timekeeping.c 55.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
69 70
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 72 73 74
		tk->xtime_sec++;
	}
}

75 76 77 78 79
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
80
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 82 83
	return ts;
}

84
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 86
{
	tk->xtime_sec = ts->tv_sec;
87
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 89
}

90
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec += ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94
	tk_normalize_xtime(tk);
95
}
96

97
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98
{
99
	struct timespec64 tmp;
100 101 102 103 104

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
105
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106
					-tk->wall_to_monotonic.tv_nsec);
107
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108
	tk->wall_to_monotonic = wtm;
109 110
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
111
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 113
}

114
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115
{
116
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 118
}

119
#ifdef CONFIG_DEBUG_TIMEKEEPING
120 121
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

122 123 124
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

125 126
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
127 128

	if (offset > max_cycles) {
129
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130
				offset, name, max_cycles);
131
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 133 134 135 136 137 138
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
139

140 141
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 143 144
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
145
			tk->last_warning = jiffies;
146
		}
147
		tk->underflow_seen = 0;
148 149
	}

150 151
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 153 154
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
155
			tk->last_warning = jiffies;
156
		}
157
		tk->overflow_seen = 0;
158
	}
159
}
160 161 162

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
163
	struct timekeeper *tk = &tk_core.timekeeper;
164 165
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
181

182
	delta = clocksource_delta(now, last, mask);
183

184 185 186 187
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
188
	if (unlikely((~delta & mask) < (mask >> 3))) {
189
		tk->underflow_seen = 1;
190
		delta = 0;
191
	}
192

193
	/* Cap delta value to the max_cycles values to avoid mult overflows */
194
	if (unlikely(delta > max)) {
195
		tk->overflow_seen = 1;
196
		delta = tkr->clock->max_cycles;
197
	}
198 199 200

	return delta;
}
201 202 203 204
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
205 206 207 208 209 210 211 212 213 214 215 216
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
217 218
#endif

219
/**
220
 * tk_setup_internals - Set up internals to use clocksource clock.
221
 *
222
 * @tk:		The target timekeeper to setup.
223 224 225 226 227 228 229
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
230
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 232
{
	cycle_t interval;
233
	u64 tmp, ntpinterval;
234
	struct clocksource *old_clock;
235

236 237 238 239 240
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241

P
Peter Zijlstra 已提交
242 243 244 245 246
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

247 248 249
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
250
	ntpinterval = tmp;
251 252
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
253 254 255 256
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
257
	tk->cycle_interval = interval;
258 259

	/* Go back from cycles -> shifted ns */
260 261 262
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
263
		((u64) interval * clock->mult) >> clock->shift;
264

265 266 267 268
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
269
			tk->tkr_mono.xtime_nsec >>= -shift_change;
270
		else
271
			tk->tkr_mono.xtime_nsec <<= shift_change;
272
	}
P
Peter Zijlstra 已提交
273 274
	tk->tkr_raw.xtime_nsec = 0;

275
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
276
	tk->tkr_raw.shift = clock->shift;
277

278 279
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281 282 283 284 285 286

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
287
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
288
	tk->tkr_raw.mult = clock->mult;
289
	tk->ntp_err_mult = 0;
290
}
291

292
/* Timekeeper helper functions. */
293 294

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 296
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297
#else
298
static inline u32 arch_gettimeoffset(void) { return 0; }
299 300
#endif

301
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
302
{
303
	cycle_t delta;
304
	s64 nsec;
305

306
	delta = timekeeping_get_delta(tkr);
307

308
	nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift;
309

310
	/* If arch requires, add in get_arch_timeoffset() */
311
	return nsec + arch_gettimeoffset();
312 313
}

314 315
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
316
 * @tkr: Timekeeping readout base from which we take the update
317 318 319 320
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
321
 * Employ the latch technique; see @raw_write_seqcount_latch.
322 323 324 325 326 327
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
328
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
329
{
330
	struct tk_read_base *base = tkf->base;
331 332

