hrtimer.c 36.4 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/irq.h>
36 37 38 39 40
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
41
#include <linux/kallsyms.h>
42
#include <linux/interrupt.h>
43
#include <linux/tick.h>
44 45
#include <linux/seq_file.h>
#include <linux/err.h>
46 47 48 49 50 51 52 53

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
54
ktime_t ktime_get(void)
55 56 57 58 59 60 61
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
62
EXPORT_SYMBOL_GPL(ktime_get);
63 64 65 66 67 68

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
69
ktime_t ktime_get_real(void)
70 71 72 73 74 75 76 77 78 79 80 81
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
82 83 84 85 86 87
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
88
 */
89
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
90
{
91 92

	.clock_base =
93
	{
94 95 96
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
97
			.resolution = KTIME_LOW_RES,
98 99 100 101
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
102
			.resolution = KTIME_LOW_RES,
103 104
		},
	}
105 106 107 108 109 110 111 112
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
113
 * in normalized timespec format in the variable pointed to by @ts.
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
130
EXPORT_SYMBOL_GPL(ktime_get_ts);
131

132 133 134 135
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
136
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
137 138
{
	ktime_t xtim, tomono;
139
	struct timespec xts, tom;
140 141 142 143
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
144
		xts = current_kernel_time();
145
		tom = wall_to_monotonic;
146 147
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
148
	xtim = timespec_to_ktime(xts);
149
	tomono = timespec_to_ktime(tom);
150 151 152
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
153 154
}

155 156 157 158 159 160 161 162 163
/*
 * Helper function to check, whether the timer is running the callback
 * function
 */
static inline int hrtimer_callback_running(struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_CALLBACK;
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
182 183 184
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
185
{
186
	struct hrtimer_clock_base *base;
187 188 189 190

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
191
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
192 193 194
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
195
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
196 197 198 199 200 201 202 203
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
204 205
static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
206
{
207 208
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
209

210 211
	new_cpu_base = &__get_cpu_var(hrtimer_bases);
	new_base = &new_cpu_base->clock_base[base->index];
212 213 214 215 216 217 218 219 220 221 222

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
223
		if (unlikely(hrtimer_callback_running(timer)))
224 225 226 227
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
228 229
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
230 231 232 233 234 235 236
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

237
static inline struct hrtimer_clock_base *
238 239
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
240
	struct hrtimer_clock_base *base = timer->base;
241

242
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
243 244 245 246

	return base;
}

247
# define switch_hrtimer_base(t, b)	(b)
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
278 279

EXPORT_SYMBOL_GPL(ktime_add_ns);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
304 305 306 307 308
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
309
u64 ktime_divns(const ktime_t kt, s64 div)
310 311 312 313 314 315 316 317 318 319 320 321 322 323
{
	u64 dclc, inc, dns;
	int sft = 0;

	dclc = dns = ktime_to_ns(kt);
	inc = div;
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
324
	return dclc;
325 326 327
}
#endif /* BITS_PER_LONG >= 64 */

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/*
 * Check, whether the timer is on the callback pending list
 */
static inline int hrtimer_cb_pending(const struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_PENDING;
}

/*
 * Remove a timer from the callback pending list
 */
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
{
	list_del_init(&timer->cb_entry);
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
		expires = ktime_sub(timer->expires, base->offset);
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
	ktime_t expires = ktime_sub(timer->expires, base->offset);
	int res;

	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
431
	 * the callback is executed in the hrtimer_interrupt context. The
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 0, 1);
}

500 501 502 503 504 505 506 507 508 509 510 511
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
	WARN_ON_ONCE(num_online_cpus() > 1);

	/* Retrigger the CPU local events: */
	retrigger_next_event(NULL);
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {

		/* Timer is expired, act upon the callback mode */
		switch(timer->cb_mode) {
		case HRTIMER_CB_IRQSAFE_NO_RESTART:
			/*
			 * We can call the callback from here. No restart
			 * happens, so no danger of recursion
			 */
			BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
			return 1;
		case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
			/*
			 * This is solely for the sched tick emulation with
			 * dynamic tick support to ensure that we do not
			 * restart the tick right on the edge and end up with
			 * the tick timer in the softirq ! The calling site
			 * takes care of this.
			 */
			return 1;
		case HRTIMER_CB_IRQSAFE:
		case HRTIMER_CB_SOFTIRQ:
			/*
			 * Move everything else into the softirq pending list !
			 */
			list_add_tail(&timer->cb_entry,
				      &base->cpu_base->cb_pending);
			timer->state = HRTIMER_STATE_PENDING;
			raise_softirq(HRTIMER_SOFTIRQ);
			return 1;
		default:
			BUG();
		}
	}
	return 0;
}

