inode.c 144.5 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187 188 189

	ext4_ioend_wait(inode);

A
Al Viro 已提交
190
	if (inode->i_nlink) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
218 219 220 221
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

222
	if (!is_bad_inode(inode))
223
		dquot_initialize(inode);
224

225 226
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
227 228 229 230 231
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

232 233 234 235 236
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
237 238
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
239
	if (IS_ERR(handle)) {
240
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 242 243 244 245
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
246
		ext4_orphan_del(NULL, inode);
247
		sb_end_intwrite(inode->i_sb);
248 249 250 251
		goto no_delete;
	}

	if (IS_SYNC(inode))
252
		ext4_handle_sync(handle);
253
	inode->i_size = 0;
254 255
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
256
		ext4_warning(inode->i_sb,
257 258 259
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
260
	if (inode->i_blocks)
261
		ext4_truncate(inode);
262 263 264 265 266 267 268

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
269
	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 271 272 273
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
274
			ext4_warning(inode->i_sb,
275 276 277
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
278
			ext4_orphan_del(NULL, inode);
279
			sb_end_intwrite(inode->i_sb);
280 281 282 283
			goto no_delete;
		}
	}

284
	/*
285
	 * Kill off the orphan record which ext4_truncate created.
286
	 * AKPM: I think this can be inside the above `if'.
287
	 * Note that ext4_orphan_del() has to be able to cope with the
288
	 * deletion of a non-existent orphan - this is because we don't
289
	 * know if ext4_truncate() actually created an orphan record.
290 291
	 * (Well, we could do this if we need to, but heck - it works)
	 */
292 293
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
294 295 296 297 298 299 300 301

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
302
	if (ext4_mark_inode_dirty(handle, inode))
303
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
304
		ext4_clear_inode(inode);
305
	else
306 307
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
308
	sb_end_intwrite(inode->i_sb);
309 310
	return;
no_delete:
A
Al Viro 已提交
311
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 313
}

314 315
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
316
{
317
	return &EXT4_I(inode)->i_reserved_quota;
318
}
319
#endif
320

321 322
/*
 * Calculate the number of metadata blocks need to reserve
323
 * to allocate a block located at @lblock
324
 */
325
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326
{
327
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328
		return ext4_ext_calc_metadata_amount(inode, lblock);
329

330
	return ext4_ind_calc_metadata_amount(inode, lblock);
331 332
}

333 334 335 336
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
337 338
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
339 340
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 342 343
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
344
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345
	if (unlikely(used > ei->i_reserved_data_blocks)) {
346
		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347
			 "with only %d reserved data blocks",
348 349 350 351 352
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
353

354
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 356 357 358 359 360
		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
			"with only %d reserved metadata blocks "
			"(releasing %d blocks with reserved %d data blocks)",
			inode->i_ino, ei->i_allocated_meta_blocks,
			     ei->i_reserved_meta_blocks, used,
			     ei->i_reserved_data_blocks);
361 362 363 364
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

365 366 367
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369
			   used + ei->i_allocated_meta_blocks);
370
	ei->i_allocated_meta_blocks = 0;
371

372 373 374 375 376 377
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
378
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379
				   ei->i_reserved_meta_blocks);
380
		ei->i_reserved_meta_blocks = 0;
381
		ei->i_da_metadata_calc_len = 0;
382
	}
383
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384

385 386
	/* Update quota subsystem for data blocks */
	if (quota_claim)
387
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
388
	else {
389 390 391
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
392
		 * not re-claim the quota for fallocated blocks.
393
		 */
394
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395
	}
396 397 398 399 400 401

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
402 403
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
404
		ext4_discard_preallocations(inode);
405 406
}

407
static int __check_block_validity(struct inode *inode, const char *func,
408 409
				unsigned int line,
				struct ext4_map_blocks *map)
410
{
411 412
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
413 414 415 416
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
417 418 419 420 421
		return -EIO;
	}
	return 0;
}

422
#define check_block_validity(inode, map)	\
423
	__check_block_validity((inode), __func__, __LINE__, (map))
424

425
/*
426 427
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
461 462 463 464 465 466 467 468 469
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
470 471 472 473 474
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
475 476
			if (num >= max_pages) {
				done = 1;
477
				break;
478
			}
479 480 481 482 483 484
		}
		pagevec_release(&pvec);
	}
	return num;
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
#ifdef ES_AGGRESSIVE_TEST
static void ext4_map_blocks_es_recheck(handle_t *handle,
				       struct inode *inode,
				       struct ext4_map_blocks *es_map,
				       struct ext4_map_blocks *map,
				       int flags)
{
	int retval;

	map->m_flags = 0;
	/*
	 * There is a race window that the result is not the same.
	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
	 * is that we lookup a block mapping in extent status tree with
	 * out taking i_data_sem.  So at the time the unwritten extent
	 * could be converted.
	 */
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	} else {
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	}
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
	/*
	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
	 * because it shouldn't be marked in es_map->m_flags.
	 */
	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);

	/*
	 * We don't check m_len because extent will be collpased in status
	 * tree.  So the m_len might not equal.
	 */
	if (es_map->m_lblk != map->m_lblk ||
	    es_map->m_flags != map->m_flags ||
	    es_map->m_pblk != map->m_pblk) {
		printk("ES cache assertation failed for inode: %lu "
		       "es_cached ex [%d/%d/%llu/%x] != "
		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
		       inode->i_ino, es_map->m_lblk, es_map->m_len,
		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
		       map->m_len, map->m_pblk, map->m_flags,
		       retval, flags);
	}
}
#endif /* ES_AGGRESSIVE_TEST */

537
/*
538
 * The ext4_map_blocks() function tries to look up the requested blocks,
539
 * and returns if the blocks are already mapped.
540 541 542 543 544
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
545 546
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547 548 549 550 551 552 553 554
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
555
 * that case, buffer head is unmapped
556 557 558
 *
 * It returns the error in case of allocation failure.
 */
559 560
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
561
{
562
	struct extent_status es;
563
	int retval;
564 565 566 567 568
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
569

570 571 572 573
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
			map->m_pblk = ext4_es_pblock(&es) +
					map->m_lblk - es.es_lblk;
			map->m_flags |= ext4_es_is_written(&es) ?
					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
			retval = es.es_len - (map->m_lblk - es.es_lblk);
			if (retval > map->m_len)
				retval = map->m_len;
			map->m_len = retval;
		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
			retval = 0;
		} else {
			BUG_ON(1);
		}
591 592 593 594
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(handle, inode, map,
					   &orig_map, flags);
#endif
595 596 597
		goto found;
	}

598
	/*
599 600
	 * Try to see if we can get the block without requesting a new
	 * file system block.
601
	 */
602 603
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
604
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605 606
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
607
	} else {
608 609
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
610
	}
611 612 613 614
	if (retval > 0) {
		int ret;
		unsigned long long status;

615 616 617 618 619 620 621 622 623
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

624 625 626 627 628 629 630 631 632 633 634
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk,
					    map->m_len, map->m_pblk, status);
		if (ret < 0)
			retval = ret;
	}
635 636
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
637

638
found:
639
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640
		int ret = check_block_validity(inode, map);
641 642 643 644
		if (ret != 0)
			return ret;
	}

645
	/* If it is only a block(s) look up */
646
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647 648 649 650 651 652
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
653
	 * ext4_ext_get_block() returns the create = 0
654 655
	 * with buffer head unmapped.
	 */
656
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657 658
		return retval;

659
	/*
660 661
	 * Here we clear m_flags because after allocating an new extent,
	 * it will be set again.
662
	 */
663
	map->m_flags &= ~EXT4_MAP_FLAGS;
664

665
	/*
666 667 668 669
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
670 671
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
672 673 674 675 676 677 678

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
679
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681 682 683 684
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
685
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
687
	} else {
688
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
689

690
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691 692 693 694 695
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
696
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697
		}
698