	/* Force readers off to base[1] */
333
	raw_write_seqcount_latch(&tkf->seq);
334 335

	/* Update base[0] */
336
	memcpy(base, tkr, sizeof(*base));
337 338

	/* Force readers back to base[0] */
339
	raw_write_seqcount_latch(&tkf->seq);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
377
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
378 379 380 381 382 383
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
384
		seq = raw_read_seqcount_latch(&tkf->seq);
385
		tkr = tkf->base + (seq & 0x01);
386
		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
387
	} while (read_seqcount_retry(&tkf->seq, seq));
388 389 390

	return now;
}
391 392 393 394 395

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
396 397
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
398 399 400 401 402 403
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
425
	struct tk_read_base *tkr = &tk->tkr_mono;
426 427 428 429

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
430
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
431 432 433 434 435

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
436 437
}

438 439 440 441
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
442
	struct timespec xt, wm;
443

444
	xt = timespec64_to_timespec(tk_xtime(tk));
445
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
446 447
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
464 465 466
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
	tk->tkr_mono.xtime_nsec -= remainder;
	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
467
	tk->ntp_error += remainder << tk->ntp_error_shift;
468
	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
469 470 471 472 473
}
#else
#define old_vsyscall_fixup(tk)
#endif

474 475
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

476
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
477
{
478
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
479 480 481 482 483 484 485
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
486
	struct timekeeper *tk = &tk_core.timekeeper;
487 488 489
	unsigned long flags;
	int ret;

490
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
491
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
492
	update_pvclock_gtod(tk, true);
493
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
494 495 496 497 498 499 500 501 502 503 504 505 506 507

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

508
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
509
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
510
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
511 512 513 514 515

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

516 517 518 519 520 521 522 523 524 525 526
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

527 528 529 530 531
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
532 533
	u64 seconds;
	u32 nsec;
534 535 536 537 538 539 540 541

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
542 543
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
544
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
545 546

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
547
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
548 549 550 551 552 553

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
554
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
555 556 557
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
558 559
}

560
/* must hold timekeeper_lock */
561
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
562
{
563
	if (action & TK_CLEAR_NTP) {
564
		tk->ntp_error = 0;
565 566
		ntp_clear();
	}
567

568
	tk_update_leap_state(tk);
569 570
	tk_update_ktime_data(tk);

571 572 573
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

574
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
575
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
576 577 578

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
579 580 581 582 583 584 585 586
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
587 588
}

589
/**
590
 * timekeeping_forward_now - update clock to the current time
591
 *
592 593 594
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
595
 */
596
static void timekeeping_forward_now(struct timekeeper *tk)
597
{
598
	struct clocksource *clock = tk->tkr_mono.clock;
599
	cycle_t cycle_now, delta;
600
	s64 nsec;
601

602 603 604
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
605
	tk->tkr_raw.cycle_last  = cycle_now;
606

607
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
608

609
	/* If arch requires, add in get_arch_timeoffset() */
610
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
611

612
	tk_normalize_xtime(tk);
613

P
Peter Zijlstra 已提交
614
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
615
	timespec64_add_ns(&tk->raw_time, nsec);
616 617 618
}

/**
619
 * __getnstimeofday64 - Returns the time of day in a timespec64.
620 621
 * @ts:		pointer to the timespec to be set
 *
622 623
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
624
 */
625
int __getnstimeofday64(struct timespec64 *ts)
626
{
627
	struct timekeeper *tk = &tk_core.timekeeper;
628
	unsigned long seq;
629
	s64 nsecs = 0;
630 631

	do {
632
		seq = read_seqcount_begin(&tk_core.seq);
633

634
		ts->tv_sec = tk->xtime_sec;
635
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
636

637
	} while (read_seqcount_retry(&tk_core.seq, seq));
638

639
	ts->tv_nsec = 0;
640
	timespec64_add_ns(ts, nsecs);
641 642 643 644 645 646 647 648 649

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
650
EXPORT_SYMBOL(__getnstimeofday64);
651 652