/*
 * Switch to high resolution mode
 */
577
static int hrtimer_switch_to_hres(void)
578
{
I
Ingo Molnar 已提交
579 580
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
581 582 583
	unsigned long flags;

	if (base->hres_active)
584
		return 1;
585 586 587 588 589

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
590 591
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
592
		return 0;
593 594 595 596 597 598 599 600 601 602
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
603
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
604
	       smp_processor_id());
605
	return 1;
606 607 608 609 610 611
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
612
static inline int hrtimer_switch_to_hres(void) { return 0; }
613 614 615 616 617 618 619 620
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
621 622 623 624 625
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
{
	return 0;
}
626 627 628

#endif /* CONFIG_HIGH_RES_TIMERS */

629 630 631 632 633 634 635 636 637 638 639 640
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

641
/*
642
 * Counterpart to lock_hrtimer_base above:
643 644 645 646
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
647
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
648 649 650 651 652
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
653
 * @now:	forward past this time
654 655 656
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
657
 * Returns the number of overruns.
658
 */
D
Davide Libenzi 已提交
659
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
660
{
D
Davide Libenzi 已提交
661
	u64 orun = 1;
662
	ktime_t delta;
663 664 665 666 667 668

	delta = ktime_sub(now, timer->expires);

	if (delta.tv64 < 0)
		return 0;

669 670 671
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

672
	if (unlikely(delta.tv64 >= interval.tv64)) {
673
		s64 incr = ktime_to_ns(interval);
674 675 676 677 678 679 680 681 682 683 684 685

		orun = ktime_divns(delta, incr);
		timer->expires = ktime_add_ns(timer->expires, incr * orun);
		if (timer->expires.tv64 > now.tv64)
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
	timer->expires = ktime_add(timer->expires, interval);
686 687 688 689 690 691
	/*
	 * Make sure, that the result did not wrap with a very large
	 * interval.
	 */
	if (timer->expires.tv64 < 0)
		timer->expires = ktime_set(KTIME_SEC_MAX, 0);
692 693 694

	return orun;
}
S
Stas Sergeev 已提交
695
EXPORT_SYMBOL_GPL(hrtimer_forward);
696 697 698 699 700 701 702

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
 */
703
static void enqueue_hrtimer(struct hrtimer *timer,
704
			    struct hrtimer_clock_base *base, int reprogram)
705 706 707 708
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
709
	int leftmost = 1;
710 711 712 713 714 715 716 717 718 719 720

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
I
Ingo Molnar 已提交
721
		if (timer->expires.tv64 < entry->expires.tv64) {
722
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
723
		} else {
724
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
725 726
			leftmost = 0;
		}
727 728 729
	}

	/*
730 731
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
732
	 */
I
Ingo Molnar 已提交
733
	if (leftmost) {
734 735 736 737 738 739 740 741 742 743 744 745 746 747
		/*
		 * Reprogram the clock event device. When the timer is already
		 * expired hrtimer_enqueue_reprogram has either called the
		 * callback or added it to the pending list and raised the
		 * softirq.
		 *
		 * This is a NOP for !HIGHRES
		 */
		if (reprogram && hrtimer_enqueue_reprogram(timer, base))
			return;

		base->first = &timer->node;
	}

748 749
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
750 751 752 753 754
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
755
}
756 757 758 759 760

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
761 762 763 764 765
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
766
 */
767
static void __remove_hrtimer(struct hrtimer *timer,
768
			     struct hrtimer_clock_base *base,
769
			     unsigned long newstate, int reprogram)
770
{
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	/* High res. callback list. NOP for !HIGHRES */
	if (hrtimer_cb_pending(timer))
		hrtimer_remove_cb_pending(timer);
	else {
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
787
	timer->state = newstate;
788 789 790 791 792 793
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
794
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
795
{
796
	if (hrtimer_is_queued(timer)) {
797 798 799 800 801 802 803 804 805 806
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
807
		timer_stats_hrtimer_clear_start_info(timer);
808 809 810
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		return 1;
	}
	return 0;
}