699 700 701 702 703 704 705
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
706
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707 708
			ext4_da_update_reserve_space(inode, retval, 1);
	}
709
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711

712 713 714 715
	if (retval > 0) {
		int ret;
		unsigned long long status;

716 717 718 719 720 721 722 723 724
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (allocation)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

725 726 727 728 729 730 731 732 733 734
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret < 0)
			retval = ret;
735 736
	}

737
	up_write((&EXT4_I(inode)->i_data_sem));
738
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
739
		int ret = check_block_validity(inode, map);
740 741 742
		if (ret != 0)
			return ret;
	}
743 744 745
	return retval;
}

746 747 748
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

749 750
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
751
{
752
	handle_t *handle = ext4_journal_current_handle();
753
	struct ext4_map_blocks map;
J
Jan Kara 已提交
754
	int ret = 0, started = 0;
755
	int dio_credits;
756

T
Tao Ma 已提交
757 758 759
	if (ext4_has_inline_data(inode))
		return -ERANGE;

760 761 762
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

763
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
764
		/* Direct IO write... */
765 766 767
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
768 769
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
770
		if (IS_ERR(handle)) {
771
			ret = PTR_ERR(handle);
772
			return ret;
773
		}
J
Jan Kara 已提交
774
		started = 1;
775 776
	}

777
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
778
	if (ret > 0) {
779 780 781
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
782
		ret = 0;
783
	}
J
Jan Kara 已提交
784 785
	if (started)
		ext4_journal_stop(handle);
786 787 788
	return ret;
}

789 790 791 792 793 794 795
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

796 797 798
/*
 * `handle' can be NULL if create is zero
 */
799
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
800
				ext4_lblk_t block, int create, int *errp)
801
{
802 803
	struct ext4_map_blocks map;
	struct buffer_head *bh;
804 805 806 807
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

808 809 810 811
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
812

813 814 815
	/* ensure we send some value back into *errp */
	*errp = 0;

816 817
	if (create && err == 0)
		err = -ENOSPC;	/* should never happen */
818 819 820 821 822 823
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
824
	if (unlikely(!bh)) {
825
		*errp = -ENOMEM;
826
		return NULL;
827
	}
828 829 830
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
831

832 833 834 835 836 837 838 839 840 841 842 843 844
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
845
		}
846 847 848 849 850 851 852
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
853
	}
854 855 856 857 858 859
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
860 861
}

862
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
863
			       ext4_lblk_t block, int create, int *err)
864
{
865
	struct buffer_head *bh;
866

867
	bh = ext4_getblk(handle, inode, block, create, err);
868 869 870 871
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
872
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
873 874 875 876 877 878 879 880
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

881 882 883 884 885 886 887
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
888 889 890 891 892 893 894
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

895 896
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
897
	     block_start = block_end, bh = next) {
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
915
 * close off a transaction and start a new one between the ext4_get_block()
916
 * and the commit_write().  So doing the jbd2_journal_start at the start of
917 918
 * prepare_write() is the right place.
 *
919 920 921 922
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
923
 *
924
 * By accident, ext4 can be reentered when a transaction is open via
925 926 927 928 929 930
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
931
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
932 933 934 935
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
936 937
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
938
{
939 940 941
	int dirty = buffer_dirty(bh);
	int ret;

942 943
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
944
	/*
C
Christoph Hellwig 已提交
945
	 * __block_write_begin() could have dirtied some buffers. Clean
946 947
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
948
	 * by __block_write_begin() isn't a real problem here as we clear
949 950 951 952 953 954 955 956 957
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
958 959
}

960 961
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
962
static int ext4_write_begin(struct file *file, struct address_space *mapping,
963 964
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
965
{
966
	struct inode *inode = mapping->host;
967
	int ret, needed_blocks;
968 969
	handle_t *handle;
	int retries = 0;
970
	struct page *page;
971
	pgoff_t index;
972
	unsigned from, to;
N
Nick Piggin 已提交
973

974
	trace_ext4_write_begin(inode, pos, len, flags);
975 976 977 978 979
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
980
	index = pos >> PAGE_CACHE_SHIFT;
981 982
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
983

984 985 986 987
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
988 989 990
			return ret;
		if (ret == 1)
			return 0;
991 992
	}

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

retry_journal:
1007
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1008
	if (IS_ERR(handle)) {
1009 1010
		page_cache_release(page);
		return PTR_ERR(handle);
1011
	}
1012

1013 1014 1015 1016 1017
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
1018
		ext4_journal_stop(handle);
1019
		goto retry_grab;
1020
	}
1021
	wait_on_page_writeback(page);
1022

1023
	if (ext4_should_dioread_nolock(inode))
1024
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1025
	else
1026
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1027 1028

	if (!ret && ext4_should_journal_data(inode)) {
1029 1030 1031
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
1032
	}
N
Nick Piggin 已提交
1033 1034

	if (ret) {
1035
		unlock_page(page);
1036
		/*
1037
		 * __block_write_begin may have instantiated a few blocks
1038 1039
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1040 1041 1042
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1043
		 */
1044
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1045 1046 1047 1048
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1049
			ext4_truncate_failed_write(inode);
1050
			/*
1051
			 * If truncate failed early the inode might
1052 1053 1054 1055 1056 1057 1058
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1059

1060 1061 1062 1063 1064 1065 1066
		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;
		page_cache_release(page);
		return ret;
	}
	*pagep = page;
1067 1068 1069
	return ret;
}

N
Nick Piggin 已提交
1070 1071
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1072 1073 1074 1075
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1076
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1077 1078
}

1079
static int ext4_generic_write_end(struct file *file,
1080 1081 1082
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1083 1084 1085 1086 1087
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

1088 1089 1090 1091 1092 1093
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1130 1131 1132 1133
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1134
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1135 1136
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1137
static int ext4_ordered_write_end(struct file *file,
1138 1139 1140
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1141
{
1142
	handle_t *handle = ext4_journal_current_handle();
1143
	struct inode *inode = mapping->host;
1144 1145
	int ret = 0, ret2;

1146
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1147
	ret = ext4_jbd2_file_inode(handle, inode);
1148 1149

	if (ret == 0) {
1150
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1151
							page, fsdata);
1152
		copied = ret2;
1153
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1154 1155 1156 1157 1158
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1159 1160
		if (ret2 < 0)
			ret = ret2;
1161 1162 1163
	} else {
		unlock_page(page);
		page_cache_release(page);
1164
	}
1165

1166
	ret2 = ext4_journal_stop(handle);
1167 1168
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1169

1170
	if (pos + len > inode->i_size) {
1171
		ext4_truncate_failed_write(inode);
1172
		/*
1173
		 * If truncate failed early the inode might still be
1174 1175 1176 1177 1178 1179 1180 1181
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1182
	return ret ? ret : copied;
1183 1184
}

N
Nick Piggin 已提交
1185
static int ext4_writeback_write_end(struct file *file,
1186 1187 1188
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1189
{
1190
	handle_t *handle = ext4_journal_current_handle();
1191
	struct inode *inode = mapping->host;
1192 1193
	int ret = 0, ret2;

1194
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1195
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1196
							page, fsdata);
1197
	copied = ret2;
1198
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1199 1200 1201 1202 1203 1204
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1205 1206
	if (ret2 < 0)
		ret = ret2;
1207

1208
	ret2 = ext4_journal_stop(handle);
1209 1210
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1211

1212
	if (pos + len > inode->i_size) {
1213
		ext4_truncate_failed_write(inode);
1214
		/*
1215
		 * If truncate failed early the inode might still be
1216 1217 1218 1219 1220 1221 1222
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1223
	return ret ? ret : copied;
1224 1225
}

N
Nick Piggin 已提交
1226
static int ext4_journalled_write_end(struct file *file,
1227 1228 1229
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1230
{
1231
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1232
	struct inode *inode = mapping->host;
1233 1234
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1235
	unsigned from, to;
1236
	loff_t new_i_size;
1237