/**
653
 * getnstimeofday64 - Returns the time of day in a timespec64.
654
 * @ts:		pointer to the timespec64 to be set
655
 *
656
 * Returns the time of day in a timespec64 (WARN if suspended).
657
 */
658
void getnstimeofday64(struct timespec64 *ts)
659
{
660
	WARN_ON(__getnstimeofday64(ts));
661
}
662
EXPORT_SYMBOL(getnstimeofday64);
663

664 665
ktime_t ktime_get(void)
{
666
	struct timekeeper *tk = &tk_core.timekeeper;
667
	unsigned int seq;
668 669
	ktime_t base;
	s64 nsecs;
670 671 672 673

	WARN_ON(timekeeping_suspended);

	do {
674
		seq = read_seqcount_begin(&tk_core.seq);
675 676
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
677

678
	} while (read_seqcount_retry(&tk_core.seq, seq));
679

680
	return ktime_add_ns(base, nsecs);
681 682 683
}
EXPORT_SYMBOL_GPL(ktime_get);

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
718 719
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
720 721 722 723 724 725 726 727

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

748 749 750 751 752 753 754 755 756 757 758 759
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
760 761
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
762 763 764 765 766 767 768

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

769
/**
770
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
771 772 773 774
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
775
 * in normalized timespec64 format in the variable pointed to by @ts.
776
 */
777
void ktime_get_ts64(struct timespec64 *ts)
778
{
779
	struct timekeeper *tk = &tk_core.timekeeper;
780
	struct timespec64 tomono;
781
	s64 nsec;
782 783 784 785 786
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
787
		seq = read_seqcount_begin(&tk_core.seq);
788
		ts->tv_sec = tk->xtime_sec;
789
		nsec = timekeeping_get_ns(&tk->tkr_mono);
790
		tomono = tk->wall_to_monotonic;
791

792
	} while (read_seqcount_retry(&tk_core.seq, seq));
793

794 795 796
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
797
}
798
EXPORT_SYMBOL_GPL(ktime_get_ts64);
799

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

848 849 850
#ifdef CONFIG_NTP_PPS

/**
851
 * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
852 853 854 855 856 857 858
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
859
void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
860
{
861
	struct timekeeper *tk = &tk_core.timekeeper;
862 863 864 865 866 867
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
868
		seq = read_seqcount_begin(&tk_core.seq);
869

870
		*ts_raw = tk->raw_time;
871
		ts_real->tv_sec = tk->xtime_sec;
872
		ts_real->tv_nsec = 0;
873

P
Peter Zijlstra 已提交
874
		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
875
		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
876

877
	} while (read_seqcount_retry(&tk_core.seq, seq));
878

879 880
	timespec64_add_ns(ts_raw, nsecs_raw);
	timespec64_add_ns(ts_real, nsecs_real);
881
}
882
EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
883 884 885

#endif /* CONFIG_NTP_PPS */

886 887 888 889
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
890
 * NOTE: Users should be converted to using getnstimeofday()
891 892 893
 */
void do_gettimeofday(struct timeval *tv)
{
894
	struct timespec64 now;
895

896
	getnstimeofday64(&now);
897 898 899 900
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
901

902
/**
903 904
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
905 906 907
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
908
int do_settimeofday64(const struct timespec64 *ts)
909
{
910
	struct timekeeper *tk = &tk_core.timekeeper;
911
	struct timespec64 ts_delta, xt;
912
	unsigned long flags;
913
	int ret = 0;
914

915
	if (!timespec64_valid_strict(ts))
916 917
		return -EINVAL;

918
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
919
	write_seqcount_begin(&tk_core.seq);
920

921
	timekeeping_forward_now(tk);
922

923
	xt = tk_xtime(tk);
924 925
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
926

927 928 929 930 931
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

932
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
933

934
	tk_set_xtime(tk, ts);
935
out:
936
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
937

938
	write_seqcount_end(&tk_core.seq);
939
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
940 941 942 943

	/* signal hrtimers about time change */
	clock_was_set();