/**
 * hrtimer_start - (re)start an relative timer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
829
	struct hrtimer_clock_base *base, *new_base;
830 831 832 833 834 835 836 837 838 839 840
	unsigned long flags;
	int ret;

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base);

841
	if (mode == HRTIMER_MODE_REL) {
842
		tim = ktime_add(tim, new_base->get_time());
843 844 845 846 847 848 849 850 851 852
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
		tim = ktime_add(tim, base->resolution);
#endif
853 854 855 856 857 858 859 860
		/*
		 * Careful here: User space might have asked for a
		 * very long sleep, so the add above might result in a
		 * negative number, which enqueues the timer in front
		 * of the queue.
		 */
		if (tim.tv64 < 0)
			tim.tv64 = KTIME_MAX;
861
	}
862 863
	timer->expires = tim;

864 865
	timer_stats_hrtimer_set_start_info(timer);

866 867 868 869 870 871
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
	 */
	enqueue_hrtimer(timer, new_base,
			new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
872 873 874 875 876

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
877
EXPORT_SYMBOL_GPL(hrtimer_start);
878 879 880 881 882 883 884 885 886

/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
887
 *    cannot be stopped
888 889 890
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
891
	struct hrtimer_clock_base *base;
892 893 894 895 896
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

897
	if (!hrtimer_callback_running(timer))
898 899 900 901 902 903 904
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
905
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
922
		cpu_relax();
923 924
	}
}
925
EXPORT_SYMBOL_GPL(hrtimer_cancel);
926 927 928 929 930 931 932

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
933
	struct hrtimer_clock_base *base;
934 935 936 937
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
938
	rem = ktime_sub(timer->expires, base->get_time());
939 940 941 942
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
943
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
944

945
#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
946 947 948 949 950 951 952 953
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
954 955
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
956 957 958 959
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

960 961
	spin_lock_irqsave(&cpu_base->lock, flags);

962 963 964
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
965

966 967
			if (!base->first)
				continue;
968

969 970 971 972 973 974
			timer = rb_entry(base->first, struct hrtimer, node);
			delta.tv64 = timer->expires.tv64;
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
975
	}
976 977 978

	spin_unlock_irqrestore(&cpu_base->lock, flags);

979 980 981 982 983 984
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

985
/**
986 987
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
988
 * @clock_id:	the clock to be used
989
 * @mode:	timer mode abs/rel
990
 */
991 992
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
993
{
994
	struct hrtimer_cpu_base *cpu_base;
995

996 997
	memset(timer, 0, sizeof(struct hrtimer));

998
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
999

1000
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1001 1002
		clock_id = CLOCK_MONOTONIC;

1003
	timer->base = &cpu_base->clock_base[clock_id];
1004
	INIT_LIST_HEAD(&timer->cb_entry);
1005
	hrtimer_init_timer_hres(timer);
1006 1007 1008 1009 1010 1011

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1012
}
1013
EXPORT_SYMBOL_GPL(hrtimer_init);
1014 1015 1016 1017 1018 1019

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1020 1021
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1022 1023 1024
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1025
	struct hrtimer_cpu_base *cpu_base;
1026

1027 1028
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1029 1030 1031

	return 0;
}
1032
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
{
	spin_lock_irq(&cpu_base->lock);

	while (!list_empty(&cpu_base->cb_pending)) {
		enum hrtimer_restart (*fn)(struct hrtimer *);
		struct hrtimer *timer;
		int restart;

		timer = list_entry(cpu_base->cb_pending.next,
				   struct hrtimer, cb_entry);

		timer_stats_account_hrtimer(timer);

		fn = timer->function;
		__remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
		spin_unlock_irq(&cpu_base->lock);

		restart = fn(timer);

		spin_lock_irq(&cpu_base->lock);

		timer->state &= ~HRTIMER_STATE_CALLBACK;
		if (restart == HRTIMER_RESTART) {
			BUG_ON(hrtimer_active(timer));
			/*
			 * Enqueue the timer, allow reprogramming of the event
			 * device
			 */
			enqueue_hrtimer(timer, timer->base, 1);
		} else if (hrtimer_active(timer)) {
			/*
			 * If the timer was rearmed on another CPU, reprogram
			 * the event device.
			 */
			if (timer->base->first == &timer->node)
				hrtimer_reprogram(timer, timer->base);
		}
	}
	spin_unlock_irq(&cpu_base->lock);
}

static void __run_hrtimer(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);

	fn = timer->function;
	if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) {
		/*
		 * Used for scheduler timers, avoid lock inversion with
		 * rq->lock and tasklist_lock.
		 *
		 * These timers are required to deal with enqueue expiry
		 * themselves and are not allowed to migrate.
		 */
		spin_unlock(&cpu_base->lock);
		restart = fn(timer);
		spin_lock(&cpu_base->lock);
	} else
		restart = fn(timer);