1238
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1239 1240 1241
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1242 1243
	BUG_ON(!ext4_handle_valid(handle));

1244 1245 1246 1247 1248 1249 1250 1251 1252
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1253

1254 1255 1256 1257 1258
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1259 1260
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1261
		i_size_write(inode, pos+copied);
1262
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1263
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1264 1265
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1266
		ret2 = ext4_mark_inode_dirty(handle, inode);
1267 1268 1269
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1270

1271
	unlock_page(page);
1272
	page_cache_release(page);
1273
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1274 1275 1276 1277 1278 1279
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1280
	ret2 = ext4_journal_stop(handle);
1281 1282
	if (!ret)
		ret = ret2;
1283
	if (pos + len > inode->i_size) {
1284
		ext4_truncate_failed_write(inode);
1285
		/*
1286
		 * If truncate failed early the inode might still be
1287 1288 1289 1290 1291 1292
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1293 1294

	return ret ? ret : copied;
1295
}
1296

1297
/*
1298
 * Reserve a single cluster located at lblock
1299
 */
1300
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1301
{
A
Aneesh Kumar K.V 已提交
1302
	int retries = 0;
1303
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1304
	struct ext4_inode_info *ei = EXT4_I(inode);
1305
	unsigned int md_needed;
1306
	int ret;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1318 1319 1320 1321 1322 1323

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1324
repeat:
1325
	spin_lock(&ei->i_block_reservation_lock);
1326 1327 1328 1329 1330 1331
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1332 1333
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1334
	trace_ext4_da_reserve_space(inode, md_needed);
1335

1336 1337 1338 1339
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1340
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1341 1342 1343
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1344 1345 1346 1347
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1348
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1349 1350
		return -ENOSPC;
	}
1351
	ei->i_reserved_data_blocks++;
1352 1353
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1354

1355 1356 1357
	return 0;       /* success */
}

1358
static void ext4_da_release_space(struct inode *inode, int to_free)
1359 1360
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1361
	struct ext4_inode_info *ei = EXT4_I(inode);
1362

1363 1364 1365
	if (!to_free)
		return;		/* Nothing to release, exit */

1366
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1367

L
Li Zefan 已提交
1368
	trace_ext4_da_release_space(inode, to_free);
1369
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1370
		/*
1371 1372 1373 1374
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1375
		 */
1376
		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1377
			 "ino %lu, to_free %d with only %d reserved "
1378
			 "data blocks", inode->i_ino, to_free,
1379 1380 1381
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1382
	}
1383
	ei->i_reserved_data_blocks -= to_free;
1384

1385 1386 1387 1388 1389
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1390 1391
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1392
		 */
1393
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1394
				   ei->i_reserved_meta_blocks);
1395
		ei->i_reserved_meta_blocks = 0;
1396
		ei->i_da_metadata_calc_len = 0;
1397
	}
1398

1399
	/* update fs dirty data blocks counter */
1400
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1401 1402

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1403

1404
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1405 1406 1407
}

static void ext4_da_page_release_reservation(struct page *page,
1408
					     unsigned long offset)
1409 1410 1411 1412
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1413 1414 1415
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1416
	ext4_fsblk_t lblk;
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1429

1430 1431 1432 1433 1434
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1435 1436 1437 1438 1439 1440 1441
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1442
		    !ext4_find_delalloc_cluster(inode, lblk))
1443 1444 1445 1446
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1447
}
1448

1449 1450 1451 1452 1453 1454
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1455
 * them with writepage() call back
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1466 1467
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1468
{
1469 1470 1471 1472 1473
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1474
	loff_t size = i_size_read(inode);
1475 1476
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1477
	sector_t pblock = 0, cur_logical = 0;
1478
	struct ext4_io_submit io_submit;
1479 1480

	BUG_ON(mpd->next_page <= mpd->first_page);
1481
	memset(&io_submit, 0, sizeof(io_submit));
1482 1483 1484
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1485
	 * If we look at mpd->b_blocknr we would only be looking
1486 1487
	 * at the currently mapped buffer_heads.
	 */
1488 1489 1490
	index = mpd->first_page;
	end = mpd->next_page - 1;

1491
	pagevec_init(&pvec, 0);
1492
	while (index <= end) {
1493
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1494 1495 1496
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1497
			int skip_page = 0;
1498 1499
			struct page *page = pvec.pages[i];

1500 1501 1502
			index = page->index;
			if (index > end)
				break;
1503 1504 1505 1506 1507

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1508 1509 1510 1511 1512 1513
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1514 1515 1516 1517 1518
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1519 1520
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1521
			do {
1522 1523 1524
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1525 1526 1527 1528
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1529 1530 1531 1532 1533 1534 1535
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1536

1537 1538 1539 1540 1541
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1542
					skip_page = 1;
1543 1544
				bh = bh->b_this_page;
				block_start += bh->b_size;
1545 1546
				cur_logical++;
				pblock++;
1547 1548
			} while (bh != page_bufs);

1549 1550 1551 1552
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1553

1554
			clear_page_dirty_for_io(page);
1555 1556
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1557
			if (!err)
1558
				mpd->pages_written++;
1559 1560 1561 1562 1563 1564 1565 1566 1567
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1568
	ext4_io_submit(&io_submit);
1569 1570 1571
	return ret;
}

1572
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1573 1574 1575 1576 1577 1578
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1579
	ext4_lblk_t start, last;
1580

1581 1582
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1583 1584 1585 1586 1587

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1588
	pagevec_init(&pvec, 0);
1589 1590 1591 1592 1593 1594
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1595
			if (page->index > end)
1596 1597 1598 1599 1600 1601 1602
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1603 1604
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1605 1606 1607 1608
	}
	return;
}

1609 1610 1611
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1612 1613 1614
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1615 1616
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1617 1618
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1619 1620
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1621
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1622 1623
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1624 1625 1626 1627
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1628
	       EXT4_I(inode)->i_reserved_meta_blocks);
1629 1630 1631
	return;
}

1632
/*
1633 1634
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1635
 *
1636
 * @mpd - bh describing space
1637 1638 1639 1640
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1641
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1642
{
1643
	int err, blks, get_blocks_flags;
1644
	struct ext4_map_blocks map, *mapp = NULL;
1645 1646 1647 1648
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1649 1650

	/*
1651 1652
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1653
	 */
1654 1655 1656 1657 1658
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1659 1660 1661 1662

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1663
	/*
1664
	 * Call ext4_map_blocks() to allocate any delayed allocation
1665 1666 1667 1668 1669 1670 1671 1672
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1673
	 * want to change *many* call functions, so ext4_map_blocks()
1674
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1675 1676 1677 1678 1679
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1680
	 */
1681 1682
	map.m_lblk = next;
	map.m_len = max_blocks;
1683
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1684 1685
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1686
	if (mpd->b_state & (1 << BH_Delay))
1687 1688
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1689
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1690
	if (blks < 0) {
1691 1692
		struct super_block *sb = mpd->inode->i_sb;

1693
		err = blks;
1694
		/*
1695
		 * If get block returns EAGAIN or ENOSPC and there
1696 1697
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1698 1699
		 */
		if (err == -EAGAIN)
1700
			goto submit_io;
1701

1702
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1703
			mpd->retval = err;
1704
			goto submit_io;
1705 1706
		}

1707
		/*
1708 1709 1710 1711 1712
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1713
		 */
1714 1715 1716 1717 1718 1719 1720 1721
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
1722
				"This should not happen!! Data will be lost");
1723 1724
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1725
		}
1726
		/* invalidate all the pages */
1727
		ext4_da_block_invalidatepages(mpd);
1728 1729 1730

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1731
		return;
1732
	}
1733 1734
	BUG_ON(blks == 0);

1735
	mapp = &map;
1736 1737 1738
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1739