944
	return ret;
945
}
946
EXPORT_SYMBOL(do_settimeofday64);
947

948 949 950 951 952 953 954 955
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
956
	struct timekeeper *tk = &tk_core.timekeeper;
957
	unsigned long flags;
958
	struct timespec64 ts64, tmp;
959
	int ret = 0;
960 961 962 963

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

964 965
	ts64 = timespec_to_timespec64(*ts);

966
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
967
	write_seqcount_begin(&tk_core.seq);
968

969
	timekeeping_forward_now(tk);
970

971
	/* Make sure the proposed value is valid */
972
	tmp = timespec64_add(tk_xtime(tk),  ts64);
973 974
	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
	    !timespec64_valid_strict(&tmp)) {
975 976 977
		ret = -EINVAL;
		goto error;
	}
978

979 980
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
981

982
error: /* even if we error out, we forwarded the time, so call update */
983
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
984

985
	write_seqcount_end(&tk_core.seq);
986
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
987 988 989 990

	/* signal hrtimers about time change */
	clock_was_set();

991
	return ret;
992 993 994
}
EXPORT_SYMBOL(timekeeping_inject_offset);

995 996 997 998 999 1000 1001

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
1002
	struct timekeeper *tk = &tk_core.timekeeper;
1003 1004 1005 1006
	unsigned int seq;
	s32 ret;

	do {
1007
		seq = read_seqcount_begin(&tk_core.seq);
1008
		ret = tk->tai_offset;
1009
	} while (read_seqcount_retry(&tk_core.seq, seq));
1010 1011 1012 1013 1014 1015 1016 1017

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1018
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1019 1020
{
	tk->tai_offset = tai_offset;
1021
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1022 1023 1024 1025 1026 1027 1028 1029
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1030
	struct timekeeper *tk = &tk_core.timekeeper;
1031 1032
	unsigned long flags;

1033
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1034
	write_seqcount_begin(&tk_core.seq);
1035
	__timekeeping_set_tai_offset(tk, tai_offset);
1036
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1037
	write_seqcount_end(&tk_core.seq);
1038
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1039
	clock_was_set();
1040 1041
}

1042 1043 1044 1045 1046
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1047
static int change_clocksource(void *data)
1048
{
1049
	struct timekeeper *tk = &tk_core.timekeeper;
1050
	struct clocksource *new, *old;
1051
	unsigned long flags;
1052

1053
	new = (struct clocksource *) data;
1054

1055
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1056
	write_seqcount_begin(&tk_core.seq);
1057

1058
	timekeeping_forward_now(tk);
1059 1060 1061 1062 1063 1064
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1065
			old = tk->tkr_mono.clock;
1066 1067 1068 1069 1070 1071 1072
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1073
	}
1074
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1075

1076
	write_seqcount_end(&tk_core.seq);
1077
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1078

1079 1080
	return 0;
}
1081

1082 1083 1084 1085 1086 1087 1088
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1089
int timekeeping_notify(struct clocksource *clock)
1090
{
1091
	struct timekeeper *tk = &tk_core.timekeeper;
1092

1093
	if (tk->tkr_mono.clock == clock)
1094
		return 0;
1095
	stop_machine(change_clocksource, clock, NULL);
1096
	tick_clock_notify();
1097
	return tk->tkr_mono.clock == clock ? 0 : -1;
1098
}
1099

1100
/**
1101 1102
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1103 1104 1105
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1106
void getrawmonotonic64(struct timespec64 *ts)
1107
{
1108
	struct timekeeper *tk = &tk_core.timekeeper;
1109
	struct timespec64 ts64;
1110 1111 1112 1113
	unsigned long seq;
	s64 nsecs;

	do {
1114
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1115
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1116
		ts64 = tk->raw_time;
1117

1118
	} while (read_seqcount_retry(&tk_core.seq, seq));
1119

1120
	timespec64_add_ns(&ts64, nsecs);
1121
	*ts = ts64;
1122
}
1123 1124
EXPORT_SYMBOL(getrawmonotonic64);

