igb_main.c 209.9 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2013 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
C
Carolyn Wyborny 已提交
60
#include <linux/i2c.h>
61 62
#include "igb.h"

C
Carolyn Wyborny 已提交
63 64
#define MAJ 5
#define MIN 0
A
Akeem G Abodunrin 已提交
65
#define BUILD 5
C
Carolyn Wyborny 已提交
66
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67
__stringify(BUILD) "-k"
68 69 70 71
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
72 73
static const char igb_copyright[] =
				"Copyright (c) 2007-2013 Intel Corporation.";
74 75 76 77 78

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

79
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 81 82
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 84 85 86 87
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
90 91 92 93
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
94 95
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
97 98 99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
100 101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
102 103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
105
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
106
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
107 108
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
109
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
110
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
111
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
112 113 114 115 116 117 118 119 120 121 122 123 124 125
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
126
static void igb_setup_mrqc(struct igb_adapter *);
127
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
128
static void igb_remove(struct pci_dev *pdev);
129 130 131
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
132
static void igb_configure(struct igb_adapter *);
133 134 135 136
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
137 138
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
139
static void igb_set_rx_mode(struct net_device *);
140 141 142
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
143
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
144 145
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
146 147
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
148
static void igb_set_uta(struct igb_adapter *adapter);
149 150 151
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
152
static irqreturn_t igb_msix_ring(int irq, void *);
153
#ifdef CONFIG_IGB_DCA
154
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
155
static void igb_setup_dca(struct igb_adapter *);
156
#endif /* CONFIG_IGB_DCA */
157
static int igb_poll(struct napi_struct *, int);
158
static bool igb_clean_tx_irq(struct igb_q_vector *);
159
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
160 161 162
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
163
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
164 165
static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
166
static void igb_restore_vlan(struct igb_adapter *);
167
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
168 169 170
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
171
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
172
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
173 174 175 176
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
L
Lior Levy 已提交
177 178
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting);
179 180
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
181
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
182 183

#ifdef CONFIG_PCI_IOV
184
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
185
static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
R
RongQing Li 已提交
186
#endif
187 188

#ifdef CONFIG_PM
189
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
190
static int igb_suspend(struct device *);
191
#endif
Y
Yan, Zheng 已提交
192 193 194 195 196 197 198 199 200 201 202
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
203 204
#endif
static void igb_shutdown(struct pci_dev *);
205
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
206
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
207 208 209 210 211 212 213
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
214 215 216 217
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
218
#ifdef CONFIG_PCI_IOV
219 220 221 222 223 224
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

225 226 227 228 229
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

230
static const struct pci_error_handlers igb_err_handler = {
231 232 233 234 235
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

236
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
237 238 239 240 241

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
242
	.remove   = igb_remove,
243
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
244
	.driver.pm = &igb_pm_ops,
245 246
#endif
	.shutdown = igb_shutdown,
247
	.sriov_configure = igb_pci_sriov_configure,
248 249 250 251 252 253 254 255
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

256 257 258 259 260
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

302
/* igb_regdump - register printout routine */
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
359
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
360 361 362 363
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
364 365
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
366 367
}

368
/* igb_dump - Print registers, Tx-rings and Rx-rings */
369 370 371 372 373 374 375 376 377 378 379
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
380
	u16 i, n;
381 382 383 384 385 386 387

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
388 389 390 391
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
392 393 394 395
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
396
	pr_info(" Register Name   Value\n");
397 398 399 400 401 402 403 404 405 406
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
407
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
408
	for (n = 0; n < adapter->num_tx_queues; n++) {
409
		struct igb_tx_buffer *buffer_info;
410
		tx_ring = adapter->tx_ring[n];
411
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
412 413
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
414 415
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
416 417
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
439 440 441 442 443 444
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
445 446

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
447
			const char *next_desc;
448
			struct igb_tx_buffer *buffer_info;
449
			tx_desc = IGB_TX_DESC(tx_ring, i);
450
			buffer_info = &tx_ring->tx_buffer_info[i];
451
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
452 453 454 455 456 457 458 459 460 461 462 463
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
464 465
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
466 467
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
468 469
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
470
				buffer_info->skb, next_desc);
471

472
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
473 474
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
475
					16, 1, buffer_info->skb->data,
476 477
					dma_unmap_len(buffer_info, len),
					true);
478 479 480 481 482 483
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
484
	pr_info("Queue [NTU] [NTC]\n");
485 486
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
487 488
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
520 521 522 523 524 525 526
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
527 528

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
529
			const char *next_desc;
530 531
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
532
			rx_desc = IGB_RX_DESC(rx_ring, i);
533 534
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
535 536 537 538 539 540 541 542

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

543 544
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
545 546
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
547 548
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
549
					next_desc);
550
			} else {
551 552
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
553 554 555
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
556
					next_desc);
557

558
				if (netif_msg_pktdata(adapter) &&
559
				    buffer_info->dma && buffer_info->page) {
560 561 562
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
563 564
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
565
					  IGB_RX_BUFSZ, true);
566 567 568 569 570 571 572 573 574
				}
			}
		}
	}

exit:
	return;
}

575 576
/**
 *  igb_get_i2c_data - Reads the I2C SDA data bit
C
Carolyn Wyborny 已提交
577 578 579 580
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
581
 **/
C
Carolyn Wyborny 已提交
582 583 584 585 586 587 588 589 590
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
}

591 592
/**
 *  igb_set_i2c_data - Sets the I2C data bit
C
Carolyn Wyborny 已提交
593 594 595 596
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
597
 **/
C
Carolyn Wyborny 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

616 617
/**
 *  igb_set_i2c_clk - Sets the I2C SCL clock
C
Carolyn Wyborny 已提交
618 619 620 621
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
622
 **/
C
Carolyn Wyborny 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

640 641
/**
 *  igb_get_i2c_clk - Gets the I2C SCL clock state
C
Carolyn Wyborny 已提交
642 643 644
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
645
 **/
C
Carolyn Wyborny 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

664
/**
665 666 667 668
 *  igb_get_hw_dev - return device
 *  @hw: pointer to hardware structure
 *
 *  used by hardware layer to print debugging information
669
 **/
670
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
671 672
{
	struct igb_adapter *adapter = hw->back;
673
	return adapter->netdev;
674
}
P
Patrick Ohly 已提交
675

676
/**
677
 *  igb_init_module - Driver Registration Routine
678
 *
679 680
 *  igb_init_module is the first routine called when the driver is
 *  loaded. All it does is register with the PCI subsystem.
681 682 683 684
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
685
	pr_info("%s - version %s\n",
686 687
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
688
	pr_info("%s\n", igb_copyright);
689

690
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
691 692
	dca_register_notify(&dca_notifier);
#endif
693
	ret = pci_register_driver(&igb_driver);
694 695 696 697 698 699
	return ret;
}

module_init(igb_init_module);

/**
700
 *  igb_exit_module - Driver Exit Cleanup Routine
701
 *
702 703
 *  igb_exit_module is called just before the driver is removed
 *  from memory.
704 705 706
 **/
static void __exit igb_exit_module(void)
{
707
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
708 709
	dca_unregister_notify(&dca_notifier);
#endif
710 711 712 713 714
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

715 716
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
717 718
 *  igb_cache_ring_register - Descriptor ring to register mapping
 *  @adapter: board private structure to initialize
719
 *
720 721
 *  Once we know the feature-set enabled for the device, we'll cache
 *  the register offset the descriptor ring is assigned to.
722 723 724
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
725
	int i = 0, j = 0;
726
	u32 rbase_offset = adapter->vfs_allocated_count;
727 728 729 730 731 732 733 734

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
735
		if (adapter->vfs_allocated_count) {
736
			for (; i < adapter->rss_queues; i++)
737
				adapter->rx_ring[i]->reg_idx = rbase_offset +
738
							       Q_IDX_82576(i);
739
		}
740
	case e1000_82575:
741
	case e1000_82580:
742
	case e1000_i350:
743
	case e1000_i354:
744 745
	case e1000_i210:
	case e1000_i211:
746
	default:
747
		for (; i < adapter->num_rx_queues; i++)
748
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
749
		for (; j < adapter->num_tx_queues; j++)
750
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
751 752 753 754
		break;
	}
}

A
Alexander Duyck 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

781
#define IGB_N0_QUEUE -1
782
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
783
{
784
	struct igb_adapter *adapter = q_vector->adapter;
785
	struct e1000_hw *hw = &adapter->hw;
786 787
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
788
	u32 msixbm = 0;
789

790 791 792 793
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
794 795 796

	switch (hw->mac.type) {
	case e1000_82575:
797
		/* The 82575 assigns vectors using a bitmask, which matches the
798 799 800 801
		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
		 * or more queues to a vector, we write the appropriate bits
		 * into the MSIXBM register for that vector.
		 */
802
		if (rx_queue > IGB_N0_QUEUE)
803
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
804
		if (tx_queue > IGB_N0_QUEUE)
805
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
806 807
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
808
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
809
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
810 811
		break;
	case e1000_82576:
812
		/* 82576 uses a table that essentially consists of 2 columns
A
Alexander Duyck 已提交
813 814 815 816 817 818 819 820 821 822 823 824
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
825
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
826
		break;
827
	case e1000_82580:
828
	case e1000_i350:
829
	case e1000_i354:
830 831
	case e1000_i210:
	case e1000_i211:
832
		/* On 82580 and newer adapters the scheme is similar to 82576
A
Alexander Duyck 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
846 847
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
848 849 850 851
	default:
		BUG();
		break;
	}
852 853 854 855 856 857

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
858 859 860
}

/**
861 862
 *  igb_configure_msix - Configure MSI-X hardware
 *  @adapter: board private structure to initialize
863
 *
864 865
 *  igb_configure_msix sets up the hardware to properly
 *  generate MSI-X interrupts.
866 867 868 869 870 871 872 873 874 875
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
876 877
	switch (hw->mac.type) {
	case e1000_82575:
878 879 880 881 882 883 884 885 886
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
887 888

		/* enable msix_other interrupt */
889
		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
890
		adapter->eims_other = E1000_EIMS_OTHER;
891

A
Alexander Duyck 已提交
892 893 894
		break;

	case e1000_82576:
895
	case e1000_82580:
896
	case e1000_i350:
897
	case e1000_i354:
898 899
	case e1000_i210:
	case e1000_i211:
900
		/* Turn on MSI-X capability first, or our settings
901 902
		 * won't stick.  And it will take days to debug.
		 */
903
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
904 905
		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
		     E1000_GPIE_NSICR);
906 907 908

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
909 910
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

911
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
912 913 914 915 916
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
917 918 919

	adapter->eims_enable_mask |= adapter->eims_other;

920 921
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
922

923 924 925 926
	wrfl();
}

/**
927 928
 *  igb_request_msix - Initialize MSI-X interrupts
 *  @adapter: board private structure to initialize
929
 *
930 931
 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 *  kernel.
932 933 934 935
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
936
	struct e1000_hw *hw = &adapter->hw;
937
	int i, err = 0, vector = 0, free_vector = 0;
938

939
	err = request_irq(adapter->msix_entries[vector].vector,
940
			  igb_msix_other, 0, netdev->name, adapter);
941
	if (err)
942
		goto err_out;
943 944 945 946

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

947 948
		vector++;

949 950
		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

951
		if (q_vector->rx.ring && q_vector->tx.ring)
952
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
953 954
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
955
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
956 957
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
958
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
959
				q_vector->rx.ring->queue_index);
960
		else
961 962
			sprintf(q_vector->name, "%s-unused", netdev->name);