1740 1741
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1742 1743 1744
	}

	/*
1745
	 * Update on-disk size along with block allocation.
1746 1747 1748 1749 1750 1751
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1752 1753 1754 1755 1756
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1757 1758
	}

1759
submit_io:
1760
	mpage_da_submit_io(mpd, mapp);
1761
	mpd->io_done = 1;
1762 1763
}

1764 1765
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1766 1767 1768 1769 1770 1771

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1772
 * @b_state - b_state of the buffer head added
1773 1774 1775
 *
 * the function is used to collect contig. blocks in same state
 */
1776
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1777
				   unsigned long b_state)
1778 1779
{
	sector_t next;
1780 1781
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1782

1783 1784 1785 1786
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1787
	 * ext4_map_blocks() multiple times in a loop
1788
	 */
1789
	if (nrblocks >= (8*1024*1024 >> blkbits))
1790 1791
		goto flush_it;

1792 1793
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1804 1805 1806
	/*
	 * First block in the extent
	 */
1807 1808
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1809
		mpd->b_size = 1 << blkbits;
1810
		mpd->b_state = b_state & BH_FLAGS;
1811 1812 1813
		return;
	}

1814
	next = mpd->b_blocknr + nrblocks;
1815 1816 1817
	/*
	 * Can we merge the block to our big extent?
	 */
1818
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1819
		mpd->b_size += 1 << blkbits;
1820 1821 1822
		return;
	}

1823
flush_it:
1824 1825 1826 1827
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1828
	mpage_da_map_and_submit(mpd);
1829
	return;
1830 1831
}

1832
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1833
{
1834
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1835 1836
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
1847
	struct extent_status es;
1848 1849
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);
1850 1851 1852 1853 1854
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
1855 1856 1857 1858 1859 1860 1861 1862

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, iblock, &es)) {

		if (ext4_es_is_hole(&es)) {
			retval = 0;
			down_read((&EXT4_I(inode)->i_data_sem));
			goto add_delayed;
		}

		/*
		 * Delayed extent could be allocated by fallocate.
		 * So we need to check it.
		 */
		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
			map_bh(bh, inode->i_sb, invalid_block);
			set_buffer_new(bh);
			set_buffer_delay(bh);
			return 0;
		}

		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
		retval = es.es_len - (iblock - es.es_lblk);
		if (retval > map->m_len)
			retval = map->m_len;
		map->m_len = retval;
		if (ext4_es_is_written(&es))
			map->m_flags |= EXT4_MAP_MAPPED;
		else if (ext4_es_is_unwritten(&es))
			map->m_flags |= EXT4_MAP_UNWRITTEN;
		else
			BUG_ON(1);

1896 1897 1898
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
#endif
1899 1900 1901
		return retval;
	}

1902 1903 1904 1905 1906
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1920 1921
		retval = ext4_ext_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1922
	else
1923 1924
		retval = ext4_ind_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1925

1926
add_delayed:
1927
	if (retval == 0) {
1928
		int ret;
1929 1930 1931 1932 1933 1934 1935
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1936 1937
			ret = ext4_da_reserve_space(inode, iblock);
			if (ret) {
1938
				/* not enough space to reserve */
1939
				retval = ret;
1940
				goto out_unlock;
1941
			}
1942 1943
		}

1944 1945 1946 1947
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    ~0, EXTENT_STATUS_DELAYED);
		if (ret) {
			retval = ret;
1948
			goto out_unlock;
1949
		}
1950

1951 1952 1953 1954 1955 1956 1957 1958
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
1959 1960 1961 1962
	} else if (retval > 0) {
		int ret;
		unsigned long long status;

1963 1964 1965 1966 1967 1968 1969 1970 1971
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

1972 1973 1974 1975 1976 1977
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret != 0)
			retval = ret;
1978 1979 1980 1981 1982 1983 1984 1985
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1986
/*
1987 1988 1989
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1990 1991 1992 1993 1994 1995 1996
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1997
 */
1998 1999
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
2000
{
2001
	struct ext4_map_blocks map;
2002 2003 2004
	int ret = 0;

	BUG_ON(create == 0);
2005 2006 2007 2008
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2009 2010 2011 2012 2013 2014

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2015 2016
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
2017
		return ret;
2018

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
2030
		set_buffer_mapped(bh);
2031 2032
	}
	return 0;
2033
}
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
2052
	struct buffer_head *page_bufs = NULL;
2053
	handle_t *handle = NULL;
2054 2055 2056
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
2057

2058
	ClearPageChecked(page);
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
2075 2076 2077 2078
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

2079 2080
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
2081 2082 2083 2084 2085
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

2086 2087
	BUG_ON(!ext4_handle_valid(handle));

2088 2089
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
2090

2091 2092 2093 2094 2095 2096 2097 2098 2099
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
2100 2101
	if (ret == 0)
		ret = err;
2102
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2103 2104 2105 2106
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

2107 2108 2109
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
2110
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2111
out:
2112
	brelse(inode_bh);
2113 2114 2115
	return ret;
}

2116
/*
2117 2118 2119 2120
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
2121
 * we are writing back data modified via mmap(), no one guarantees in which
2122 2123 2124 2125
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2126 2127 2128
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
2129
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2130
 *   - grab_page_cache when doing write_begin (have journal handle)
2131 2132 2133 2134 2135 2136 2137 2138 2139
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
2140
 * but other buffer_heads would be unmapped but dirty (dirty done via the
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2156
 */
2157
static int ext4_writepage(struct page *page,
2158
			  struct writeback_control *wbc)
2159
{
2160
	int ret = 0;
2161
	loff_t size;
2162
	unsigned int len;
2163
	struct buffer_head *page_bufs = NULL;
2164
	struct inode *inode = page->mapping->host;
2165
	struct ext4_io_submit io_submit;
2166

L
Lukas Czerner 已提交
2167
	trace_ext4_writepage(page);
2168 2169 2170 2171 2172
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2173

T
Theodore Ts'o 已提交
2174
	page_bufs = page_buffers(page);
2175 2176 2177 2178 2179 2180 2181
	/*
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
	 */
2182 2183
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2184
		redirty_page_for_writepage(wbc, page);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2196
	}
2197

2198
	if (PageChecked(page) && ext4_should_journal_data(inode))
2199 2200 2201 2202
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2203
		return __ext4_journalled_writepage(page, len);
2204

2205 2206 2207
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2208 2209 2210
	return ret;
}

2211
/*
2212
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2213
 * calculate the total number of credits to reserve to fit
2214 2215 2216
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2217
 */
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2229
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2230 2231 2232 2233 2234
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2235

2236 2237
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2238
 * address space and accumulate pages that need writing, and call
2239 2240
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2241
 */
2242 2243
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2244
				struct writeback_control *wbc,
2245 2246
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2247
{
2248
	struct buffer_head	*bh, *head;
2249
	struct inode		*inode = mapping->host;
2250 2251 2252 2253 2254 2255
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2256

2257 2258 2259
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2260 2261 2262 2263
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2264
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2265 2266 2267 2268
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2269
	*done_index = index;
2270
	while (index <= end) {
2271
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2272 2273
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2274
			return 0;
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2286 2287
			if (page->index > end)
				goto out;
2288

2289 2290
			*done_index = page->index + 1;

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2301 2302 2303
			lock_page(page);

			/*
2304 2305 2306 2307 2308 2309
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2310
			 */
2311 2312 2313 2314
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2315 2316 2317 2318
				unlock_page(page);
				continue;
			}

2319
			wait_on_page_writeback(page);
2320 2321
			BUG_ON(PageWriteback(page));

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2333
			if (mpd->next_page != page->index)
2334 2335 2336 2337 2338
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2339 2340 2341 2342 2343
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2344
				/*
2345 2346 2347
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2348
				 */
2349 2350 2351 2352 2353 2354 2355
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2356
					/*
2357 2358 2359 2360 2361 2362 2363
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2364
					 */
2365 2366 2367 2368 2369 2370
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2371 2372 2373 2374