1125

1126
/**
1127
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1128
 */
1129
int timekeeping_valid_for_hres(void)
1130
{
1131
	struct timekeeper *tk = &tk_core.timekeeper;
1132 1133 1134 1135
	unsigned long seq;
	int ret;

	do {
1136
		seq = read_seqcount_begin(&tk_core.seq);
1137

1138
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1139

1140
	} while (read_seqcount_retry(&tk_core.seq, seq));
1141 1142 1143 1144

	return ret;
}

1145 1146 1147 1148 1149
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1150
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1151 1152
	unsigned long seq;
	u64 ret;
1153

J
John Stultz 已提交
1154
	do {
1155
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1156

1157
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1158

1159
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1160 1161

	return ret;
1162 1163
}

1164
/**
1165
 * read_persistent_clock -  Return time from the persistent clock.
1166 1167
 *
 * Weak dummy function for arches that do not yet support it.
1168 1169
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1170 1171 1172
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1173
void __weak read_persistent_clock(struct timespec *ts)
1174
{
1175 1176
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1177 1178
}

1179 1180 1181 1182 1183 1184 1185 1186
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1187
/**
X
Xunlei Pang 已提交
1188
 * read_boot_clock64 -  Return time of the system start.
1189 1190 1191
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1192
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1193 1194 1195
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1196
void __weak read_boot_clock64(struct timespec64 *ts)
1197 1198 1199 1200 1201
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1202 1203 1204 1205 1206 1207
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1208 1209 1210 1211 1212
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1213
	struct timekeeper *tk = &tk_core.timekeeper;
1214
	struct clocksource *clock;
1215
	unsigned long flags;
1216
	struct timespec64 now, boot, tmp;
1217

1218
	read_persistent_clock64(&now);
1219
	if (!timespec64_valid_strict(&now)) {
1220 1221 1222 1223
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1224
	} else if (now.tv_sec || now.tv_nsec)
1225
		persistent_clock_exists = true;
1226

1227
	read_boot_clock64(&boot);
1228
	if (!timespec64_valid_strict(&boot)) {
1229 1230 1231 1232 1233
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1234

1235
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1236
	write_seqcount_begin(&tk_core.seq);
1237 1238
	ntp_init();

1239
	clock = clocksource_default_clock();
1240 1241
	if (clock->enable)
		clock->enable(clock);
1242
	tk_setup_internals(tk, clock);
1243

1244 1245 1246
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1247
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1248
		boot = tk_xtime(tk);
1249

1250
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1251
	tk_set_wall_to_mono(tk, tmp);
1252

1253
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1254

1255
	write_seqcount_end(&tk_core.seq);
1256
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1257 1258
}

1259
/* time in seconds when suspend began for persistent clock */
1260
static struct timespec64 timekeeping_suspend_time;
1261

1262 1263 1264 1265 1266 1267 1268
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1269
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1270
					   struct timespec64 *delta)
1271
{
1272
	if (!timespec64_valid_strict(delta)) {
1273 1274 1275
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1276 1277
		return;
	}
1278
	tk_xtime_add(tk, delta);
1279
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1280
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1281
	tk_debug_account_sleep_time(delta);
1282 1283
}

1284
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1320
/**
1321 1322
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1323
 *
1324
 * This hook is for architectures that cannot support read_persistent_clock64
1325
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1326
 * and also don't have an effective nonstop clocksource.
1327 1328 1329 1330
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1331
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1332
{
1333
	struct timekeeper *tk = &tk_core.timekeeper;
1334
	unsigned long flags;
1335

1336
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1337
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1338

1339
	timekeeping_forward_now(tk);
1340

1341
	__timekeeping_inject_sleeptime(tk, delta);
1342

1343
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1344

1345
	write_seqcount_end(&tk_core.seq);
1346
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1347 1348 1349 1350

	/* signal hrtimers about time change */
	clock_was_set();
}
1351
#endif
1352

1353 1354 1355
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1356
void timekeeping_resume(void)
1357
{
1358
	struct timekeeper *tk = &tk_core.timekeeper;
1359
	struct clocksource *clock = tk->tkr_mono.clock;
1360
	unsigned long flags;
1361
	struct timespec64 ts_new, ts_delta;
1362
	cycle_t cycle_now, cycle_delta;
1363