963
		err = request_irq(adapter->msix_entries[vector].vector,
964 965
				  igb_msix_ring, 0, q_vector->name,
				  q_vector);
966
		if (err)
967
			goto err_free;
968 969 970 971
	}

	igb_configure_msix(adapter);
	return 0;
972 973 974 975 976 977 978 979 980 981 982

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
983 984 985 986 987 988 989 990 991
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
992
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
993
		pci_disable_msi(adapter->pdev);
994
	}
995 996
}

997
/**
998 999 1000
 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be freed
1001
 *
1002 1003 1004
 *  This function frees the memory allocated to the q_vector.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	adapter->q_vector[v_idx] = NULL;
	netif_napi_del(&q_vector->napi);

1019
	/* igb_get_stats64() might access the rings on this vector,
1020 1021 1022 1023 1024
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

1025
/**
1026 1027
 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 *  @adapter: board private structure to initialize
1028
 *
1029 1030 1031
 *  This function frees the memory allocated to the q_vectors.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1032 1033 1034
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
1035 1036 1037 1038
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
1039
	adapter->num_q_vectors = 0;
1040 1041 1042

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);
1043 1044 1045
}

/**
1046 1047
 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *  @adapter: board private structure to initialize
1048
 *
1049 1050
 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 *  MSI-X interrupts allocated.
1051 1052 1053 1054 1055 1056
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1057 1058

/**
1059 1060 1061
 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1062
 *
1063 1064
 *  Attempt to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1065
 **/
1066
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1067 1068 1069 1070
{
	int err;
	int numvecs, i;

1071 1072 1073
	if (!msix)
		goto msi_only;

1074
	/* Number of supported queues. */
1075
	adapter->num_rx_queues = adapter->rss_queues;
1076 1077 1078 1079
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1080

1081
	/* start with one vector for every Rx queue */
1082 1083
	numvecs = adapter->num_rx_queues;

1084
	/* if Tx handler is separate add 1 for every Tx queue */
1085 1086
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1087 1088 1089 1090 1091 1092

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1093 1094
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1106
		return;
1107 1108 1109 1110 1111

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1123
		wrfl();
1124 1125 1126 1127
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1128
	adapter->vfs_allocated_count = 0;
1129
	adapter->rss_queues = 1;
1130
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1131
	adapter->num_rx_queues = 1;
1132
	adapter->num_tx_queues = 1;
1133
	adapter->num_q_vectors = 1;
1134
	if (!pci_enable_msi(adapter->pdev))
1135
		adapter->flags |= IGB_FLAG_HAS_MSI;
1136 1137
}

1138 1139 1140 1141 1142 1143 1144
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1145
/**
1146 1147 1148 1149 1150 1151 1152 1153
 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 *  @v_idx: index of vector in adapter struct
 *  @txr_count: total number of Tx rings to allocate
 *  @txr_idx: index of first Tx ring to allocate
 *  @rxr_count: total number of Rx rings to allocate
 *  @rxr_idx: index of first Rx ring to allocate
1154
 *
1155
 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1156
 **/
1157 1158 1159 1160
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1161 1162
{
	struct igb_q_vector *q_vector;
1163 1164
	struct igb_ring *ring;
	int ring_count, size;
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
	q_vector = kzalloc(size, GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	/* intialize ITR */
	if (rxr_count) {
		/* rx or rx/tx vector */
		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
			q_vector->itr_val = adapter->rx_itr_setting;
	} else {
		/* tx only vector */
		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
			q_vector->itr_val = adapter->tx_itr_setting;
	}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

1227 1228 1229
		u64_stats_init(&ring->tx_syncp);
		u64_stats_init(&ring->tx_syncp2);

1230 1231 1232 1233 1234
		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1235
	}
1236

1237 1238 1239 1240
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1241

1242 1243
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1244

1245 1246
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1247

1248 1249 1250
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1251

1252 1253
		/*
		 * On i350, i354, i210, and i211, loopback VLAN packets
1254
		 * have the tag byte-swapped.
1255
		 */
1256 1257
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1258

1259 1260 1261 1262
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

1263 1264
		u64_stats_init(&ring->rx_syncp);

1265 1266 1267 1268 1269
		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1270 1271
}

1272

1273
/**
1274 1275
 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 *  @adapter: board private structure to initialize
1276
 *
1277 1278
 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 *  return -ENOMEM.
1279
 **/
1280
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1281
{
1282 1283 1284 1285 1286
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1287

1288 1289 1290 1291
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1292

1293 1294 1295 1296 1297 1298
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1299 1300
		}
	}
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1318
	return 0;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1329 1330 1331
}

/**
1332 1333 1334
 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1335
 *
1336
 *  This function initializes the interrupts and allocates all of the queues.
1337
 **/
1338
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1339 1340 1341 1342
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1343
	igb_set_interrupt_capability(adapter, msix);
1344 1345 1346 1347 1348 1349 1350

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1351
	igb_cache_ring_register(adapter);
1352 1353

	return 0;
1354

1355 1356 1357 1358 1359
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1360
/**
1361 1362
 *  igb_request_irq - initialize interrupts
 *  @adapter: board private structure to initialize
1363
 *
1364 1365
 *  Attempts to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1366 1367 1368 1369
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1370
	struct pci_dev *pdev = adapter->pdev;
1371 1372 1373 1374
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1375
		if (!err)
1376 1377
			goto request_done;
		/* fall back to MSI */
1378 1379
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1380

1381
		igb_clear_interrupt_scheme(adapter);
1382 1383
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
1384
			goto request_done;
1385

1386 1387
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1388
		igb_configure(adapter);
1389
	}
P
PJ Waskiewicz 已提交
1390

1391 1392
	igb_assign_vector(adapter->q_vector[0], 0);

1393
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1394
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1395
				  netdev->name, adapter);
1396 1397
		if (!err)
			goto request_done;
1398

1399 1400
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1401
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1402 1403
	}

1404
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1405
			  netdev->name, adapter);
1406

A
Andy Gospodarek 已提交
1407
	if (err)
1408
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1420
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1421

1422
		for (i = 0; i < adapter->num_q_vectors; i++)
1423
			free_irq(adapter->msix_entries[vector++].vector,
1424
				 adapter->q_vector[i]);
1425 1426
	} else {
		free_irq(adapter->pdev->irq, adapter);
1427 1428 1429 1430
	}
}

/**
1431 1432
 *  igb_irq_disable - Mask off interrupt generation on the NIC
 *  @adapter: board private structure
1433 1434 1435 1436 1437
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1438
	/* we need to be careful when disabling interrupts.  The VFs are also
1439 1440 1441
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1442
	if (adapter->msix_entries) {
1443 1444 1445 1446 1447
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1448
	}
P
PJ Waskiewicz 已提交
1449 1450

	wr32(E1000_IAM, 0);
1451 1452
	wr32(E1000_IMC, ~0);
	wrfl();
1453 1454 1455 1456 1457 1458 1459
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1460 1461 1462
}

/**
1463 1464
 *  igb_irq_enable - Enable default interrupt generation settings
 *  @adapter: board private structure
1465 1466 1467 1468 1469 1470
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1471
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1472 1473 1474 1475
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1476
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1477
		if (adapter->vfs_allocated_count) {
1478
			wr32(E1000_MBVFIMR, 0xFF);
1479 1480 1481
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1482
	} else {
1483 1484 1485 1486
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1487
	}
1488 1489 1490 1491
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1492
	struct e1000_hw *hw = &adapter->hw;
1493 1494
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1506
	    !test_bit(old_vid, adapter->active_vlans)) {
1507 1508
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1509 1510 1511 1512
	}
}

/**
1513 1514
 *  igb_release_hw_control - release control of the h/w to f/w
 *  @adapter: address of board private structure
1515
 *
1516 1517 1518
 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that the
 *  driver is no longer loaded.
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
1532 1533
 *  igb_get_hw_control - get control of the h/w from f/w
 *  @adapter: address of board private structure
1534
 *
1535 1536 1537
 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that
 *  the driver is loaded.
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
1551 1552
 *  igb_configure - configure the hardware for RX and TX
 *  @adapter: private board structure
1553 1554 1555 1556 1557 1558 1559
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1560
	igb_set_rx_mode(netdev);
1561 1562 1563

	igb_restore_vlan(adapter);

1564
	igb_setup_tctl(adapter);
1565
	igb_setup_mrqc(adapter);
1566
	igb_setup_rctl(adapter);
1567 1568

	igb_configure_tx(adapter);
1569
	igb_configure_rx(adapter);
1570 1571 1572

	igb_rx_fifo_flush_82575(&adapter->hw);

1573
	/* call igb_desc_unused which always leaves
1574
	 * at least 1 descriptor unused to make sure
1575 1576
	 * next_to_use != next_to_clean
	 */
1577
	for (i = 0; i < adapter->num_rx_queues; i++) {
1578
		struct igb_ring *ring = adapter->rx_ring[i];
1579
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1580 1581 1582
	}
}

1583
/**
1584 1585
 *  igb_power_up_link - Power up the phy/serdes link
 *  @adapter: address of board private structure
1586 1587 1588
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1589 1590
	igb_reset_phy(&adapter->hw);

1591 1592 1593 1594 1595 1596 1597
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
1598 1599
 *  igb_power_down_link - Power down the phy/serdes link
 *  @adapter: address of board private structure
1600 1601 1602 1603 1604 1605 1606 1607
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1608 1609

/**
1610 1611
 *  igb_up - Open the interface and prepare it to handle traffic
 *  @adapter: board private structure
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1623 1624 1625
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1626
	if (adapter->msix_entries)
1627
		igb_configure_msix(adapter);
1628 1629
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1630 1631 1632 1633 1634

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1635 1636 1637 1638 1639 1640 1641
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1642 1643
	netif_tx_start_all_queues(adapter->netdev);

1644 1645 1646 1647
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1648 1649 1650 1651 1652 1653
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1654
	struct e1000_hw *hw = &adapter->hw;
1655 1656 1657 1658
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
1659 1660
	 * reschedule our watchdog timer
	 */
1661 1662 1663 1664 1665 1666 1667
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1668
	netif_tx_stop_all_queues(netdev);
1669 1670 1671 1672 1673 1674 1675 1676 1677

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1678 1679
	igb_irq_disable(adapter);

1680 1681
	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;

1682 1683
	for (i = 0; i < adapter->num_q_vectors; i++) {
		napi_synchronize(&(adapter->q_vector[i]->napi));
1684
		napi_disable(&(adapter->q_vector[i]->napi));
1685
	}
1686 1687 1688 1689 1690 1691


	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1692 1693

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1694 1695 1696
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1697

1698 1699 1700
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1701 1702
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1703 1704
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1705 1706 1707 1708 1709
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1724
	struct pci_dev *pdev = adapter->pdev;
1725
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1726 1727
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1728
	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1729 1730 1731 1732

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1733
	switch (mac->type) {
1734
	case e1000_i350:
1735
	case e1000_i354:
1736 1737 1738 1739
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1740
	case e1000_82576:
1741 1742
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1743 1744
		break;
	case e1000_82575:
1745 1746
	case e1000_i210:
	case e1000_i211:
1747 1748 1749
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1750
	}
1751

A
Alexander Duyck 已提交
1752 1753
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1754 1755 1756 1757 1758 1759 1760 1761
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
1762 1763
		 * expressed in KB.
		 */
1764 1765 1766 1767 1768
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
1769 1770 1771
		/* the Tx fifo also stores 16 bytes of information about the Tx
		 * but don't include ethernet FCS because hardware appends it
		 */
1772
		min_tx_space = (adapter->max_frame_size +
1773
				sizeof(union e1000_adv_tx_desc) -
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
1784 1785
		 * allocation, take space away from current Rx allocation
		 */
1786 1787 1788 1789
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