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2375
				    wbc->sync_mode == WB_SYNC_NONE)
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2386
					goto out;
2387 2388 2389 2390 2391
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2392 2393 2394
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2395 2396 2397
out:
	pagevec_release(&pvec);
	cond_resched();
2398 2399 2400 2401
	return ret;
}


2402
static int ext4_da_writepages(struct address_space *mapping,
2403
			      struct writeback_control *wbc)
2404
{
2405 2406
	pgoff_t	index;
	int range_whole = 0;
2407
	handle_t *handle = NULL;
2408
	struct mpage_da_data mpd;
2409
	struct inode *inode = mapping->host;
2410
	int pages_written = 0;
2411
	unsigned int max_pages;
2412
	int range_cyclic, cycled = 1, io_done = 0;
2413 2414
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2415
	loff_t range_start = wbc->range_start;
2416
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2417
	pgoff_t done_index = 0;
2418
	pgoff_t end;
S
Shaohua Li 已提交
2419
	struct blk_plug plug;
2420

2421
	trace_ext4_da_writepages(inode, wbc);
2422

2423 2424 2425 2426 2427
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2428
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2429
		return 0;
2430 2431 2432 2433 2434

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2435
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2436 2437 2438 2439 2440
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2441
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2442 2443
		return -EROFS;

2444 2445
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2446

2447 2448
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2449
		index = mapping->writeback_index;
2450 2451 2452 2453 2454
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2455 2456
		end = -1;
	} else {
2457
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2458 2459
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2460

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2478 2479 2480 2481 2482 2483
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2494
retry:
2495
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2496 2497
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2498
	blk_start_plug(&plug);
2499
	while (!ret && wbc->nr_to_write > 0) {
2500 2501 2502 2503 2504 2505 2506 2507

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2508
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2509

2510
		/* start a new transaction*/
2511 2512
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2513 2514
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2515
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2516
			       "%ld pages, ino %lu; err %d", __func__,
2517
				wbc->nr_to_write, inode->i_ino, ret);
2518
			blk_finish_plug(&plug);
2519 2520
			goto out_writepages;
		}
2521 2522

		/*
2523
		 * Now call write_cache_pages_da() to find the next
2524
		 * contiguous region of logical blocks that need
2525
		 * blocks to be allocated by ext4 and submit them.
2526
		 */
2527 2528
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2529
		/*
2530
		 * If we have a contiguous extent of pages and we
2531 2532 2533 2534
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2535
			mpage_da_map_and_submit(&mpd);
2536 2537
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2538
		trace_ext4_da_write_pages(inode, &mpd);
2539
		wbc->nr_to_write -= mpd.pages_written;
2540

2541
		ext4_journal_stop(handle);
2542

2543
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2544 2545 2546 2547
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2548
			jbd2_journal_force_commit_nested(sbi->s_journal);
2549 2550
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2551
			/*
2552 2553 2554
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2555
			 */
2556
			pages_written += mpd.pages_written;
2557
			ret = mpd.retval;
2558
			io_done = 1;
2559
		} else if (wbc->nr_to_write)
2560 2561 2562 2563 2564 2565
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2566
	}
S
Shaohua Li 已提交
2567
	blk_finish_plug(&plug);
2568 2569 2570 2571 2572 2573 2574
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2575 2576

	/* Update index */
2577
	wbc->range_cyclic = range_cyclic;
2578 2579 2580 2581 2582
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2583
		mapping->writeback_index = done_index;
2584

2585
out_writepages:
2586
	wbc->nr_to_write -= nr_to_writebump;
2587
	wbc->range_start = range_start;
2588
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2589
	return ret;
2590 2591
}

2592 2593 2594 2595 2596 2597 2598 2599
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2600
	 * counters can get slightly wrong with percpu_counter_batch getting
2601 2602 2603 2604
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2605 2606 2607
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2618
	if (2 * free_blocks < 3 * dirty_blocks ||
2619
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2620
		/*
2621 2622
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2623 2624 2625 2626 2627 2628
		 */
		return 1;
	}
	return 0;
}

2629
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2630 2631
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2632
{
2633
	int ret, retries = 0;
2634 2635 2636 2637 2638 2639
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2640 2641 2642 2643 2644 2645 2646

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2647
	trace_ext4_da_write_begin(inode, pos, len, flags);
2648 2649 2650 2651 2652 2653

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
2654 2655 2656
			return ret;
		if (ret == 1)
			return 0;
2657 2658
	}

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

2672 2673 2674 2675 2676 2677
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2678
retry_journal:
2679
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2680
	if (IS_ERR(handle)) {
2681 2682
		page_cache_release(page);
		return PTR_ERR(handle);
2683 2684
	}

2685 2686 2687 2688 2689
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
2690
		ext4_journal_stop(handle);
2691
		goto retry_grab;
2692
	}
2693 2694
	/* In case writeback began while the page was unlocked */
	wait_on_page_writeback(page);
2695

2696
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2697 2698 2699
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
2700 2701 2702 2703 2704 2705
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2706
			ext4_truncate_failed_write(inode);
2707 2708 2709 2710 2711 2712 2713

		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;

		page_cache_release(page);
		return ret;
2714 2715
	}

2716
	*pagep = page;
2717 2718 2719
	return ret;
}

2720 2721 2722 2723 2724
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2725
					    unsigned long offset)
2726 2727 2728 2729 2730 2731 2732 2733 2734
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2735
	for (i = 0; i < idx; i++)
2736 2737
		bh = bh->b_this_page;

2738
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2739 2740 2741 2742
		return 0;
	return 1;
}

2743
static int ext4_da_write_end(struct file *file,
2744 2745 2746
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2747 2748 2749 2750 2751
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2752
	unsigned long start, end;
2753 2754 2755
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2756 2757
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2758 2759
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2760
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2761 2762
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2763
		default:
2764 2765 2766
			BUG();
		}
	}
2767

2768
	trace_ext4_da_write_end(inode, pos, len, copied);
2769
	start = pos & (PAGE_CACHE_SIZE - 1);
2770
	end = start + copied - 1;
2771 2772 2773 2774 2775 2776 2777

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2778
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2779 2780
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2781
			down_write(&EXT4_I(inode)->i_data_sem);
2782
			if (new_i_size > EXT4_I(inode)->i_disksize)
2783 2784
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2785 2786 2787 2788 2789
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2790
		}
2791
	}
2792 2793 2794 2795 2796 2797 2798 2799

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2800
							page, fsdata);
2801

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2821
	ext4_da_page_release_reservation(page, offset);
2822 2823 2824 2825 2826 2827 2828

out:
	ext4_invalidatepage(page, offset);

	return;
}

2829 2830 2831 2832 2833
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2834 2835
	trace_ext4_alloc_da_blocks(inode);

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2846
	 *
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2859
	 * the pages by calling redirty_page_for_writepage() but that
2860 2861
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2862
	 * simplifying them because we wouldn't actually intend to
2863 2864 2865
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2866
	 *
2867 2868 2869 2870 2871 2872
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2873

2874 2875 2876 2877 2878
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2879
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2880 2881 2882 2883 2884 2885 2886 2887
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2888
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2889 2890 2891 2892 2893
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2894 2895 2896 2897 2898 2899
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2910 2911
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2923
		 * NB. EXT4_STATE_JDATA is not set on files other than
2924 2925 2926 2927 2928 2929
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2930
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2931
		journal = EXT4_JOURNAL(inode);
2932 2933 2934
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2935 2936 2937 2938 2939

		if (err)
			return 0;
	}

2940
	return generic_block_bmap(mapping, block, ext4_get_block);
2941 2942
}

2943
static int ext4_readpage(struct file *file, struct page *page)
2944
{
T
Tao Ma 已提交
2945 2946 2947
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2948
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2949 2950 2951 2952 2953 2954 2955 2956

