrtimer_init_hres(cpu_base);
1662 1663 1664 1665
}

#ifdef CONFIG_HOTPLUG_CPU

1666
static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1667
				struct hrtimer_clock_base *new_base, int dcpu)
1668 1669 1670
{
	struct hrtimer *timer;
	struct rb_node *node;
1671
	int raise = 0;
1672 1673 1674

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1675
		BUG_ON(hrtimer_callback_running(timer));
1676
		debug_hrtimer_deactivate(timer);
T
Thomas Gleixner 已提交
1677

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		/*
		 * Should not happen. Per CPU timers should be
		 * canceled _before_ the migration code is called
		 */
		if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU) {
			__remove_hrtimer(timer, old_base,
					 HRTIMER_STATE_INACTIVE, 0);
			WARN(1, "hrtimer (%p %p)active but cpu %d dead\n",
			     timer, timer->function, dcpu);
			continue;
		}

T
Thomas Gleixner 已提交
1690 1691 1692 1693 1694 1695
		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1696
		timer->base = new_base;
1697 1698 1699 1700
		/*
		 * Enqueue the timer. Allow reprogramming of the event device
		 */
		enqueue_hrtimer(timer, new_base, 1);
1701 1702 1703 1704 1705

#ifdef CONFIG_HIGH_RES_TIMERS
		/*
		 * Happens with high res enabled when the timer was
		 * already expired and the callback mode is
1706 1707 1708 1709 1710
		 * HRTIMER_CB_IRQSAFE_UNLOCKED (hrtimer_sleeper). The
		 * enqueue code does not move them to the soft irq
		 * pending list for performance/latency reasons, but
		 * in the migration state, we need to do that
		 * otherwise we end up with a stale timer.
1711
		 */
T
Thomas Gleixner 已提交
1712
		if (timer->state == HRTIMER_STATE_MIGRATE) {
1713 1714 1715 1716 1717 1718
			timer->state = HRTIMER_STATE_PENDING;
			list_add_tail(&timer->cb_entry,
				      &new_base->cpu_base->cb_pending);
			raise = 1;
		}
#endif
T
Thomas Gleixner 已提交
1719 1720
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1721
	}
1722
	return raise;
1723 1724
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
#ifdef CONFIG_HIGH_RES_TIMERS
static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
				   struct hrtimer_cpu_base *new_base)
{
	struct hrtimer *timer;
	int raise = 0;

	while (!list_empty(&old_base->cb_pending)) {
		timer = list_entry(old_base->cb_pending.next,
				   struct hrtimer, cb_entry);

		__remove_hrtimer(timer, timer->base, HRTIMER_STATE_PENDING, 0);
		timer->base = &new_base->clock_base[timer->base->index];
		list_add_tail(&timer->cb_entry, &new_base->cb_pending);
		raise = 1;
1740
	}
1741 1742 1743 1744 1745 1746 1747
	return raise;
}
#else
static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
				   struct hrtimer_cpu_base *new_base)
{
	return 0;
1748
}
1749
#endif
1750 1751 1752

static void migrate_hrtimers(int cpu)
{
1753
	struct hrtimer_cpu_base *old_base, *new_base;
1754
	int i, raise = 0;
1755 1756

	BUG_ON(cpu_online(cpu));
1757 1758
	old_base = &per_cpu(hrtimer_bases, cpu);
	new_base = &get_cpu_var(hrtimer_bases);
1759

1760 1761
	tick_cancel_sched_timer(cpu);

1762
	local_irq_disable();
1763 1764
	spin_lock(&new_base->lock);
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1765

1766
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1767
		if (migrate_hrtimer_list(&old_base->clock_base[i],
1768
					 &new_base->clock_base[i], cpu))
1769
			raise = 1;
1770 1771
	}

1772 1773 1774
	if (migrate_hrtimer_pending(old_base, new_base))
		raise = 1;

1775 1776
	spin_unlock(&old_base->lock);
	spin_unlock(&new_base->lock);
1777 1778
	local_irq_enable();
	put_cpu_var(hrtimer_bases);
1779 1780 1781

	if (raise)
		hrtimer_raise_softirq();
1782 1783 1784
}
#endif /* CONFIG_HOTPLUG_CPU */

1785
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1786 1787
					unsigned long action, void *hcpu)
{
1788
	unsigned int cpu = (long)hcpu;
1789 1790 1791 1792

	switch (action) {

	case CPU_UP_PREPARE:
1793
	case CPU_UP_PREPARE_FROZEN:
1794 1795 1796 1797 1798
		init_hrtimers_cpu(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1799
	case CPU_DEAD_FROZEN:
1800
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
		migrate_hrtimers(cpu);
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1812
static struct notifier_block __cpuinitdata hrtimers_nb = {
1813 1814 1815 1816 1817 1818 1819 1820
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1821
#ifdef CONFIG_HIGH_RES_TIMERS
1822
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1823
#endif
1824 1825
}

1826
/**
1827
 * schedule_hrtimeout_range - sleep until timeout
1828
 * @expires:	timeout value (ktime_t)
1829
 * @delta:	slack in expires timeout (ktime_t)
1830 1831 1832 1833 1834 1835
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
1836 1837 1838 1839 1840
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1854
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
			       const enum hrtimer_mode mode)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1878
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1879 1880 1881

	hrtimer_init_sleeper(&t, current);

1882
	hrtimer_start_expires(&t.timer, mode);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1925
EXPORT_SYMBOL_GPL(schedule_hrtimeout);