1790 1791 1792
			/* if short on Rx space, Rx wins and must trump Tx
			 * adjustment
			 */
1793 1794 1795
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1796
		wr32(E1000_PBA, pba);
1797 1798 1799 1800 1801 1802 1803
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
1804 1805
	 * - the full Rx FIFO size minus one full frame
	 */
1806
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1807
			((pba << 10) - 2 * adapter->max_frame_size));
1808

1809
	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1810
	fc->low_water = fc->high_water - 16;
1811 1812
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1813
	fc->current_mode = fc->requested_mode;
1814

1815 1816 1817 1818
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1819
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1820 1821

		/* ping all the active vfs to let them know we are going down */
1822
		igb_ping_all_vfs(adapter);
1823 1824 1825 1826 1827 1828

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1829
	/* Allow time for pending master requests to run */
1830
	hw->mac.ops.reset_hw(hw);
1831 1832
	wr32(E1000_WUC, 0);

1833
	if (hw->mac.ops.init_hw(hw))
1834
		dev_err(&pdev->dev, "Hardware Error\n");
1835

1836
	/* Flow control settings reset on hardware reset, so guarantee flow
1837 1838 1839 1840 1841
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1842
	igb_init_dmac(adapter, pba);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
1855 1856 1857
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1858 1859 1860 1861 1862
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1863 1864 1865
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);

1866
	igb_get_phy_info(hw);
1867 1868
}

1869 1870
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1871
{
1872 1873
	/* Since there is no support for separate Rx/Tx vlan accel
	 * enable/disable make sure Tx flag is always in same state as Rx.
J
Jiri Pirko 已提交
1874
	 */
1875 1876
	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		features |= NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
1877
	else
1878
		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
1879 1880 1881 1882

	return features;
}

1883 1884
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1885
{
1886
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
1887
	struct igb_adapter *adapter = netdev_priv(netdev);
1888

1889
	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
J
Jiri Pirko 已提交
1890 1891
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

1902 1903 1904
	return 0;
}

S
Stephen Hemminger 已提交
1905
static const struct net_device_ops igb_netdev_ops = {
1906
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1907
	.ndo_stop		= igb_close,
1908
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1909
	.ndo_get_stats64	= igb_get_stats64,
1910
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1911 1912 1913 1914 1915 1916 1917
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1918 1919 1920
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
L
Lior Levy 已提交
1921
	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1922
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1923 1924 1925
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1926 1927
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1928 1929
};

1930 1931 1932 1933 1934 1935 1936
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1937 1938 1939 1940 1941
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
1942
	case e1000_i210:
1943
	case e1000_i211:
1944 1945 1946 1947 1948 1949 1950 1951 1952
		if (!(igb_get_flash_presence_i210(hw))) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%2d.%2d-%d",
				 fw.invm_major, fw.invm_minor,
				 fw.invm_img_type);
			break;
		}
		/* fall through */
1953 1954 1955 1956 1957 1958 1959 1960 1961
	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
1962
		} else if (fw.etrack_id != 0X0000) {
1963
			snprintf(adapter->fw_version,
1964 1965 1966 1967 1968 1969 1970 1971
			    sizeof(adapter->fw_version),
			    "%d.%d, 0x%08x",
			    fw.eep_major, fw.eep_minor, fw.etrack_id);
		} else {
		snprintf(adapter->fw_version,
		    sizeof(adapter->fw_version),
		    "%d.%d.%d",
		    fw.eep_major, fw.eep_minor, fw.eep_build);
1972 1973
		}
		break;
1974 1975 1976 1977
	}
	return;
}

1978 1979
/**
 *  igb_init_i2c - Init I2C interface
C
Carolyn Wyborny 已提交
1980
 *  @adapter: pointer to adapter structure
1981
 **/
C
Carolyn Wyborny 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
	s32 status = E1000_SUCCESS;

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
		return E1000_SUCCESS;

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structue that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

2005
/**
2006 2007 2008
 *  igb_probe - Device Initialization Routine
 *  @pdev: PCI device information struct
 *  @ent: entry in igb_pci_tbl
2009
 *
2010
 *  Returns 0 on success, negative on failure
2011
 *
2012 2013 2014
 *  igb_probe initializes an adapter identified by a pci_dev structure.
 *  The OS initialization, configuring of the adapter private structure,
 *  and a hardware reset occur.
2015
 **/
2016
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2017 2018 2019 2020
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
2021
	u16 eeprom_data = 0;
2022
	s32 ret_val;
2023
	static int global_quad_port_a; /* global quad port a indication */
2024
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2025
	int err, pci_using_dac;
2026
	u8 part_str[E1000_PBANUM_LENGTH];
2027

2028 2029 2030 2031 2032
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2033
			pci_name(pdev), pdev->vendor, pdev->device);
2034 2035 2036
		return -EINVAL;
	}

2037
	err = pci_enable_device_mem(pdev);
2038 2039 2040 2041
	if (err)
		return err;

	pci_using_dac = 0;
2042
	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2043
	if (!err) {
2044
		pci_using_dac = 1;
2045
	} else {
2046
		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2047
		if (err) {
2048 2049 2050
			dev_err(&pdev->dev,
				"No usable DMA configuration, aborting\n");
			goto err_dma;
2051 2052 2053
		}
	}

2054
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2055 2056
					   IORESOURCE_MEM),
					   igb_driver_name);
2057 2058 2059
	if (err)
		goto err_pci_reg;

2060
	pci_enable_pcie_error_reporting(pdev);
2061

2062
	pci_set_master(pdev);
2063
	pci_save_state(pdev);
2064 2065

	err = -ENOMEM;
2066
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2067
				   IGB_MAX_TX_QUEUES);
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
2079
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2080 2081

	err = -EIO;
2082
	hw->hw_addr = pci_iomap(pdev, 0, 0);
2083
	if (!hw->hw_addr)
2084 2085
		goto err_ioremap;

S
Stephen Hemminger 已提交
2086
	netdev->netdev_ops = &igb_netdev_ops;
2087 2088 2089 2090 2091
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

2092 2093
	netdev->mem_start = pci_resource_start(pdev, 0);
	netdev->mem_end = pci_resource_end(pdev, 0);
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
2109
		goto err_sw_init;
2110

2111
	/* setup the private structure */
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

2131
	/* features is initialized to 0 in allocation, it might have bits
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
2142 2143
			    NETIF_F_HW_VLAN_CTAG_RX |
			    NETIF_F_HW_VLAN_CTAG_TX;
2144 2145 2146

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
2147
	netdev->hw_features |= NETIF_F_RXALL;
2148 2149

	/* set this bit last since it cannot be part of hw_features */
2150
	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2151 2152 2153 2154 2155 2156

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2157

2158 2159
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2160
	if (pci_using_dac) {
2161
		netdev->features |= NETIF_F_HIGHDMA;
2162 2163
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2164

2165 2166
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2167
		netdev->features |= NETIF_F_SCTP_CSUM;
2168
	}
2169

2170 2171
	netdev->priv_flags |= IFF_UNICAST_FLT;

2172
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2173 2174

	/* before reading the NVM, reset the controller to put the device in a
2175 2176
	 * known good starting state
	 */
2177 2178
	hw->mac.ops.reset_hw(hw);

2179 2180
	/* make sure the NVM is good , i211/i210 parts can have special NVM
	 * that doesn't contain a checksum
2181
	 */
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
		if (igb_get_flash_presence_i210(hw)) {
			if (hw->nvm.ops.validate(hw) < 0) {
				dev_err(&pdev->dev,
					"The NVM Checksum Is Not Valid\n");
				err = -EIO;
				goto err_eeprom;
			}
		}
		break;
	default:
2195 2196 2197 2198 2199
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2200
		break;
2201 2202 2203 2204 2205 2206 2207 2208
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

2209
	if (!is_valid_ether_addr(netdev->dev_addr)) {
2210 2211 2212 2213 2214
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2215 2216 2217
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2218
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2219
		    (unsigned long) adapter);
2220
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2221
		    (unsigned long) adapter);
2222 2223 2224 2225

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2226
	/* Initialize link properties that are user-changeable */
2227 2228 2229 2230
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2231 2232
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2233 2234 2235

	igb_validate_mdi_setting(hw);

2236
	/* By default, support wake on port A */
2237
	if (hw->bus.func == 0)
2238 2239 2240 2241
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
2242
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2243 2244
				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				 &eeprom_data);
2245 2246
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2247

2248 2249
	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2250 2251 2252

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
2253 2254
	 * lan on a particular port
	 */
2255 2256
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2257
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2258 2259
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2260 2261
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2262
		/* Wake events only supported on port A for dual fiber
2263 2264
		 * regardless of eeprom setting
		 */
2265
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2266
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2267
		break;
2268
	case E1000_DEV_ID_82576_QUAD_COPPER:
2269
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2270 2271
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
2272
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2273 2274 2275 2276 2277 2278
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2279 2280 2281 2282
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2283 2284 2285
	}

	/* initialize the wol settings based on the eeprom settings */
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2298 2299 2300 2301

	/* reset the hardware with the new settings */
	igb_reset(adapter);

C
Carolyn Wyborny 已提交
2302 2303 2304 2305 2306 2307 2308
	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

2309 2310 2311 2312 2313 2314 2315 2316 2317
	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2318 2319 2320
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2321
#ifdef CONFIG_IGB_DCA
2322
	if (dca_add_requester(&pdev->dev) == 0) {
2323
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2324 2325 2326 2327
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2328
#endif
2329 2330 2331 2332
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;
2333

2334
		/* Read the NVM to determine if this i350 device supports an
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
A
Anders Berggren 已提交
2349
	/* do hw tstamp init after resetting */
2350
	igb_ptp_init(adapter);
A
Anders Berggren 已提交
2351

2352
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	/* print bus type/speed/width info, not applicable to i354 */
	if (hw->mac.type != e1000_i354) {
		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
			 netdev->name,
			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
			   "unknown"),
			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
			  "Width x4" :
			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
			  "Width x2" :
			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
			  "Width x1" : "unknown"), netdev->dev_addr);
	}
2367

2368 2369 2370 2371 2372 2373 2374 2375
	if ((hw->mac.type >= e1000_i210 ||
	     igb_get_flash_presence_i210(hw))) {
		ret_val = igb_read_part_string(hw, part_str,
					       E1000_PBANUM_LENGTH);
	} else {
		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	}

2376 2377 2378
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2379 2380 2381
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2382
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2383
		adapter->num_rx_queues, adapter->num_tx_queues);
2384 2385
	switch (hw->mac.type) {
	case e1000_i350:
2386 2387
	case e1000_i210:
	case e1000_i211:
2388 2389
		igb_set_eee_i350(hw);
		break;
2390 2391 2392 2393 2394 2395 2396
	case e1000_i354:
		if (hw->phy.media_type == e1000_media_type_copper) {
			if ((rd32(E1000_CTRL_EXT) &
			    E1000_CTRL_EXT_LINK_MODE_SGMII))
				igb_set_eee_i354(hw);
		}
		break;
2397 2398 2399
	default:
		break;
	}
Y
Yan, Zheng 已提交
2400 2401

	pm_runtime_put_noidle(&pdev->dev);
2402 2403 2404 2405
	return 0;

err_register:
	igb_release_hw_control(adapter);
C
Carolyn Wyborny 已提交
2406
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2407 2408
err_eeprom:
	if (!igb_check_reset_block(hw))
2409
		igb_reset_phy(hw);
2410 2411 2412 2413