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2957 2958 2959
}

static int
2960
ext4_readpages(struct file *file, struct address_space *mapping,
2961 2962
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2963 2964 2965 2966 2967 2968
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2969
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2970 2971
}

2972
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2973
{
2974 2975
	trace_ext4_invalidatepage(page, offset);

2976 2977 2978 2979 2980 2981
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

2982 2983
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
2984 2985 2986 2987 2988
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

2989 2990 2991 2992 2993 2994
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2995 2996 2997 2998 2999 3000 3001 3002
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3003 3004
}

3005
static int ext4_releasepage(struct page *page, gfp_t wait)
3006
{
3007
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3008

3009 3010
	trace_ext4_releasepage(page);

3011 3012 3013
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3014 3015 3016 3017
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3018 3019
}

3020 3021 3022 3023 3024
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3025
int ext4_get_block_write(struct inode *inode, sector_t iblock,
3026 3027
		   struct buffer_head *bh_result, int create)
{
3028
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3029
		   inode->i_ino, create);
3030 3031
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3032 3033
}

3034
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3035
		   struct buffer_head *bh_result, int create)
3036
{
3037 3038 3039 3040
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
3041 3042
}

3043
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3044 3045
			    ssize_t size, void *private, int ret,
			    bool is_async)
3046
{
3047
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
3048 3049
        ext4_io_end_t *io_end = iocb->private;

3050 3051
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3052
		goto out;
3053

3054
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3055
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3056 3057 3058
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

3059 3060
	iocb->private = NULL;

3061
	/* if not aio dio with unwritten extents, just free io and return */
3062
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3063
		ext4_free_io_end(io_end);
3064
out:
3065
		inode_dio_done(inode);
3066 3067 3068
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3069 3070
	}

3071 3072
	io_end->offset = offset;
	io_end->size = size;
3073 3074 3075 3076
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3077

3078
	ext4_add_complete_io(io_end);
3079
}
3080

3081 3082 3083 3084 3085
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
3086
 * For holes, we fallocate those blocks, mark them as uninitialized
3087
 * If those blocks were preallocated, we mark sure they are split, but
3088
 * still keep the range to write as uninitialized.
3089
 *
3090
 * The unwritten extents will be converted to written when DIO is completed.
3091
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
3092
 * set up an end_io call back function, which will do the conversion
3093
 * when async direct IO completed.
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
3108 3109 3110
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
3111
	loff_t final_size = offset + count;
3112

3113 3114 3115
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3116

3117
	BUG_ON(iocb->private == NULL);
3118

3119 3120
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
3121

3122 3123 3124 3125 3126
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
3127

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
3154
		}
3155 3156
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
3157
		/*
3158 3159 3160 3161
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
3162
		 */
3163 3164
		ext4_inode_aio_set(inode, io_end);
	}
3165

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3212

3213 3214 3215 3216 3217 3218
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3219
	}
3220

3221
	return ret;
3222 3223 3224 3225 3226 3227 3228 3229
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3230
	ssize_t ret;
3231

3232 3233 3234 3235 3236 3237
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3238 3239 3240 3241
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3242
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3243
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3244 3245 3246 3247 3248 3249
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3250 3251
}

3252
/*
3253
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3265
static int ext4_journalled_set_page_dirty(struct page *page)
3266 3267 3268 3269 3270
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3271
static const struct address_space_operations ext4_ordered_aops = {
3272 3273
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3274
	.writepage		= ext4_writepage,
3275 3276 3277 3278 3279 3280 3281 3282
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3283
	.error_remove_page	= generic_error_remove_page,
3284 3285
};

3286
static const struct address_space_operations ext4_writeback_aops = {
3287 3288
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3289
	.writepage		= ext4_writepage,
3290 3291 3292 3293 3294 3295 3296 3297
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3298
	.error_remove_page	= generic_error_remove_page,
3299 3300
};

3301
static const struct address_space_operations ext4_journalled_aops = {
3302 3303
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3304
	.writepage		= ext4_writepage,
3305 3306 3307 3308
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3309
	.invalidatepage		= ext4_journalled_invalidatepage,
3310
	.releasepage		= ext4_releasepage,
3311
	.direct_IO		= ext4_direct_IO,
3312
	.is_partially_uptodate  = block_is_partially_uptodate,
3313
	.error_remove_page	= generic_error_remove_page,
3314 3315
};

3316
static const struct address_space_operations ext4_da_aops = {
3317 3318
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3319
	.writepage		= ext4_writepage,
3320 3321 3322 3323 3324 3325 3326 3327 3328
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3329
	.error_remove_page	= generic_error_remove_page,
3330 3331
};

3332
void ext4_set_aops(struct inode *inode)
3333
{
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3348
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3349 3350 3351 3352
		break;
	default:
		BUG();
	}
3353 3354
}

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3375
		return -ENOMEM;
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3404
 * from:   The starting byte offset (from the beginning of the file)
3405 3406 3407 3408 3409 3410 3411
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3412
 *         for updating the contents of a page whose blocks may
3413 3414 3415
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3416
 * Returns zero on success or negative on failure.
3417
 */
E
Eric Sandeen 已提交
3418
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3444 3445
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3458 3459
		unsigned int end_of_block, range_to_discard;

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3545
		} else
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3569 3570 3571 3572 3573 3574 3575 3576
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3577
 * Returns: 0 on success or negative on failure
3578 3579 3580 3581 3582 3583
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3584
		return -EOPNOTSUPP;
3585

3586 3587
	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		return ext4_ind_punch_hole(file, offset, length);
3588

3589 3590
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3591
		return -EOPNOTSUPP;
3592 3593
	}

3594 3595
	trace_ext4_punch_hole(inode, offset, length);

3596 3597 3598
	return ext4_ext_punch_hole(file, offset, length);
}

3599
/*
3600
 * ext4_truncate()
3601
 *
3602 3603
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3604 3605
 * simultaneously on behalf of the same inode.
 *
3606
 * As we work through the truncate and commit bits of it to the journal there
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3620
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3621
 * that this inode's truncate did not complete and it will again call
3622 3623
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3624
 * that's fine - as long as they are linked from the inode, the post-crash
3625
 * ext4_truncate() run will find them and release them.
3626
 */
3627
void ext4_truncate(struct inode *inode)
3628
{
3629 3630
	trace_ext4_truncate_enter(inode);

3631
	if (!ext4_can_truncate(inode))
3632 3633
		return;

3634
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3635

3636
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3637
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3638

3639 3640 3641 3642 3643 3644 3645 3646
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

3647
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3648
		ext4_ext_truncate(inode);
3649 3650
	else
		ext4_ind_truncate(inode);
3651

3652
	trace_ext4_truncate_exit(inode);
3653 3654 3655
}

/*
3656
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3657 3658 3659 3660
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3661 3662
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3663
{
3664 3665 3666 3667 3668 3669
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3670
	iloc->bh = NULL;
3671 3672
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3673

3674 3675 3676
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3677 3678
		return -EIO;

3679 3680 3681
	/*
	 * Figure out the offset within the block group inode table
	 */
3682
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3683 3684 3685 3686 3687 3688
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3689
	if (unlikely(!bh))
3690
		return -ENOMEM;
3691 3692
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3716
			int i, start;
3717