1364
	sleeptime_injected = false;
1365
	read_persistent_clock64(&ts_new);
1366

1367
	clockevents_resume();
1368 1369
	clocksource_resume();

1370
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1371
	write_seqcount_begin(&tk_core.seq);
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1385
	cycle_now = tk->tkr_mono.read(clock);
1386
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1387
		cycle_now > tk->tkr_mono.cycle_last) {
1388 1389 1390 1391 1392
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1393 1394
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1409
		ts_delta = ns_to_timespec64(nsec);
1410
		sleeptime_injected = true;
1411 1412
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1413
		sleeptime_injected = true;
1414
	}
1415

1416
	if (sleeptime_injected)
1417 1418 1419
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1420
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1421 1422
	tk->tkr_raw.cycle_last  = cycle_now;

1423
	tk->ntp_error = 0;
1424
	timekeeping_suspended = 0;
1425
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1426
	write_seqcount_end(&tk_core.seq);
1427
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1428 1429 1430

	touch_softlockup_watchdog();

1431
	tick_resume();
1432
	hrtimers_resume();
1433 1434
}

1435
int timekeeping_suspend(void)
1436
{
1437
	struct timekeeper *tk = &tk_core.timekeeper;
1438
	unsigned long flags;
1439 1440
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1441

1442
	read_persistent_clock64(&timekeeping_suspend_time);
1443

1444 1445 1446 1447 1448 1449
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1450
		persistent_clock_exists = true;
1451

1452
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1453
	write_seqcount_begin(&tk_core.seq);
1454
	timekeeping_forward_now(tk);
1455
	timekeeping_suspended = 1;
1456

1457
	if (persistent_clock_exists) {
1458
		/*
1459 1460 1461 1462
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1463
		 */
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1477
	}
1478 1479

	timekeeping_update(tk, TK_MIRROR);
1480
	halt_fast_timekeeper(tk);
1481
	write_seqcount_end(&tk_core.seq);
1482
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1483

1484
	tick_suspend();
M
Magnus Damm 已提交
1485
	clocksource_suspend();
1486
	clockevents_suspend();
1487 1488 1489 1490 1491

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1492
static struct syscore_ops timekeeping_syscore_ops = {
1493 1494 1495 1496
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1497
static int __init timekeeping_init_ops(void)
1498
{
1499 1500
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1501
}
1502
device_initcall(timekeeping_init_ops);
1503 1504

/*
1505
 * Apply a multiplier adjustment to the timekeeper
1506
 */
1507 1508 1509 1510
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1511
{
1512 1513
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1514

1515 1516 1517 1518
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1519
	}
1520 1521 1522
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1523

1524 1525 1526
	/*
	 * So the following can be confusing.
	 *
1527
	 * To keep things simple, lets assume mult_adj == 1 for now.
1528
	 *
1529
	 * When mult_adj != 1, remember that the interval and offset values
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1573
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1574 1575 1576 1577 1578
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1579
	tk->tkr_mono.mult += mult_adj;
1580
	tk->xtime_interval += interval;
1581
	tk->tkr_mono.xtime_nsec -= offset;
1582
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1602 1603
	tk->ntp_tick = ntp_tick_length();

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
A
Andrew Morton 已提交
1616
	tick_error = abs(tick_error);
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1643 1644 1645
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1646 1647
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1648 1649
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1650
	}
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1666 1667 1668
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1669
		tk->ntp_error += neg << tk->ntp_error_shift;
1670
	}
1671 1672
}

1673 1674 1675
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1676
 * Helper function that accumulates the nsecs greater than a second
1677 1678 1679 1680
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1681
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1682
{
1683
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1684
	unsigned int clock_set = 0;
1685

1686
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1687 1688
		int leap;