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2414
	igb_clear_interrupt_scheme(adapter);
2415 2416 2417 2418
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2419
	pci_release_selected_regions(pdev,
2420
				     pci_select_bars(pdev, IORESOURCE_MEM));
2421 2422 2423 2424 2425 2426
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

2427
#ifdef CONFIG_PCI_IOV
2428
static int igb_disable_sriov(struct pci_dev *pdev)
2429 2430 2431 2432 2433 2434 2435 2436
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
2437
		if (pci_vfs_assigned(pdev)) {
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	int err = 0;
	int i;

2469
	if (!adapter->msix_entries || num_vfs > 7) {
2470 2471 2472
		err = -EPERM;
		goto out;
	}
2473 2474 2475
	if (!num_vfs)
		goto out;

2476 2477 2478 2479 2480 2481
	if (old_vfs) {
		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
			 old_vfs, max_vfs);
		adapter->vfs_allocated_count = old_vfs;
	} else
		adapter->vfs_allocated_count = num_vfs;
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF Data Storage\n");
		err = -ENOMEM;
		goto out;
	}

2495 2496 2497 2498 2499 2500
	/* only call pci_enable_sriov() if no VFs are allocated already */
	if (!old_vfs) {
		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
		if (err)
			goto err_out;
	}
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
2519
/**
C
Carolyn Wyborny 已提交
2520 2521
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
2522
 **/
C
Carolyn Wyborny 已提交
2523 2524 2525 2526 2527 2528
static void igb_remove_i2c(struct igb_adapter *adapter)
{
	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

2529
/**
2530 2531
 *  igb_remove - Device Removal Routine
 *  @pdev: PCI device information struct
2532
 *
2533 2534 2535 2536
 *  igb_remove is called by the PCI subsystem to alert the driver
 *  that it should release a PCI device.  The could be caused by a
 *  Hot-Plug event, or because the driver is going to be removed from
 *  memory.
2537
 **/
2538
static void igb_remove(struct pci_dev *pdev)
2539 2540 2541
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2542
	struct e1000_hw *hw = &adapter->hw;
2543

Y
Yan, Zheng 已提交
2544
	pm_runtime_get_noresume(&pdev->dev);
2545 2546 2547
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
C
Carolyn Wyborny 已提交
2548
	igb_remove_i2c(adapter);
2549
	igb_ptp_stop(adapter);
2550
	/* The watchdog timer may be rescheduled, so explicitly
2551 2552
	 * disable watchdog from being rescheduled.
	 */
2553 2554 2555 2556
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2557 2558
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2559

2560
#ifdef CONFIG_IGB_DCA
2561
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2562 2563
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2564
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2565
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2566 2567 2568
	}
#endif

2569
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2570 2571
	 * would have already happened in close and is redundant.
	 */
2572 2573 2574 2575
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2576
	igb_clear_interrupt_scheme(adapter);
2577

2578
#ifdef CONFIG_PCI_IOV
2579
	igb_disable_sriov(pdev);
2580
#endif
2581

2582 2583 2584
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2585
	pci_release_selected_regions(pdev,
2586
				     pci_select_bars(pdev, IORESOURCE_MEM));
2587

2588
	kfree(adapter->shadow_vfta);
2589 2590
	free_netdev(netdev);

2591
	pci_disable_pcie_error_reporting(pdev);
2592

2593 2594 2595
	pci_disable_device(pdev);
}

2596
/**
2597 2598
 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 *  @adapter: board private structure to initialize
2599
 *
2600 2601 2602 2603
 *  This function initializes the vf specific data storage and then attempts to
 *  allocate the VFs.  The reason for ordering it this way is because it is much
 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 *  the memory for the VFs.
2604
 **/
2605
static void igb_probe_vfs(struct igb_adapter *adapter)
2606 2607 2608
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2609
	struct e1000_hw *hw = &adapter->hw;
2610

2611 2612 2613 2614
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2615
	pci_sriov_set_totalvfs(pdev, 7);
2616
	igb_pci_enable_sriov(pdev, max_vfs);
2617

2618 2619 2620
#endif /* CONFIG_PCI_IOV */
}

2621
static void igb_init_queue_configuration(struct igb_adapter *adapter)
2622 2623
{
	struct e1000_hw *hw = &adapter->hw;
2624
	u32 max_rss_queues;
2625

2626
	/* Determine the maximum number of RSS queues supported. */
2627
	switch (hw->mac.type) {
2628 2629 2630 2631
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2632
	case e1000_i210:
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
2649
	case e1000_i354:
2650 2651
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2652
		break;
2653 2654 2655 2656 2657 2658 2659
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2660
	case e1000_i211:
2661
		/* Device supports enough interrupts without queue pairing. */
2662
		break;
2663
	case e1000_82576:
2664
		/* If VFs are going to be allocated with RSS queues then we
2665 2666 2667 2668 2669 2670 2671 2672 2673
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
2674
	case e1000_i354:
2675
	case e1000_i210:
2676
	default:
2677
		/* If rss_queues > half of max_rss_queues, pair the queues in
2678 2679 2680 2681
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2682 2683
		break;
	}
2684 2685 2686
}

/**
2687 2688
 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 *  @adapter: board private structure to initialize
2689
 *
2690 2691 2692
 *  igb_sw_init initializes the Adapter private data structure.
 *  Fields are initialized based on PCI device information and
 *  OS network device settings (MTU size).
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
2725
			max_vfs = adapter->vfs_allocated_count = 7;
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	igb_init_queue_configuration(adapter);
2738

2739
	/* Setup and initialize a copy of the hw vlan table array */
2740 2741
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_ATOMIC);
2742

2743
	/* This call may decrease the number of queues */
2744
	if (igb_init_interrupt_scheme(adapter, true)) {
2745 2746 2747 2748
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2749 2750
	igb_probe_vfs(adapter);

2751 2752 2753
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2754
	if (hw->mac.type >= e1000_i350)
2755 2756
		adapter->flags &= ~IGB_FLAG_DMAC;

2757 2758 2759 2760 2761
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
2762 2763
 *  igb_open - Called when a network interface is made active
 *  @netdev: network interface device structure
2764
 *
2765
 *  Returns 0 on success, negative value on failure
2766
 *
2767 2768 2769 2770 2771
 *  The open entry point is called when a network interface is made
 *  active by the system (IFF_UP).  At this point all resources needed
 *  for transmit and receive operations are allocated, the interrupt
 *  handler is registered with the OS, the watchdog timer is started,
 *  and the stack is notified that the interface is ready.
2772
 **/
Y
Yan, Zheng 已提交
2773
static int __igb_open(struct net_device *netdev, bool resuming)
2774 2775 2776
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2777
	struct pci_dev *pdev = adapter->pdev;
2778 2779 2780 2781
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2782 2783
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2784
		return -EBUSY;
Y
Yan, Zheng 已提交
2785 2786 2787 2788
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2789

2790 2791
	netif_carrier_off(netdev);

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2802
	igb_power_up_link(adapter);
2803 2804 2805 2806

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
2807 2808
	 * clean_rx handler before we do so.
	 */
2809 2810 2811 2812 2813 2814
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

2826 2827 2828
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2829 2830
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2831 2832 2833

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2834 2835 2836

	igb_irq_enable(adapter);

2837 2838 2839 2840 2841 2842 2843
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2844 2845
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2846 2847 2848
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2849 2850 2851
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2852 2853 2854

	return 0;

2855 2856
err_set_queues:
	igb_free_irq(adapter);
2857 2858
err_req_irq:
	igb_release_hw_control(adapter);
2859
	igb_power_down_link(adapter);
2860 2861 2862 2863 2864
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2865 2866
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2867 2868 2869 2870

	return err;
}

Y
Yan, Zheng 已提交
2871 2872 2873 2874 2875
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2876
/**
2877 2878
 *  igb_close - Disables a network interface
 *  @netdev: network interface device structure
2879
 *
2880
 *  Returns 0, this is not allowed to fail
2881
 *
2882 2883 2884 2885
 *  The close entry point is called when an interface is de-activated
 *  by the OS.  The hardware is still under the driver's control, but
 *  needs to be disabled.  A global MAC reset is issued to stop the
 *  hardware, and all transmit and receive resources are freed.
2886
 **/
Y
Yan, Zheng 已提交
2887
static int __igb_close(struct net_device *netdev, bool suspending)
2888 2889
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2890
	struct pci_dev *pdev = adapter->pdev;
2891 2892 2893

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2894 2895 2896 2897
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2898 2899 2900 2901 2902
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2903 2904
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2905 2906 2907
	return 0;
}

Y
Yan, Zheng 已提交
2908 2909 2910 2911 2912
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2913
/**
2914 2915
 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2916
 *
2917
 *  Return 0 on success, negative on failure
2918
 **/
2919
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2920
{
2921
	struct device *dev = tx_ring->dev;
2922 2923
	int size;

2924
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2925 2926

	tx_ring->tx_buffer_info = vzalloc(size);
2927
	if (!tx_ring->tx_buffer_info)
2928 2929 2930
		goto err;

	/* round up to nearest 4K */
2931
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2932 2933
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2934 2935
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
2936 2937 2938 2939 2940
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2941

2942 2943 2944
	return 0;

err:
2945
	vfree(tx_ring->tx_buffer_info);
2946 2947
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2948 2949 2950 2951
	return -ENOMEM;
}

/**
2952 2953 2954
 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
2955
 *
2956
 *  Return 0 on success, negative on failure
2957 2958 2959
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2960
	struct pci_dev *pdev = adapter->pdev;
2961 2962 2963
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2964
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2965
		if (err) {
2966
			dev_err(&pdev->dev,
2967 2968
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2969
				igb_free_tx_resources(adapter->tx_ring[i]);
2970 2971 2972 2973 2974 2975 2976 2977
			break;
		}
	}

	return err;
}

/**
2978 2979
 *  igb_setup_tctl - configure the transmit control registers
 *  @adapter: Board private structure
2980
 **/
2981
void igb_setup_tctl(struct igb_adapter *adapter)
2982 2983 2984 2985
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2986 2987
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

3003
/**
3004 3005 3006
 *  igb_configure_tx_ring - Configure transmit ring after Reset
 *  @adapter: board private structure
 *  @ring: tx ring to configure
3007
 *
3008
 *  Configure a transmit ring after a reset.
3009
 **/
3010 3011
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3012 3013
{
	struct e1000_hw *hw = &adapter->hw;
3014
	u32 txdctl = 0;
3015 3016 3017 3018
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
3019
	wr32(E1000_TXDCTL(reg_idx), 0);
3020 3021 3022 3023
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
3024
	     ring->count * sizeof(union e1000_adv_tx_desc));
3025
	wr32(E1000_TDBAL(reg_idx),
3026
	     tdba & 0x00000000ffffffffULL);
3027 3028
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

3029
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3030
	wr32(E1000_TDH(reg_idx), 0);
3031
	writel(0, ring->tail);
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
3042 3043
 *  igb_configure_tx - Configure transmit Unit after Reset
 *  @adapter: board private structure
3044
 *
3045
 *  Configure the Tx unit of the MAC after a reset.
3046 3047 3048 3049 3050 3051
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3052
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3053 3054
}

3055
/**
3056 3057
 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3058
 *
3059
 *  Returns 0 on success, negative on failure
3060
 **/
3061
int igb_setup_rx_resources(struct igb_ring *rx_ring)
3062
{
3063
	struct device *dev = rx_ring->dev;
3064
	int size;
3065

3066
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3067 3068

	rx_ring->rx_buffer_info = vzalloc(size);
3069
	if (!rx_ring->rx_buffer_info)
3070 3071 3072
		goto err;