	/*
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
	 * reprogramming of the event hardware. This happens at the end of this
	 * function anyway.
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
		enqueue_hrtimer(timer, base, 0);
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
	int i, raise = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

			if (basenow.tv64 < timer->expires.tv64) {
				ktime_t expires;

				expires = ktime_sub(timer->expires,
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

			/* Move softirq callbacks to the pending list */
			if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
				__remove_hrtimer(timer, base,
						 HRTIMER_STATE_PENDING, 0);
				list_add_tail(&timer->cb_entry,
					      &base->cpu_base->cb_pending);
				raise = 1;
				continue;
			}

1170
			__run_hrtimer(timer);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
		if (tick_program_event(expires_next, 0))
			goto retry;
	}

	/* Raise softirq ? */
	if (raise)
		raise_softirq(HRTIMER_SOFTIRQ);
}

static void run_hrtimer_softirq(struct softirq_action *h)
{
1191 1192
	run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
}
1193

1194
#endif	/* CONFIG_HIGH_RES_TIMERS */
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1206

1207 1208
	if (hrtimer_hres_active())
		return;
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1220

1221
	run_hrtimer_pending(cpu_base);
1222 1223
}

1224
/*
1225
 * Called from hardirq context every jiffy
1226
 */
1227 1228
static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
				     int index)
1229
{
1230
	struct rb_node *node;
1231
	struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
1232

1233 1234 1235
	if (!base->first)
		return;

1236 1237 1238
	if (base->get_softirq_time)
		base->softirq_time = base->get_softirq_time();

1239
	spin_lock(&cpu_base->lock);
1240

1241
	while ((node = base->first)) {
1242 1243
		struct hrtimer *timer;

1244
		timer = rb_entry(node, struct hrtimer, node);
1245
		if (base->softirq_time.tv64 <= timer->expires.tv64)
1246 1247
			break;

1248 1249 1250 1251 1252
		if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
			__remove_hrtimer(timer, base, HRTIMER_STATE_PENDING, 0);
			list_add_tail(&timer->cb_entry,
					&base->cpu_base->cb_pending);
			continue;
1253
		}
1254 1255

		__run_hrtimer(timer);
1256
	}
1257
	spin_unlock(&cpu_base->lock);
1258 1259 1260 1261
}

void hrtimer_run_queues(void)
{
1262
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1263 1264
	int i;

1265 1266 1267
	if (hrtimer_hres_active())
		return;

1268
	hrtimer_get_softirq_time(cpu_base);
1269

1270 1271
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		run_hrtimer_queue(cpu_base, i);
1272 1273
}

1274 1275 1276
/*
 * Sleep related functions:
 */
1277
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1290
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1291 1292 1293
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
1294
#ifdef CONFIG_HIGH_RES_TIMERS
P
Peter Zijlstra 已提交
1295
	sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1296
#endif
1297 1298
}

1299
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1300
{
1301
	hrtimer_init_sleeper(t, current);
1302

1303 1304 1305
	do {
		set_current_state(TASK_INTERRUPTIBLE);
		hrtimer_start(&t->timer, t->timer.expires, mode);
P
Peter Zijlstra 已提交
1306 1307
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1308

1309 1310
		if (likely(t->task))
			schedule();
1311

1312
		hrtimer_cancel(&t->timer);
1313
		mode = HRTIMER_MODE_ABS;
1314 1315

	} while (t->task && !signal_pending(current));
1316

1317 1318
	__set_current_state(TASK_RUNNING);

1319
	return t->task == NULL;
1320 1321
}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

	rem = ktime_sub(timer->expires, timer->base->get_time());
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1338
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1339
{
1340
	struct hrtimer_sleeper t;
1341
	struct timespec __user  *rmtp;
1342