1689
		tk->tkr_mono.xtime_nsec -= nsecps;
1690 1691 1692 1693
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1694
		if (unlikely(leap)) {
1695
			struct timespec64 ts;
1696 1697

			tk->xtime_sec += leap;
1698

1699 1700 1701
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1702
				timespec64_sub(tk->wall_to_monotonic, ts));
1703

1704 1705
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1706
			clock_set = TK_CLOCK_WAS_SET;
1707
		}
1708
	}
1709
	return clock_set;
1710 1711
}

1712 1713 1714 1715 1716 1717 1718 1719 1720
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1721
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1722 1723
						u32 shift,
						unsigned int *clock_set)
1724
{
T
Thomas Gleixner 已提交
1725
	cycle_t interval = tk->cycle_interval << shift;
1726
	u64 raw_nsecs;
1727

Z
Zhen Lei 已提交
1728
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1729
	if (offset < interval)
1730 1731 1732
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1733
	offset -= interval;
1734
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1735
	tk->tkr_raw.cycle_last  += interval;
1736

1737
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1738
	*clock_set |= accumulate_nsecs_to_secs(tk);
1739

1740
	/* Accumulate raw time */
1741
	raw_nsecs = (u64)tk->raw_interval << shift;
1742
	raw_nsecs += tk->raw_time.tv_nsec;
1743 1744 1745
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1746
		tk->raw_time.tv_sec += raw_secs;
1747
	}
1748
	tk->raw_time.tv_nsec = raw_nsecs;
1749 1750

	/* Accumulate error between NTP and clock interval */
1751
	tk->ntp_error += tk->ntp_tick << shift;
1752 1753
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1754 1755 1756 1757

	return offset;
}

1758 1759 1760 1761
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1762
void update_wall_time(void)
1763
{
1764
	struct timekeeper *real_tk = &tk_core.timekeeper;
1765
	struct timekeeper *tk = &shadow_timekeeper;
1766
	cycle_t offset;
1767
	int shift = 0, maxshift;
1768
	unsigned int clock_set = 0;
J
John Stultz 已提交
1769 1770
	unsigned long flags;

1771
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1772 1773 1774

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1775
		goto out;
1776

J
John Stultz 已提交
1777
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1778
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1779
#else
1780 1781
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1782 1783
#endif

1784
	/* Check if there's really nothing to do */
1785
	if (offset < real_tk->cycle_interval)
1786 1787
		goto out;

1788 1789 1790
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1791 1792 1793 1794
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1795
	 * that is smaller than the offset.  We then accumulate that
1796 1797
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1798
	 */
1799
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1800
	shift = max(0, shift);
1801
	/* Bound shift to one less than what overflows tick_length */
1802
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1803
	shift = min(shift, maxshift);
1804
	while (offset >= tk->cycle_interval) {
1805 1806
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1807
		if (offset < tk->cycle_interval<<shift)
1808
			shift--;
1809 1810 1811
	}

	/* correct the clock when NTP error is too big */
1812
	timekeeping_adjust(tk, offset);
1813

J
John Stultz 已提交
1814
	/*
1815 1816 1817 1818
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1819

J
John Stultz 已提交
1820 1821
	/*
	 * Finally, make sure that after the rounding
1822
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1823
	 */
1824
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1825

1826
	write_seqcount_begin(&tk_core.seq);
1827 1828 1829 1830 1831 1832 1833
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1834
	 * memcpy under the tk_core.seq against one before we start
1835 1836
	 * updating.
	 */
1837
	timekeeping_update(tk, clock_set);
1838
	memcpy(real_tk, tk, sizeof(*tk));
1839
	/* The memcpy must come last. Do not put anything here! */
1840
	write_seqcount_end(&tk_core.seq);
1841
out:
1842
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1843
	if (clock_set)
1844 1845
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1846
}
T
Tomas Janousek 已提交
1847 1848

/**
1849 1850
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1851
 *
1852
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1853 1854 1855 1856 1857 1858
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1859
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1860
{
1861
	struct timekeeper *tk = &tk_core.timekeeper;
1862 1863
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1864
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1865
}
1866
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1867