	/* Round up to nearest 4K */
3073
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3074 3075
	rx_ring->size = ALIGN(rx_ring->size, 4096);

3076 3077
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
3078 3079 3080
	if (!rx_ring->desc)
		goto err;

3081
	rx_ring->next_to_alloc = 0;
3082 3083 3084 3085 3086 3087
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
3088 3089
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3090
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3091 3092 3093 3094
	return -ENOMEM;
}

/**
3095 3096 3097
 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
3098
 *
3099
 *  Return 0 on success, negative on failure
3100 3101 3102
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
3103
	struct pci_dev *pdev = adapter->pdev;
3104 3105 3106
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
3107
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3108
		if (err) {
3109
			dev_err(&pdev->dev,
3110 3111
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3112
				igb_free_rx_resources(adapter->rx_ring[i]);
3113 3114 3115 3116 3117 3118 3119
			break;
		}
	}

	return err;
}

3120
/**
3121 3122
 *  igb_setup_mrqc - configure the multiple receive queue control registers
 *  @adapter: Board private structure
3123 3124 3125 3126 3127
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
3128
	u32 j, num_rx_queues;
3129 3130 3131 3132
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
3133 3134

	/* Fill out hash function seeds */
3135 3136
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
3137

3138
	num_rx_queues = adapter->rss_queues;
3139

3140 3141 3142
	switch (hw->mac.type) {
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
3143
		if (adapter->vfs_allocated_count)
3144
			num_rx_queues = 2;
3145 3146 3147
		break;
	default:
		break;
3148 3149
	}

3150 3151 3152 3153
	if (adapter->rss_indir_tbl_init != num_rx_queues) {
		for (j = 0; j < IGB_RETA_SIZE; j++)
			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
		adapter->rss_indir_tbl_init = num_rx_queues;
3154
	}
3155
	igb_write_rss_indir_tbl(adapter);
3156

3157
	/* Disable raw packet checksumming so that RSS hash is placed in
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
3170

3171 3172 3173
	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
3174 3175 3176 3177 3178
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3179

3180 3181 3182 3183 3184
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

3185 3186
	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
3187 3188
	 * if we are only using one queue
	 */
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
3199
		if (adapter->rss_queues > 1)
3200
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3201
		else
3202
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3203
	} else {
3204 3205
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3206 3207 3208 3209 3210 3211
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

3212
/**
3213 3214
 *  igb_setup_rctl - configure the receive control registers
 *  @adapter: Board private structure
3215
 **/
3216
void igb_setup_rctl(struct igb_adapter *adapter)
3217 3218 3219 3220 3221 3222 3223
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3224
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3225

3226
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3227
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3228

3229
	/* enable stripping of CRC. It's unlikely this will break BMC
3230 3231
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
3232
	 */
3233
	rctl |= E1000_RCTL_SECRC;
3234

3235
	/* disable store bad packets and clear size bits. */
3236
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3237

A
Alexander Duyck 已提交
3238 3239
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
3240

3241 3242
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
3243

3244 3245 3246 3247 3248 3249 3250 3251 3252
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
3253 3254 3255
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
3256 3257
		 * in e1000e_set_rx_mode
		 */
B
Ben Greear 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3270 3271 3272
	wr32(E1000_RCTL, rctl);
}

3273 3274 3275 3276 3277 3278 3279
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
3280 3281
	 * increase the size to support vlan tags
	 */
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3294
/**
3295 3296
 *  igb_rlpml_set - set maximum receive packet size
 *  @adapter: board private structure
3297
 *
3298
 *  Configure maximum receivable packet size.
3299 3300 3301
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3302
	u32 max_frame_size = adapter->max_frame_size;
3303 3304 3305 3306 3307
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3308
		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3309 3310 3311 3312 3313
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3314
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3315 3316 3317 3318 3319
	}

	wr32(E1000_RLPML, max_frame_size);
}

3320 3321
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3322 3323 3324 3325
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

3326
	/* This register exists only on 82576 and newer so if we are older then
3327 3328 3329 3330 3331 3332
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3333
	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3334
	if (aupe)
3335
		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3336 3337
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3338 3339 3340 3341

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3342
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3343
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3344
	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3345 3346 3347
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
3348
		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3349 3350 3351 3352

	wr32(E1000_VMOLR(vfn), vmolr);
}

3353
/**
3354 3355 3356
 *  igb_configure_rx_ring - Configure a receive ring after Reset
 *  @adapter: board private structure
 *  @ring: receive ring to be configured
3357
 *
3358
 *  Configure the Rx unit of the MAC after a reset.
3359
 **/
3360
void igb_configure_rx_ring(struct igb_adapter *adapter,
3361
			   struct igb_ring *ring)
3362 3363 3364 3365
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3366
	u32 srrctl = 0, rxdctl = 0;
3367 3368

	/* disable the queue */
3369
	wr32(E1000_RXDCTL(reg_idx), 0);
3370 3371 3372 3373 3374 3375

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
3376
	     ring->count * sizeof(union e1000_adv_rx_desc));
3377 3378

	/* initialize head and tail */
3379
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3380
	wr32(E1000_RDH(reg_idx), 0);
3381
	writel(0, ring->tail);
3382

3383
	/* set descriptor configuration */
3384
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3385
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3386
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3387
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3388
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3389 3390 3391
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3392 3393 3394

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3395
	/* set filtering for VMDQ pools */
3396
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3397

3398 3399 3400
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3401 3402 3403

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3404 3405 3406
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3407
/**
3408 3409
 *  igb_configure_rx - Configure receive Unit after Reset
 *  @adapter: board private structure
3410
 *
3411
 *  Configure the Rx unit of the MAC after a reset.
3412 3413 3414
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3415
	int i;
3416

3417 3418 3419
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3420 3421
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3422
			 adapter->vfs_allocated_count);
3423

3424
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3425 3426
	 * the Base and Length of the Rx Descriptor Ring
	 */
3427 3428
	for (i = 0; i < adapter->num_rx_queues; i++)
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3429 3430 3431
}

/**
3432 3433
 *  igb_free_tx_resources - Free Tx Resources per Queue
 *  @tx_ring: Tx descriptor ring for a specific queue
3434
 *
3435
 *  Free all transmit software resources
3436
 **/
3437
void igb_free_tx_resources(struct igb_ring *tx_ring)
3438
{
3439
	igb_clean_tx_ring(tx_ring);
3440

3441 3442
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3443

3444 3445 3446 3447
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3448 3449
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3450 3451 3452 3453 3454

	tx_ring->desc = NULL;
}

/**
3455 3456
 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 *  @adapter: board private structure
3457
 *
3458
 *  Free all transmit software resources
3459 3460 3461 3462 3463 3464
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3465
		igb_free_tx_resources(adapter->tx_ring[i]);
3466 3467
}

3468 3469 3470 3471 3472
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3473
		if (dma_unmap_len(tx_buffer, len))
3474
			dma_unmap_single(ring->dev,
3475 3476
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3477
					 DMA_TO_DEVICE);
3478
	} else if (dma_unmap_len(tx_buffer, len)) {
3479
		dma_unmap_page(ring->dev,
3480 3481
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3482 3483 3484 3485
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3486
	dma_unmap_len_set(tx_buffer, len, 0);
3487
	/* buffer_info must be completely set up in the transmit path */
3488 3489 3490
}

/**
3491 3492
 *  igb_clean_tx_ring - Free Tx Buffers
 *  @tx_ring: ring to be cleaned
3493
 **/
3494
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3495
{
3496
	struct igb_tx_buffer *buffer_info;
3497
	unsigned long size;
3498
	u16 i;
3499

3500
	if (!tx_ring->tx_buffer_info)
3501 3502 3503 3504
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3505
		buffer_info = &tx_ring->tx_buffer_info[i];
3506
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3507 3508
	}

3509 3510
	netdev_tx_reset_queue(txring_txq(tx_ring));

3511 3512
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3513 3514 3515 3516 3517 3518 3519 3520 3521

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
3522 3523
 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 *  @adapter: board private structure
3524 3525 3526 3527 3528 3529
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3530
		igb_clean_tx_ring(adapter->tx_ring[i]);
3531 3532 3533
}

/**
3534 3535
 *  igb_free_rx_resources - Free Rx Resources
 *  @rx_ring: ring to clean the resources from
3536
 *
3537
 *  Free all receive software resources
3538
 **/
3539
void igb_free_rx_resources(struct igb_ring *rx_ring)
3540
{
3541
	igb_clean_rx_ring(rx_ring);
3542

3543 3544
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3545

3546 3547 3548 3549
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3550 3551
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3552 3553 3554 3555 3556

	rx_ring->desc = NULL;
}

/**
3557 3558
 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 *  @adapter: board private structure
3559
 *
3560
 *  Free all receive software resources
3561 3562 3563 3564 3565 3566
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3567
		igb_free_rx_resources(adapter->rx_ring[i]);
3568 3569 3570
}

/**
3571 3572
 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 *  @rx_ring: ring to free buffers from
3573
 **/
3574
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3575 3576
{
	unsigned long size;
3577
	u16 i;
3578

3579 3580 3581 3582
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3583
	if (!rx_ring->rx_buffer_info)
3584
		return;
3585

3586 3587
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3588
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3589

3590 3591 3592 3593 3594 3595 3596 3597 3598
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3599
		buffer_info->page = NULL;
3600 3601
	}

3602 3603
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3604 3605 3606 3607

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3608
	rx_ring->next_to_alloc = 0;
3609 3610 3611 3612 3613
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
3614 3615
 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 *  @adapter: board private structure
3616 3617 3618 3619 3620 3621
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3622
		igb_clean_rx_ring(adapter->rx_ring[i]);
3623 3624 3625
}

/**
3626 3627 3628
 *  igb_set_mac - Change the Ethernet Address of the NIC
 *  @netdev: network interface device structure
 *  @p: pointer to an address structure
3629
 *
3630
 *  Returns 0 on success, negative on failure
3631 3632 3633 3634
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3635
	struct e1000_hw *hw = &adapter->hw;
3636 3637 3638 3639 3640 3641
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3642
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3643

3644 3645
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3646
			 adapter->vfs_allocated_count);
3647

3648 3649 3650 3651
	return 0;
}

/**
3652 3653
 *  igb_write_mc_addr_list - write multicast addresses to MTA
 *  @netdev: network interface device structure
3654
 *
3655 3656 3657 3658
 *  Writes multicast address list to the MTA hash table.
 *  Returns: -ENOMEM on failure
 *           0 on no addresses written
 *           X on writing X addresses to MTA
3659
 **/
3660
static int igb_write_mc_addr_list(struct net_device *netdev)
3661 3662 3663
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3664
	struct netdev_hw_addr *ha;
3665
	u8  *mta_list;
3666 3667
	int i;

3668
	if (netdev_mc_empty(netdev)) {
3669 3670 3671 3672 3673
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3674

3675
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3676 3677
	if (!mta_list)
		return -ENOMEM;
3678

3679
	/* The shared function expects a packed array of only addresses. */
3680
	i = 0;
3681 3682
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3683 3684 3685 3686

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3687
	return netdev_mc_count(netdev);
3688 3689 3690
}

/**
3691 3692
 *  igb_write_uc_addr_list - write unicast addresses to RAR table
 *  @netdev: network interface device structure
3693
 *
3694 3695 3696 3697
 *  Writes unicast address list to the RAR table.
 *  Returns: -ENOMEM on failure/insufficient address space
 *           0 on no addresses written
 *           X on writing X addresses to the RAR table
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3708
	if (netdev_uc_count(netdev) > rar_entries)
3709
		return -ENOMEM;
3710