1343
	hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1344
	t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
1345

1346
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1347 1348
		return 0;

1349
	rmtp = (struct timespec __user *)restart->arg1;
1350
	if (rmtp) {
1351 1352 1353
		int ret = update_rmtp(&t.timer, rmtp);
		if (ret <= 0)
			return ret;
1354
	}
1355 1356 1357 1358 1359

	/* The other values in restart are already filled in */
	return -ERESTART_RESTARTBLOCK;
}

1360
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1361 1362 1363
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1364
	struct hrtimer_sleeper t;
1365

1366 1367 1368
	hrtimer_init(&t.timer, clockid, mode);
	t.timer.expires = timespec_to_ktime(*rqtp);
	if (do_nanosleep(&t, mode))
1369 1370
		return 0;

1371
	/* Absolute timers do not update the rmtp value and restart: */
1372
	if (mode == HRTIMER_MODE_ABS)
1373 1374
		return -ERESTARTNOHAND;

1375
	if (rmtp) {
1376 1377 1378
		int ret = update_rmtp(&t.timer, rmtp);
		if (ret <= 0)
			return ret;
1379
	}
1380 1381

	restart = &current_thread_info()->restart_block;
1382 1383 1384 1385 1386
	restart->fn = hrtimer_nanosleep_restart;
	restart->arg0 = (unsigned long) t.timer.base->index;
	restart->arg1 = (unsigned long) rmtp;
	restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
	restart->arg3 = t.timer.expires.tv64 >> 32;
1387 1388 1389 1390

	return -ERESTART_RESTARTBLOCK;
}

1391 1392 1393
asmlinkage long
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
{
1394
	struct timespec tu;
1395 1396 1397 1398 1399 1400 1401

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1402
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1403 1404
}

1405 1406 1407
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1408
static void __cpuinit init_hrtimers_cpu(int cpu)
1409
{
1410
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1411 1412
	int i;

1413 1414 1415 1416 1417 1418
	spin_lock_init(&cpu_base->lock);
	lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1419
	INIT_LIST_HEAD(&cpu_base->cb_pending);
1420
	hrtimer_init_hres(cpu_base);
1421 1422 1423 1424
}

#ifdef CONFIG_HOTPLUG_CPU

1425 1426
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
				struct hrtimer_clock_base *new_base)
1427 1428 1429 1430 1431 1432
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1433 1434
		BUG_ON(hrtimer_callback_running(timer));
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1435
		timer->base = new_base;
1436 1437 1438 1439
		/*
		 * Enqueue the timer. Allow reprogramming of the event device
		 */
		enqueue_hrtimer(timer, new_base, 1);
1440 1441 1442 1443 1444
	}
}

static void migrate_hrtimers(int cpu)
{
1445
	struct hrtimer_cpu_base *old_base, *new_base;
1446 1447 1448
	int i;

	BUG_ON(cpu_online(cpu));
1449 1450
	old_base = &per_cpu(hrtimer_bases, cpu);
	new_base = &get_cpu_var(hrtimer_bases);
1451

1452 1453
	tick_cancel_sched_timer(cpu);

1454
	local_irq_disable();
1455 1456
	double_spin_lock(&new_base->lock, &old_base->lock,
			 smp_processor_id() < cpu);
1457

1458 1459 1460
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		migrate_hrtimer_list(&old_base->clock_base[i],
				     &new_base->clock_base[i]);
1461 1462
	}

1463 1464
	double_spin_unlock(&new_base->lock, &old_base->lock,
			   smp_processor_id() < cpu);
1465 1466 1467 1468 1469
	local_irq_enable();
	put_cpu_var(hrtimer_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

1470
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1471 1472
					unsigned long action, void *hcpu)
{
1473
	unsigned int cpu = (long)hcpu;
1474 1475 1476 1477

	switch (action) {

	case CPU_UP_PREPARE:
1478
	case CPU_UP_PREPARE_FROZEN:
1479 1480 1481 1482 1483
		init_hrtimers_cpu(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1484
	case CPU_DEAD_FROZEN:
1485
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		migrate_hrtimers(cpu);
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1497
static struct notifier_block __cpuinitdata hrtimers_nb = {
1498 1499 1500 1501 1502 1503 1504 1505
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1506 1507 1508
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
#endif
1509 1510
}