1868 1869
unsigned long get_seconds(void)
{
1870
	struct timekeeper *tk = &tk_core.timekeeper;
1871 1872

	return tk->xtime_sec;
1873 1874 1875
}
EXPORT_SYMBOL(get_seconds);

1876 1877
struct timespec __current_kernel_time(void)
{
1878
	struct timekeeper *tk = &tk_core.timekeeper;
1879

1880
	return timespec64_to_timespec(tk_xtime(tk));
1881
}
1882

1883
struct timespec64 current_kernel_time64(void)
1884
{
1885
	struct timekeeper *tk = &tk_core.timekeeper;
1886
	struct timespec64 now;
1887 1888 1889
	unsigned long seq;

	do {
1890
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1891

1892
		now = tk_xtime(tk);
1893
	} while (read_seqcount_retry(&tk_core.seq, seq));
1894

1895
	return now;
1896
}
1897
EXPORT_SYMBOL(current_kernel_time64);
1898

1899
struct timespec64 get_monotonic_coarse64(void)
1900
{
1901
	struct timekeeper *tk = &tk_core.timekeeper;
1902
	struct timespec64 now, mono;
1903 1904 1905
	unsigned long seq;

	do {
1906
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1907

1908 1909
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1910
	} while (read_seqcount_retry(&tk_core.seq, seq));
1911

1912
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1913
				now.tv_nsec + mono.tv_nsec);
1914

1915
	return now;
1916
}
1917 1918

/*
1919
 * Must hold jiffies_lock
1920 1921 1922 1923 1924 1925
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1926

1927
/**
1928
 * ktime_get_update_offsets_now - hrtimer helper
1929
 * @cwsseq:	pointer to check and store the clock was set sequence number
1930 1931
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1932
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1933
 *
1934 1935 1936 1937
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
1938
 * Called from hrtimer_interrupt() or retrigger_next_event()
1939
 */
1940 1941
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
1942
{
1943
	struct timekeeper *tk = &tk_core.timekeeper;
1944
	unsigned int seq;
1945 1946
	ktime_t base;
	u64 nsecs;
1947 1948

	do {
1949
		seq = read_seqcount_begin(&tk_core.seq);
1950

1951 1952
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1953 1954
		base = ktime_add_ns(base, nsecs);

1955 1956 1957 1958 1959 1960
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
1961 1962 1963 1964 1965

		/* Handle leapsecond insertion adjustments */
		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

1966
	} while (read_seqcount_retry(&tk_core.seq, seq));
1967

1968
	return base;
1969 1970
}

1971 1972 1973 1974 1975
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1976
	struct timekeeper *tk = &tk_core.timekeeper;
1977
	unsigned long flags;
1978
	struct timespec64 ts;
1979
	s32 orig_tai, tai;
1980 1981 1982 1983 1984 1985 1986
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1998
	getnstimeofday64(&ts);
1999

2000
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2001
	write_seqcount_begin(&tk_core.seq);
2002

2003
	orig_tai = tai = tk->tai_offset;
2004
	ret = __do_adjtimex(txc, &ts, &tai);
2005

2006 2007
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2008
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2009
	}
2010 2011
	tk_update_leap_state(tk);

2012
	write_seqcount_end(&tk_core.seq);
2013 2014
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2015 2016 2017
	if (tai != orig_tai)
		clock_was_set();

2018 2019
	ntp_notify_cmos_timer();

2020 2021
	return ret;
}
2022 2023 2024 2025 2026

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2027
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2028
{
2029 2030 2031
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2032
	write_seqcount_begin(&tk_core.seq);
2033

2034
	__hardpps(phase_ts, raw_ts);
2035

2036
	write_seqcount_end(&tk_core.seq);
2037
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2038 2039 2040 2041
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2042 2043 2044 2045 2046 2047 2048 2049
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2050
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2051
	do_timer(ticks);
2052
	write_sequnlock(&jiffies_lock);
2053
	update_wall_time();
T
Torben Hohn 已提交
2054
}