3711
	if (!netdev_uc_empty(netdev) && rar_entries) {
3712
		struct netdev_hw_addr *ha;
3713 3714

		netdev_for_each_uc_addr(ha, netdev) {
3715 3716
			if (!rar_entries)
				break;
3717
			igb_rar_set_qsel(adapter, ha->addr,
3718 3719
					 rar_entries--,
					 vfn);
3720
			count++;
3721 3722 3723 3724 3725 3726 3727 3728 3729
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3730 3731 3732 3733
	return count;
}

/**
3734 3735
 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 *  @netdev: network interface device structure
3736
 *
3737 3738 3739 3740
 *  The set_rx_mode entry point is called whenever the unicast or multicast
 *  address lists or the network interface flags are updated.  This routine is
 *  responsible for configuring the hardware for proper unicast, multicast,
 *  promiscuous mode, and all-multi behavior.
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
3757
		/* retain VLAN HW filtering if in VT mode */
3758
		if (adapter->vfs_allocated_count)
3759
			rctl |= E1000_RCTL_VFE;
3760 3761 3762 3763 3764 3765 3766
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
3767
			/* Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3768
			 * then we should just turn on promiscuous mode so
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
3779
		/* Write addresses to available RAR registers, if there is not
3780
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3781
		 * unicast promiscuous mode
3782 3783 3784 3785 3786 3787 3788
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3789
	}
3790
	wr32(E1000_RCTL, rctl);
3791

3792
	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3793 3794 3795 3796
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
3797
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3798
		return;
3799

3800
	vmolr |= rd32(E1000_VMOLR(vfn)) &
3801
		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3802
	wr32(E1000_VMOLR(vfn), vmolr);
3803
	igb_restore_vf_multicasts(adapter);
3804 3805
}

G
Greg Rose 已提交
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3845
/* Need to wait a few seconds after link up to get diagnostic information from
3846 3847
 * the phy
 */
3848 3849 3850
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3851
	igb_get_phy_info(&adapter->hw);
3852 3853
}

A
Alexander Duyck 已提交
3854
/**
3855 3856
 *  igb_has_link - check shared code for link and determine up/down
 *  @adapter: pointer to driver private info
A
Alexander Duyck 已提交
3857
 **/
3858
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
3870 3871
		if (!hw->mac.get_link_status)
			return true;
A
Alexander Duyck 已提交
3872
	case e1000_media_type_internal_serdes:
3873 3874
		hw->mac.ops.check_for_link(hw);
		link_active = !hw->mac.get_link_status;
A
Alexander Duyck 已提交
3875 3876 3877 3878 3879 3880
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
	if (((hw->mac.type == e1000_i210) ||
	     (hw->mac.type == e1000_i211)) &&
	     (hw->phy.id == I210_I_PHY_ID)) {
		if (!netif_carrier_ok(adapter->netdev)) {
			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
			adapter->link_check_timeout = jiffies;
		}
	}

A
Alexander Duyck 已提交
3892 3893 3894
	return link_active;
}

3895 3896 3897 3898 3899
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

3900
	/* check for thermal sensor event on i350 copper only */
3901 3902 3903 3904 3905
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
3906
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3907 3908 3909 3910 3911 3912
			ret = !!(thstat & event);
	}

	return ret;
}

3913
/**
3914 3915
 *  igb_watchdog - Timer Call-back
 *  @data: pointer to adapter cast into an unsigned long
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3927 3928
						   struct igb_adapter,
						   watchdog_task);
3929
	struct e1000_hw *hw = &adapter->hw;
3930
	struct e1000_phy_info *phy = &hw->phy;
3931
	struct net_device *netdev = adapter->netdev;
3932
	u32 link;
3933
	int i;
3934

A
Alexander Duyck 已提交
3935
	link = igb_has_link(adapter);
3936 3937 3938 3939 3940 3941 3942 3943

	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
		else
			link = false;
	}

3944
	if (link) {
3945 3946 3947 3948 3949 3950
		/* Perform a reset if the media type changed. */
		if (hw->dev_spec._82575.media_changed) {
			hw->dev_spec._82575.media_changed = false;
			adapter->flags |= IGB_FLAG_MEDIA_RESET;
			igb_reset(adapter);
		}
Y
Yan, Zheng 已提交
3951 3952 3953
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3954 3955
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3956
			hw->mac.ops.get_speed_and_duplex(hw,
3957 3958
							 &adapter->link_speed,
							 &adapter->link_duplex);
3959 3960

			ctrl = rd32(E1000_CTRL);
3961
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3962 3963
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3964 3965 3966
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3967 3968 3969 3970 3971
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3972

3973 3974 3975 3976 3977
			/* check if SmartSpeed worked */
			igb_check_downshift(hw);
			if (phy->speed_downgraded)
				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");

3978
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3979 3980 3981 3982 3983
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3984
			}
3985

3986
			/* adjust timeout factor according to speed/duplex */
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3999
			igb_ping_all_vfs(adapter);
4000
			igb_check_vf_rate_limit(adapter);
4001

4002
			/* link state has changed, schedule phy info update */
4003 4004 4005 4006 4007 4008 4009 4010
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4011 4012

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
4013 4014 4015 4016
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
4017
			}
4018

4019 4020 4021
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
4022
			netif_carrier_off(netdev);
4023

4024 4025
			igb_ping_all_vfs(adapter);

4026
			/* link state has changed, schedule phy info update */
4027 4028 4029
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
4030 4031 4032

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
4033 4034 4035
		}
	}

E
Eric Dumazet 已提交
4036 4037 4038
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
4039

4040
	for (i = 0; i < adapter->num_tx_queues; i++) {
4041
		struct igb_ring *tx_ring = adapter->tx_ring[i];
4042
		if (!netif_carrier_ok(netdev)) {
4043 4044 4045
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
4046 4047
			 * (Do the reset outside of interrupt context).
			 */
4048 4049 4050 4051 4052 4053
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
4054 4055
		}

4056
		/* Force detection of hung controller every watchdog period */
4057
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4058
	}
4059

4060
	/* Cause software interrupt to ensure Rx ring is cleaned */
4061
	if (adapter->msix_entries) {
4062
		u32 eics = 0;
4063 4064
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
4065 4066 4067 4068
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
4069

G
Greg Rose 已提交
4070
	igb_spoof_check(adapter);
4071
	igb_ptp_rx_hang(adapter);
G
Greg Rose 已提交
4072

4073
	/* Reset the timer */
4074 4075 4076 4077 4078 4079 4080 4081
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
			mod_timer(&adapter->watchdog_timer,
				  round_jiffies(jiffies +  HZ));
		else
			mod_timer(&adapter->watchdog_timer,
				  round_jiffies(jiffies + 2 * HZ));
	}
4082 4083 4084 4085 4086 4087 4088 4089 4090
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

4091
/**
4092 4093
 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 *  @q_vector: pointer to q_vector
4094
 *
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
 *  Stores a new ITR value based on strictly on packet size.  This
 *  algorithm is less sophisticated than that used in igb_update_itr,
 *  due to the difficulty of synchronizing statistics across multiple
 *  receive rings.  The divisors and thresholds used by this function
 *  were determined based on theoretical maximum wire speed and testing
 *  data, in order to minimize response time while increasing bulk
 *  throughput.
 *  This functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  This function is called only when operating in a multiqueue
 *         receive environment.
4106
 **/
4107
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4108
{
4109
	int new_val = q_vector->itr_val;
4110
	int avg_wire_size = 0;
4111
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
4112
	unsigned int packets;
4113

4114 4115 4116 4117
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
4118
		new_val = IGB_4K_ITR;
4119
		goto set_itr_val;
4120
	}
4121

4122 4123 4124
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
4125

4126 4127 4128 4129
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
4130 4131 4132 4133

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
4134

4135 4136 4137 4138 4139
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
4140

4141 4142 4143 4144 4145
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
4146

4147 4148 4149 4150 4151
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
4152

4153
set_itr_val:
4154 4155 4156
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
4157
	}
4158
clear_counts:
4159 4160 4161 4162
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
4163 4164 4165
}

/**
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
 *  igb_update_itr - update the dynamic ITR value based on statistics
 *  @q_vector: pointer to q_vector
 *  @ring_container: ring info to update the itr for
 *
 *  Stores a new ITR value based on packets and byte
 *  counts during the last interrupt.  The advantage of per interrupt
 *  computation is faster updates and more accurate ITR for the current
 *  traffic pattern.  Constants in this function were computed
 *  based on theoretical maximum wire speed and thresholds were set based
 *  on testing data as well as attempting to minimize response time
 *  while increasing bulk throughput.
 *  this functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  These calculations are only valid when operating in a single-
 *         queue environment.
4181
 **/
4182 4183
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
4184
{
4185 4186 4187
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
4188

4189
	/* no packets, exit with status unchanged */
4190
	if (packets == 0)
4191
		return;
4192

4193
	switch (itrval) {
4194 4195 4196
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
4197
			itrval = bulk_latency;
4198
		else if ((packets < 5) && (bytes > 512))
4199
			itrval = low_latency;
4200 4201 4202 4203 4204
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
4205
				itrval = bulk_latency;
4206
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4207
				itrval = bulk_latency;
4208
			} else if ((packets > 35)) {
4209
				itrval = lowest_latency;
4210 4211
			}
		} else if (bytes/packets > 2000) {
4212
			itrval = bulk_latency;
4213
		} else if (packets <= 2 && bytes < 512) {
4214
			itrval = lowest_latency;
4215 4216 4217 4218 4219
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
4220
				itrval = low_latency;
4221
		} else if (bytes < 1500) {
4222
			itrval = low_latency;
4223 4224 4225 4226
		}
		break;
	}

4227 4228 4229 4230 4231 4232
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
4233 4234
}

4235
static void igb_set_itr(struct igb_q_vector *q_vector)
4236
{
4237
	struct igb_adapter *adapter = q_vector->adapter;
4238
	u32 new_itr = q_vector->itr_val;
4239
	u8 current_itr = 0;
4240 4241 4242 4243

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
4244
		new_itr = IGB_4K_ITR;
4245 4246 4247
		goto set_itr_now;
	}

4248 4249
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
4250

4251
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4252

4253
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4254 4255 4256
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4257 4258
		current_itr = low_latency;

4259 4260 4261
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
4262
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4263 4264
		break;
	case low_latency:
4265
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4266 4267
		break;
	case bulk_latency:
4268
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4269 4270 4271 4272 4273 4274
		break;
	default:
		break;
	}

set_itr_now:
4275
	if (new_itr != q_vector->itr_val) {
4276 4277
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
4278 4279
		 * increasing
		 */
4280
		new_itr = new_itr > q_vector->itr_val ?
4281 4282 4283
			  max((new_itr * q_vector->itr_val) /
			  (new_itr + (q_vector->itr_val >> 2)),
			  new_itr) : new_itr;
4284 4285 4286 4287 4288 4289
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4290 4291
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4292 4293 4294
	}
}

4295 4296
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4310
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4311 4312 4313 4314 4315 4316 4317 4318
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4319 4320 4321
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4322
{
4323
	struct sk_buff *skb = first->skb;
4324 4325 4326
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

4327 4328 4329
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

4330 4331
	if (!skb_is_gso(skb))
		return 0;
4332 4333

	if (skb_header_cloned(skb)) {
4334
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4335 4336 4337 4338
		if (err)
			return err;
	}

4339 4340
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4341

4342
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4343 4344 4345 4346 4347 4348 4349
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4350
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4351 4352 4353
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4354
	} else if (skb_is_gso_v6(skb)) {
4355 4356 4357 4358
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4359 4360
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4361 4362
	}