3718
			start = inode_offset & ~(inodes_per_block - 1);
3719

3720 3721
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3722
			if (unlikely(!bitmap_bh))
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3734
			for (i = start; i < start + inodes_per_block; i++) {
3735 3736
				if (i == inode_offset)
					continue;
3737
				if (ext4_test_bit(i, bitmap_bh->b_data))
3738 3739 3740
					break;
			}
			brelse(bitmap_bh);
3741
			if (i == start + inodes_per_block) {
3742 3743 3744 3745 3746 3747 3748 3749 3750
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3751 3752 3753 3754 3755 3756 3757 3758 3759
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3760
			/* s_inode_readahead_blks is always a power of 2 */
3761 3762 3763 3764 3765
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3766
			if (ext4_has_group_desc_csum(sb))
3767
				num -= ext4_itable_unused_count(sb, gdp);
3768 3769 3770 3771 3772 3773 3774
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3775 3776 3777 3778 3779
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3780
		trace_ext4_load_inode(inode);
3781 3782
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3783
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3784 3785
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3786 3787
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3788 3789 3790 3791 3792 3793 3794 3795 3796
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3797
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3798 3799
{
	/* We have all inode data except xattrs in memory here. */
3800
	return __ext4_get_inode_loc(inode, iloc,
3801
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3802 3803
}

3804
void ext4_set_inode_flags(struct inode *inode)
3805
{
3806
	unsigned int flags = EXT4_I(inode)->i_flags;
3807 3808

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3809
	if (flags & EXT4_SYNC_FL)
3810
		inode->i_flags |= S_SYNC;
3811
	if (flags & EXT4_APPEND_FL)
3812
		inode->i_flags |= S_APPEND;
3813
	if (flags & EXT4_IMMUTABLE_FL)
3814
		inode->i_flags |= S_IMMUTABLE;
3815
	if (flags & EXT4_NOATIME_FL)
3816
		inode->i_flags |= S_NOATIME;
3817
	if (flags & EXT4_DIRSYNC_FL)
3818 3819 3820
		inode->i_flags |= S_DIRSYNC;
}

3821 3822 3823
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3844
}
3845

3846
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3847
				  struct ext4_inode_info *ei)
3848 3849
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3850 3851
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3852 3853 3854 3855 3856 3857

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3858
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3859 3860 3861 3862 3863
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3864 3865 3866 3867
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3868

3869 3870 3871 3872 3873 3874
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3875
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3876
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3877
		ext4_find_inline_data_nolock(inode);
3878 3879
	} else
		EXT4_I(inode)->i_inline_off = 0;
3880 3881
}

3882
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3883
{
3884 3885
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3886 3887
	struct ext4_inode_info *ei;
	struct inode *inode;
3888
	journal_t *journal = EXT4_SB(sb)->s_journal;
3889
	long ret;
3890
	int block;
3891 3892
	uid_t i_uid;
	gid_t i_gid;
3893

3894 3895 3896 3897 3898 3899 3900
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3901
	iloc.bh = NULL;
3902

3903 3904
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3905
		goto bad_inode;
3906
	raw_inode = ext4_raw_inode(&iloc);
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3940
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3941 3942
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3943
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3944 3945
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3946
	}
3947 3948
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3949
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3950

3951
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3952
	ei->i_inline_off = 0;
3953 3954 3955 3956 3957 3958 3959 3960 3961
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3962
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3963
			/* this inode is deleted */
3964
			ret = -ESTALE;
3965 3966 3967 3968 3969 3970 3971 3972
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3973
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3974
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3975
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3976 3977
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3978
	inode->i_size = ext4_isize(raw_inode);
3979
	ei->i_disksize = inode->i_size;
3980 3981 3982
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3983 3984
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3985
	ei->i_last_alloc_group = ~0;
3986 3987 3988 3989
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3990
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3991 3992 3993
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4005
		read_lock(&journal->j_state_lock);
4006 4007 4008 4009 4010 4011 4012 4013
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4014
		read_unlock(&journal->j_state_lock);
4015 4016 4017 4018
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4019
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4020 4021
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4022 4023
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4024
		} else {
4025
			ext4_iget_extra_inode(inode, raw_inode, ei);
4026
		}
4027
	}
4028

K
Kalpak Shah 已提交
4029 4030 4031 4032 4033
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4034 4035 4036 4037 4038 4039 4040
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4041
	ret = 0;
4042
	if (ei->i_file_acl &&
4043
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4044 4045
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4046 4047
		ret = -EIO;
		goto bad_inode;
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
4061
	}
4062
	if (ret)
4063
		goto bad_inode;
4064

4065
	if (S_ISREG(inode->i_mode)) {
4066 4067 4068
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4069
	} else if (S_ISDIR(inode->i_mode)) {
4070 4071
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4072
	} else if (S_ISLNK(inode->i_mode)) {
4073
		if (ext4_inode_is_fast_symlink(inode)) {
4074
			inode->i_op = &ext4_fast_symlink_inode_operations;
4075 4076 4077
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4078 4079
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4080
		}
4081 4082
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4083
		inode->i_op = &ext4_special_inode_operations;
4084 4085 4086 4087 4088 4089
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4090 4091
	} else {
		ret = -EIO;
4092
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4093
		goto bad_inode;
4094
	}
4095
	brelse(iloc.bh);
4096
	ext4_set_inode_flags(inode);
4097 4098
	unlock_new_inode(inode);
	return inode;
4099 4100

bad_inode:
4101
	brelse(iloc.bh);
4102 4103
	iget_failed(inode);
	return ERR_PTR(ret);
4104 4105
}

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
4116
		 * i_blocks can be represented in a 32 bit variable
4117 4118
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4119
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4120
		raw_inode->i_blocks_high = 0;
4121
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4122 4123 4124 4125 4126 4127
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4128 4129 4130 4131
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4132
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4133
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4134
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4135
	} else {
4136
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4137 4138 4139 4140
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4141
	}
4142
	return 0;
4143 4144
}

4145 4146 4147 4148 4149 4150 4151
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4152
static int ext4_do_update_inode(handle_t *handle,
4153
				struct inode *inode,
4154
				struct ext4_iloc *iloc)
4155
{
4156 4157
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4158 4159
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4160
	int need_datasync = 0;
4161 4162
	uid_t i_uid;
	gid_t i_gid;
4163 4164 4165

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4166
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4167
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4168

4169
	ext4_get_inode_flags(ei);
4170
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4171 4172
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4173
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4174 4175
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4176 4177 4178 4179
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4180
		if (!ei->i_dtime) {
4181
			raw_inode->i_uid_high =
4182
				cpu_to_le16(high_16_bits(i_uid));
4183
			raw_inode->i_gid_high =
4184
				cpu_to_le16(high_16_bits(i_gid));
4185 4186 4187 4188 4189
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4190 4191
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4192 4193 4194 4195
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4196 4197 4198 4199 4200 4201

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4202 4203
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4204
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4205
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4206 4207
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4208 4209
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4210
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4211 4212 4213 4214
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4230
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4231
			ext4_handle_sync(handle);
4232
			err = ext4_handle_dirty_super(handle, sb);
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4247
	} else if (!ext4_has_inline_data(inode)) {
4248 4249
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4250
	}
4251

4252 4253 4254 4255 4256
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4257
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4258 4259
	}

4260 4261
	ext4_inode_csum_set(inode, raw_inode, ei);

4262
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4263
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4264 4265
	if (!err)
		err = rc;
4266
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4267

4268
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4269
out_brelse:
4270
	brelse(bh);
4271
	ext4_std_error(inode->i_sb, err);
4272 4273 4274 4275
	return err;
}

/*
4276
 * ext4_write_inode()
4277 4278 4279 4280 4281
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4282
 *   transaction to commit.
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4293
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4310
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4311
{
4312 4313
	int err;

4314 4315 4316
	if (current->flags & PF_MEMALLOC)
		return 0;

4317 4318 4319 4320 4321 4322
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4323

4324
		if (wbc->sync_mode != WB_SYNC_ALL)
4325 4326 4327 4328 4329
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4330

4331
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4332 4333
		if (err)
			return err;
4334
		if (wbc->sync_mode == WB_SYNC_ALL)
4335 4336
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4337 4338
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4339 4340
			err = -EIO;
		}
4341
		brelse(iloc.bh);
4342 4343
	}
	return err;
4344 4345
}