4363
	/* compute header lengths */
4364 4365
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4366

4367 4368 4369 4370
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4371
	/* MSS L4LEN IDX */
4372 4373
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4374

4375 4376 4377
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4378
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4379

4380
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4381

4382
	return 1;
4383 4384
}

4385
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4386
{
4387
	struct sk_buff *skb = first->skb;
4388 4389 4390
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4391

4392
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4393 4394
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4395 4396
	} else {
		u8 l4_hdr = 0;
4397
		switch (first->protocol) {
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4410 4411
					 "partial checksum but proto=%x!\n",
					 first->protocol);
4412
			}
4413 4414
			break;
		}
4415

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4434 4435
					 "partial checksum but l4 proto=%x!\n",
					 l4_hdr);
4436
			}
4437
			break;
4438
		}
4439 4440 4441

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4442
	}
4443

4444
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4445
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4446

4447
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4448 4449
}

4450 4451 4452 4453 4454 4455
#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4456 4457
{
	/* set type for advanced descriptor with frame checksum insertion */
4458 4459 4460
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;
4461 4462

	/* set HW vlan bit if vlan is present */
4463 4464 4465 4466 4467 4468
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));
4469 4470

	/* set timestamp bit if present */
4471 4472
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));
4473

4474 4475
	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4476 4477 4478 4479

	return cmd_type;
}

4480 4481 4482
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4483 4484 4485
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

4486 4487
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4488 4489 4490
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
4491 4492 4493
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));
4494

4495 4496 4497 4498
	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));
4499

4500
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4501 4502
}

4503 4504
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4505
		       const u8 hdr_len)
4506
{
4507
	struct sk_buff *skb = first->skb;
4508
	struct igb_tx_buffer *tx_buffer;
4509
	union e1000_adv_tx_desc *tx_desc;
4510
	struct skb_frag_struct *frag;
4511
	dma_addr_t dma;
4512
	unsigned int data_len, size;
4513
	u32 tx_flags = first->tx_flags;
4514
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4515 4516 4517 4518
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4519 4520 4521 4522
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;
4523 4524

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4525

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4537 4538 4539

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
4540
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4541 4542 4543 4544 4545 4546 4547

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
4548
			tx_desc->read.olinfo_status = 0;
4549 4550 4551 4552 4553 4554 4555 4556 4557

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4558

4559
		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4560

4561
		i++;
4562 4563 4564
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4565
			i = 0;
4566
		}
4567
		tx_desc->read.olinfo_status = 0;
4568

E
Eric Dumazet 已提交
4569
		size = skb_frag_size(frag);
4570 4571 4572
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4573
				       size, DMA_TO_DEVICE);
4574

4575
		tx_buffer = &tx_ring->tx_buffer_info[i];
4576 4577
	}

4578
	/* write last descriptor with RS and EOP bits */
4579 4580
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4581

4582 4583
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4584 4585 4586
	/* set the timestamp */
	first->time_stamp = jiffies;

4587
	/* Force memory writes to complete before letting h/w know there
4588 4589 4590 4591 4592 4593 4594 4595
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4596
	/* set next_to_watch value indicating a packet is present */
4597
	first->next_to_watch = tx_desc;
4598

4599 4600 4601
	i++;
	if (i == tx_ring->count)
		i = 0;
4602

4603
	tx_ring->next_to_use = i;
4604

4605
	writel(i, tx_ring->tail);
4606

4607
	/* we need this if more than one processor can write to our tail
4608 4609
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4610 4611 4612 4613 4614 4615 4616 4617 4618
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4619 4620 4621
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4622
			break;
4623 4624
		if (i == 0)
			i = tx_ring->count;
4625 4626 4627
		i--;
	}

4628 4629 4630
	tx_ring->next_to_use = i;
}

4631
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4632
{
4633 4634
	struct net_device *netdev = tx_ring->netdev;

4635 4636
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4637 4638
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
4639 4640
	 * but since that doesn't exist yet, just open code it.
	 */
4641 4642 4643
	smp_mb();

	/* We need to check again in a case another CPU has just
4644 4645
	 * made room available.
	 */
4646
	if (igb_desc_unused(tx_ring) < size)
4647 4648 4649
		return -EBUSY;

	/* A reprieve! */
4650
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4651 4652 4653 4654 4655

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4656 4657 4658
	return 0;
}

4659
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4660
{
4661
	if (igb_desc_unused(tx_ring) >= size)
4662
		return 0;
4663
	return __igb_maybe_stop_tx(tx_ring, size);
4664 4665
}

4666 4667
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4668
{
4669
	struct igb_tx_buffer *first;
4670
	int tso;
N
Nick Nunley 已提交
4671
	u32 tx_flags = 0;
4672
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4673
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4674
	u8 hdr_len = 0;
4675

4676 4677
	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4678 4679
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for context descriptor,
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
	 * otherwise try next time
	 */
	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
		unsigned short f;
		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
	} else {
		count += skb_shinfo(skb)->nr_frags;
	}

	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4691 4692 4693
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4694

4695 4696 4697 4698 4699 4700
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4701 4702
	skb_tx_timestamp(skb);

4703 4704
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4705

4706 4707 4708 4709 4710 4711 4712 4713 4714
		if (!(adapter->ptp_tx_skb)) {
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
			tx_flags |= IGB_TX_FLAGS_TSTAMP;

			adapter->ptp_tx_skb = skb_get(skb);
			adapter->ptp_tx_start = jiffies;
			if (adapter->hw.mac.type == e1000_82576)
				schedule_work(&adapter->ptp_tx_work);
		}
4715
	}
4716

4717
	if (vlan_tx_tag_present(skb)) {
4718 4719 4720 4721
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4722 4723 4724
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4725

4726 4727
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4728
		goto out_drop;
4729 4730
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4731

4732
	igb_tx_map(tx_ring, first, hdr_len);
4733 4734

	/* Make sure there is space in the ring for the next send. */
4735
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4736

4737
	return NETDEV_TX_OK;
4738 4739

out_drop:
4740 4741
	igb_unmap_and_free_tx_resource(tx_ring, first);

4742
	return NETDEV_TX_OK;
4743 4744
}

4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4756 4757
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4758 4759
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4771
	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4772 4773
	 * in order to meet this minimum size requirement.
	 */
4774 4775
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
4776 4777
			return NETDEV_TX_OK;
		skb->len = 17;
4778
		skb_set_tail_pointer(skb, 17);
4779
	}
4780

4781
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4782 4783 4784
}

/**
4785 4786
 *  igb_tx_timeout - Respond to a Tx Hang
 *  @netdev: network interface device structure
4787 4788 4789 4790 4791 4792 4793 4794
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4795

4796
	if (hw->mac.type >= e1000_82580)
4797 4798
		hw->dev_spec._82575.global_device_reset = true;

4799
	schedule_work(&adapter->reset_task);
4800 4801
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4802 4803 4804 4805 4806 4807 4808
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4809 4810
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4811 4812 4813 4814
	igb_reinit_locked(adapter);
}

/**
4815 4816 4817
 *  igb_get_stats64 - Get System Network Statistics
 *  @netdev: network interface device structure
 *  @stats: rtnl_link_stats64 pointer
4818
 **/
E
Eric Dumazet 已提交
4819
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4820
						struct rtnl_link_stats64 *stats)
4821
{
E
Eric Dumazet 已提交
4822 4823 4824 4825 4826 4827 4828 4829
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4830 4831 4832
}

/**
4833 4834 4835
 *  igb_change_mtu - Change the Maximum Transfer Unit
 *  @netdev: network interface device structure
 *  @new_mtu: new value for maximum frame size
4836
 *
4837
 *  Returns 0 on success, negative on failure
4838 4839 4840 4841
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4842
	struct pci_dev *pdev = adapter->pdev;
4843
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4844

4845
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4846
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4847 4848 4849
		return -EINVAL;
	}

4850
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4851
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4852
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4853 4854 4855
		return -EINVAL;
	}

4856 4857 4858 4859
	/* adjust max frame to be at least the size of a standard frame */
	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;

4860 4861
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4862

4863 4864
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4865

4866 4867
	if (netif_running(netdev))
		igb_down(adapter);
4868

4869
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
4884 4885
 *  igb_update_stats - Update the board statistics counters
 *  @adapter: board private structure
4886
 **/
E
Eric Dumazet 已提交
4887 4888
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4889 4890 4891
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4892
	u32 reg, mpc;
4893
	u16 phy_tmp;
4894 4895
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4896 4897
	unsigned int start;
	u64 _bytes, _packets;
4898 4899 4900

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

4901
	/* Prevent stats update while adapter is being reset, or if the pci
4902 4903 4904 4905 4906 4907 4908
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4909 4910
	bytes = 0;
	packets = 0;
4911 4912

	rcu_read_lock();
4913
	for (i = 0; i < adapter->num_rx_queues; i++) {
4914
		u32 rqdpc = rd32(E1000_RQDPC(i));
4915
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4916

4917 4918 4919 4920
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
4921 4922 4923 4924 4925 4926 4927 4928

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4929 4930
	}

4931 4932
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4933 4934 4935 4936

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4937
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4938 4939 4940 4941 4942 4943 4944
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4945
	}
4946 4947
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4948
	rcu_read_unlock();
4949 4950

	/* read stats registers */
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4968 4969 4970
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4985
	adapter->stats.rnbc += rd32(E1000_RNBC);
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

5003 5004
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
5005 5006

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5007 5008 5009 5010
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5011 5012 5013 5014 5015

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
5016 5017
	}

5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
5032 5033
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
5034 5035 5036 5037

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
5038 5039
	 * our own version based on RUC and ROC
	 */
5040
	net_stats->rx_errors = adapter->stats.rxerrc +
5041 5042 5043
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
5044 5045 5046 5047 5048
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
5049 5050

	/* Tx Errors */
5051 5052 5053 5054 5055
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5056 5057 5058 5059 5060 5061

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
5062
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5063 5064 5065 5066 5067 5068 5069 5070 5071
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5072 5073 5074 5075 5076 5077 5078 5079 5080

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
5081 5082 5083 5084
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
5085
	struct igb_adapter *adapter = data;
5086
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
5087 5088
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
5089

5090 5091 5092
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5093
	if (icr & E1000_ICR_DOUTSYNC) {
5094 5095
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
5096 5097
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
5098 5099
		 * see if it is really a spoof event.
		 */
G
Greg Rose 已提交
5100
		igb_check_wvbr(adapter);
5101
	}
5102

5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

P
PJ Waskiewicz 已提交
5125
	wr32(E1000_EIMS, adapter->eims_other);
5126 5127 5128 5129

	return IRQ_HANDLED;
}

5130
static void igb_write_itr(struct igb_q_vector *q_vector)
5131
{
5132
	struct igb_adapter *adapter = q_vector->adapter;
5133
	u32 itr_val = q_vector->itr_val & 0x7FFC;
5134

5135 5136
	if (!q_vector->set_itr)
		return;
5137

5138 5139
	if (!itr_val)
		itr_val = 0x4;
5140

5141 5142
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
5143
	else
5144
		itr_val |= E1000_EITR_CNT_IGNR;
5145

5146 5147
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
5148 5149
}

5150
static irqreturn_t igb_msix_ring(int irq, void *data)
5151
{
5152
	struct igb_q_vector *q_vector = data;
5153

5154 5155
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
5156

5157
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
5158

5159
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
5160 5161
}

5162
#ifdef CONFIG_IGB_DCA
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

5173
	/* We can enable relaxed ordering for reads, but not writes when
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

5194
	/* We can enable relaxed ordering for reads, but not writes when
5195 5196 5197 5198 5199 5200 5201 5202 5203
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