4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4387
/*
4388
 * ext4_setattr()
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4402 4403 4404 4405 4406 4407 4408 4409
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4410
 */
4411
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4412 4413 4414
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4415
	int orphan = 0;
4416 4417 4418 4419 4420 4421
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4422
	if (is_quota_modification(inode, attr))
4423
		dquot_initialize(inode);
4424 4425
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4426 4427 4428 4429
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4430 4431 4432
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4433 4434 4435 4436
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4437
		error = dquot_transfer(inode, attr);
4438
		if (error) {
4439
			ext4_journal_stop(handle);
4440 4441 4442 4443 4444 4445 4446 4447
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4448 4449
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4450 4451
	}

4452
	if (attr->ia_valid & ATTR_SIZE) {
4453

4454
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4455 4456
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4457 4458
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4459 4460 4461
		}
	}

4462
	if (S_ISREG(inode->i_mode) &&
4463
	    attr->ia_valid & ATTR_SIZE &&
4464
	    (attr->ia_size < inode->i_size)) {
4465 4466
		handle_t *handle;

4467
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4468 4469 4470 4471
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4472 4473 4474 4475
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4476 4477
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4478 4479
		if (!error)
			error = rc;
4480
		ext4_journal_stop(handle);
4481 4482 4483 4484 4485 4486

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4487 4488
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4489 4490 4491 4492 4493
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4494
				orphan = 0;
4495 4496 4497 4498
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4499 4500
	}

4501
	if (attr->ia_valid & ATTR_SIZE) {
4502 4503 4504 4505 4506 4507 4508 4509 4510
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4511
			if (orphan) {
4512 4513 4514 4515 4516 4517
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4518
			}
4519 4520 4521 4522 4523
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4524
		}
4525
		ext4_truncate(inode);
4526
	}
4527

C
Christoph Hellwig 已提交
4528 4529 4530 4531 4532 4533 4534 4535 4536
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4537
	if (orphan && inode->i_nlink)
4538
		ext4_orphan_del(NULL, inode);
4539 4540

	if (!rc && (ia_valid & ATTR_MODE))
4541
		rc = ext4_acl_chmod(inode);
4542 4543

err_out:
4544
	ext4_std_error(inode->i_sb, error);
4545 4546 4547 4548 4549
	if (!error)
		error = rc;
	return error;
}

4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4569 4570
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4571 4572 4573 4574

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4575

4576 4577
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4578
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4579
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4580
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4581
}
4582

4583
/*
4584 4585 4586
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4587
 *
4588
 * If datablocks are discontiguous, they are possible to spread over
4589
 * different block groups too. If they are contiguous, with flexbg,
4590
 * they could still across block group boundary.
4591
 *
4592 4593
 * Also account for superblock, inode, quota and xattr blocks
 */
4594
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4595
{
4596 4597
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4624 4625
	if (groups > ngroups)
		groups = ngroups;
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4639
 * Calculate the total number of credits to reserve to fit
4640 4641
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4642
 *
4643
 * This could be called via ext4_write_begin()
4644
 *
4645
 * We need to consider the worse case, when
4646
 * one new block per extent.
4647
 */
A
Alex Tomas 已提交
4648
int ext4_writepage_trans_blocks(struct inode *inode)
4649
{
4650
	int bpp = ext4_journal_blocks_per_page(inode);
4651 4652
	int ret;

4653
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4654

4655
	/* Account for data blocks for journalled mode */
4656
	if (ext4_should_journal_data(inode))
4657
		ret += bpp;
4658 4659
	return ret;
}
4660 4661 4662 4663 4664

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4665
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4666 4667 4668 4669 4670 4671 4672 4673 4674
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4675
/*
4676
 * The caller must have previously called ext4_reserve_inode_write().
4677 4678
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4679
int ext4_mark_iloc_dirty(handle_t *handle,
4680
			 struct inode *inode, struct ext4_iloc *iloc)
4681 4682 4683
{
	int err = 0;

4684
	if (IS_I_VERSION(inode))
4685 4686
		inode_inc_iversion(inode);

4687 4688 4689
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4690
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4691
	err = ext4_do_update_inode(handle, inode, iloc);
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4702 4703
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4704
{
4705 4706 4707 4708 4709 4710 4711 4712 4713
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4714 4715
		}
	}
4716
	ext4_std_error(inode->i_sb, err);
4717 4718 4719
	return err;
}

4720 4721 4722 4723
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4724 4725 4726 4727
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4740 4741
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4766
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4767
{
4768
	struct ext4_iloc iloc;
4769 4770 4771
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4772 4773

	might_sleep();
4774
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4775
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4776 4777
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4778
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4792 4793
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4794 4795
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4796
					ext4_warning(inode->i_sb,
4797 4798 4799
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4800 4801
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4802 4803 4804 4805
				}
			}
		}
	}
4806
	if (!err)
4807
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4808 4809 4810 4811
	return err;
}

/*
4812
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4813 4814 4815 4816 4817
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4818
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4819 4820 4821 4822 4823 4824
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4825
void ext4_dirty_inode(struct inode *inode, int flags)
4826 4827 4828
{
	handle_t *handle;

4829
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4830 4831
	if (IS_ERR(handle))
		goto out;
4832 4833 4834

	ext4_mark_inode_dirty(handle, inode);

4835
	ext4_journal_stop(handle);
4836 4837 4838 4839 4840 4841 4842 4843
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4844
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4845 4846 4847
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4848
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4849
{
4850
	struct ext4_iloc iloc;
4851 4852 4853

	int err = 0;
	if (handle) {
4854
		err = ext4_get_inode_loc(inode, &iloc);
4855 4856
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4857
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4858
			if (!err)
4859
				err = ext4_handle_dirty_metadata(handle,
4860
								 NULL,
4861
								 iloc.bh);
4862 4863 4864
			brelse(iloc.bh);
		}
	}
4865
	ext4_std_error(inode->i_sb, err);
4866 4867 4868 4869
	return err;
}
#endif

4870
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4886
	journal = EXT4_JOURNAL(inode);
4887 4888
	if (!journal)
		return 0;
4889
	if (is_journal_aborted(journal))
4890
		return -EROFS;
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4902

4903 4904 4905 4906
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4907
	jbd2_journal_lock_updates(journal);
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4918
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4919 4920
	else {
		jbd2_journal_flush(journal);
4921
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4922
	}
4923
	ext4_set_aops(inode);
4924

4925
	jbd2_journal_unlock_updates(journal);
4926
	ext4_inode_resume_unlocked_dio(inode);
4927 4928 4929

	/* Finally we can mark the inode as dirty. */

4930
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4931 4932 4933
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4934
	err = ext4_mark_inode_dirty(handle, inode);
4935
	ext4_handle_sync(handle);
4936 4937
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4938 4939 4940

	return err;
}
4941 4942 4943 4944 4945 4946

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4947
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4948
{
4949
	struct page *page = vmf->page;
4950 4951
	loff_t size;
	unsigned long len;
4952
	int ret;
4953 4954 4955
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4956 4957 4958
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4959

4960
	sb_start_pagefault(inode->i_sb);
4961
	file_update_time(vma->vm_file);
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4972
	}
4973 4974

	lock_page(page);
4975 4976 4977 4978 4979 4980
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4981
	}
4982 4983 4984 4985 4986

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4987
	/*
4988 4989
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4990
	 */
4991
	if (page_has_buffers(page)) {
4992 4993 4994
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
4995 4996 4997 4998
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4999
		}
5000
	}
5001
	unlock_page(page);
5002 5003 5004 5005 5006 5007
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
5008 5009
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
5010
	if (IS_ERR(handle)) {
5011
		ret = VM_FAULT_SIGBUS;
5012 5013 5014 5015
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
5016
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5017 5018 5019
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
5020
			ext4_journal_stop(handle);
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
5031
	sb_end_pagefault(inode->i_sb);
5032 5033
	return ret;
}