5204
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
5205
{
5206
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
5207 5208
	int cpu = get_cpu();

5209 5210 5211
	if (q_vector->cpu == cpu)
		goto out_no_update;

5212 5213 5214 5215 5216 5217
	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

5218 5219
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
5220 5221 5222 5223 5224
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
5225
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
5226 5227
	int i;

5228
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
5229 5230
		return;

5231 5232 5233
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

5234
	for (i = 0; i < adapter->num_q_vectors; i++) {
5235 5236
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
5237 5238 5239 5240 5241 5242 5243
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
5244
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
5245 5246 5247 5248 5249 5250
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
5251
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
5252 5253
			break;
		if (dca_add_requester(dev) == 0) {
5254
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5255
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
5256 5257 5258 5259 5260
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
5261
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
5262
			/* without this a class_device is left
5263 5264
			 * hanging around in the sysfs model
			 */
J
Jeb Cramer 已提交
5265
			dca_remove_requester(dev);
5266
			dev_info(&pdev->dev, "DCA disabled\n");
5267
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
5268
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
5269 5270 5271
		}
		break;
	}
5272

J
Jeb Cramer 已提交
5273
	return 0;
5274 5275
}

J
Jeb Cramer 已提交
5276
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5277
			  void *p)
J
Jeb Cramer 已提交
5278 5279 5280 5281
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5282
					 __igb_notify_dca);
J
Jeb Cramer 已提交
5283 5284 5285

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
5286
#endif /* CONFIG_IGB_DCA */
5287

5288 5289 5290 5291 5292
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

5293
	eth_zero_addr(mac_addr);
5294 5295
	igb_set_vf_mac(adapter, vf, mac_addr);

L
Lior Levy 已提交
5296 5297 5298
	/* By default spoof check is enabled for all VFs */
	adapter->vf_data[vf].spoofchk_enabled = true;

5299
	return 0;
5300 5301 5302
}

#endif
5303 5304 5305 5306 5307 5308 5309 5310
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5311
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5312 5313 5314 5315 5316
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5317 5318 5319 5320 5321 5322
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5323
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5324
			    IGB_VF_FLAG_MULTI_PROMISC);
5325 5326 5327 5328
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5329
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5330 5331
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
5332
		/* if we have hashes and we are clearing a multicast promisc
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;
}

5355 5356 5357 5358 5359 5360 5361 5362
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5363
	/* salt away the number of multicast addresses assigned
5364 5365 5366 5367 5368
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5369 5370 5371 5372 5373
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5374
	for (i = 0; i < n; i++)
5375
		vf_data->vf_mc_hashes[i] = hash_list[i];
5376 5377

	/* Flush and reset the mta with the new values */
5378
	igb_set_rx_mode(adapter->netdev);
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5390 5391 5392
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5393
		vf_data = &adapter->vf_data[i];
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5432 5433

	adapter->vf_data[vf].vlans_enabled = 0;
5434 5435 5436 5437 5438 5439 5440
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5441 5442 5443 5444 5445
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5475 5476
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5477 5478
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5479 5480
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5481
			wr32(E1000_VLVF(i), reg);
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5497
			adapter->vf_data[vf].vlans_enabled++;
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5524 5525
		}
	}
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
5559
				 "The VF VLAN has been set, but the PF device is not up.\n");
5560
			dev_warn(&adapter->pdev->dev,
5561
				 "Bring the PF device up before attempting to use the VF device.\n");
5562 5563 5564
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5565
			     false, vf);
5566 5567 5568 5569
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
5570
	}
5571
out:
5572
	return err;
5573 5574
}

5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;
	u32 reg;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (i >= E1000_VLVF_ARRAY_SIZE)
		i = -1;

	return i;
}

5595 5596
static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
5597
	struct e1000_hw *hw = &adapter->hw;
5598 5599
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5600
	int err = 0;
5601

5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
	/* If in promiscuous mode we need to make sure the PF also has
	 * the VLAN filter set.
	 */
	if (add && (adapter->netdev->flags & IFF_PROMISC))
		err = igb_vlvf_set(adapter, vid, add,
				   adapter->vfs_allocated_count);
	if (err)
		goto out;

	err = igb_vlvf_set(adapter, vid, add, vf);

	if (err)
		goto out;

	/* Go through all the checks to see if the VLAN filter should
	 * be wiped completely.
	 */
	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
		u32 vlvf, bits;

		int regndx = igb_find_vlvf_entry(adapter, vid);
		if (regndx < 0)
			goto out;
		/* See if any other pools are set for this VLAN filter
		 * entry other than the PF.
		 */
		vlvf = bits = rd32(E1000_VLVF(regndx));
		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
			      adapter->vfs_allocated_count);
		/* If the filter was removed then ensure PF pool bit
		 * is cleared if the PF only added itself to the pool
		 * because the PF is in promiscuous mode.
		 */
		if ((vlvf & VLAN_VID_MASK) == vid &&
		    !test_bit(vid, adapter->active_vlans) &&
		    !bits)
			igb_vlvf_set(adapter, vid, add,
				     adapter->vfs_allocated_count);
	}

out:
	return err;
5644 5645
}

5646
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5647
{
G
Greg Rose 已提交
5648 5649
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5650
	adapter->vf_data[vf].last_nack = jiffies;
5651 5652

	/* reset offloads to defaults */
5653
	igb_set_vmolr(adapter, vf, true);
5654 5655 5656

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5657 5658 5659 5660 5661 5662
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5663 5664 5665 5666 5667

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5668
	igb_set_rx_mode(adapter->netdev);
5669 5670
}

5671 5672 5673 5674
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

5675
	/* clear mac address as we were hotplug removed/added */
5676
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5677
		eth_zero_addr(vf_mac);
5678 5679 5680 5681 5682 5683

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5684 5685 5686
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5687
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5688 5689 5690 5691
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5692
	igb_vf_reset(adapter, vf);
5693 5694

	/* set vf mac address */
5695
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5696 5697 5698 5699 5700 5701 5702

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5703
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5704 5705 5706

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5707
	memcpy(addr, vf_mac, ETH_ALEN);
5708 5709 5710 5711 5712
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
5713
	/* The VF MAC Address is stored in a packed array of bytes
G
Greg Rose 已提交
5714 5715
	 * starting at the second 32 bit word of the msg array
	 */
5716 5717
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5718

5719 5720
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5721

5722
	return err;
5723 5724 5725 5726 5727
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5728
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5729 5730 5731
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5732 5733
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5734
		igb_write_mbx(hw, &msg, 1, vf);
5735
		vf_data->last_nack = jiffies;
5736 5737 5738
	}
}

5739
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5740
{
5741 5742
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5743
	struct e1000_hw *hw = &adapter->hw;
5744
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5745 5746
	s32 retval;

5747
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5748

5749 5750
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5751
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5752 5753 5754 5755 5756
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5757 5758 5759

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5760
		return;
5761

5762
	/* until the vf completes a reset it should not be
5763 5764 5765 5766
	 * allowed to start any configuration.
	 */
	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5767
		return;
5768 5769
	}

5770
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5771 5772 5773 5774
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5775 5776 5777 5778
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5779 5780 5781 5782 5783
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
5784 5785
				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
				 vf);
5786
		break;
5787 5788 5789
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5790 5791 5792 5793 5794 5795 5796
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5797 5798 5799
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
5800 5801
				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
				 vf);
5802 5803
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5804 5805
		break;
	default:
5806
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5807 5808 5809 5810
		retval = -1;
		break;
	}

5811 5812
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5813 5814 5815 5816 5817 5818 5819
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5820
}
5821

5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5840 5841
}

5842 5843 5844 5845 5846 5847 5848
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5849 5850
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5869
/**
5870 5871 5872
 *  igb_intr_msi - Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5873 5874 5875
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5876 5877
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5878 5879 5880 5881
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5882
	igb_write_itr(q_vector);
5883

5884 5885 5886
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5887
	if (icr & E1000_ICR_DOUTSYNC) {
5888 5889 5890 5891
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5892 5893 5894 5895 5896 5897
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5909
	napi_schedule(&q_vector->napi);
5910 5911 5912 5913 5914

	return IRQ_HANDLED;
}

/**
5915 5916 5917
 *  igb_intr - Legacy Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5918 5919 5920
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5921 5922
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5923 5924
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5925 5926
	 * need for the IMC write
	 */
5927 5928 5929
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5930 5931
	 * not set, then the adapter didn't send an interrupt
	 */
5932 5933 5934
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5935 5936
	igb_write_itr(q_vector);

5937 5938 5939
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5940
	if (icr & E1000_ICR_DOUTSYNC) {
5941 5942 5943 5944
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5945 5946 5947 5948 5949 5950 5951
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5963
	napi_schedule(&q_vector->napi);
5964 5965 5966 5967

	return IRQ_HANDLED;
}

5968
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5969
{
5970
	struct igb_adapter *adapter = q_vector->adapter;
5971
	struct e1000_hw *hw = &adapter->hw;
5972

5973 5974 5975 5976
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5977
		else
5978
			igb_update_ring_itr(q_vector);
5979 5980
	}

5981 5982
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5983
			wr32(E1000_EIMS, q_vector->eims_value);
5984 5985 5986
		else
			igb_irq_enable(adapter);
	}
5987 5988
}

5989
/**
5990 5991 5992
 *  igb_poll - NAPI Rx polling callback
 *  @napi: napi polling structure
 *  @budget: count of how many packets we should handle
5993 5994
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5995
{
5996
	struct igb_q_vector *q_vector = container_of(napi,
5997 5998
						     struct igb_q_vector,
						     napi);
5999
	bool clean_complete = true;
6000

6001
#ifdef CONFIG_IGB_DCA
6002 6003
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
6004
#endif
6005
	if (q_vector->tx.ring)
6006
		clean_complete = igb_clean_tx_irq(q_vector);
6007

6008
	if (q_vector->rx.ring)
6009
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6010

6011 6012 6013
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
6014

6015
	/* If not enough Rx work done, exit the polling mode */
6016 6017
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
6018

6019
	return 0;
6020
}
A
Al Viro 已提交
6021

6022
/**
6023 6024
 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 *  @q_vector: pointer to q_vector containing needed info
6025
 *
6026
 *  returns true if ring is completely cleaned
6027
 **/
6028
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6029
{
6030
	struct igb_adapter *adapter = q_vector->adapter;
6031
	struct igb_ring *tx_ring = q_vector->tx.ring;
6032
	struct igb_tx_buffer *tx_buffer;
6033
	union e1000_adv_tx_desc *tx_desc;
6034
	unsigned int total_bytes = 0, total_packets = 0;
6035
	unsigned int budget = q_vector->tx.work_limit;
6036
	unsigned int i = tx_ring->next_to_clean;
6037

6038 6039
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
6040

6041
	tx_buffer = &tx_ring->tx_buffer_info[i];
6042
	tx_desc = IGB_TX_DESC(tx_ring, i);
6043
	i -= tx_ring->count;
6044

6045 6046
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6047 6048 6049 6050

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
6051

6052
		/* prevent any other reads prior to eop_desc */
6053
		read_barrier_depends();
6054

6055 6056 6057 6058
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

6059 6060
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
6061

6062 6063 6064
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
6065

6066 6067
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
6068

6069 6070
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
6071 6072
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
6073 6074
				 DMA_TO_DEVICE);

6075 6076 6077 6078
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

6079 6080
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
6081 6082
			tx_buffer++;
			tx_desc++;
6083
			i++;
6084 6085
			if (unlikely(!i)) {
				i -= tx_ring->count;
6086
				tx_buffer = tx_ring->tx_buffer_info;
6087 6088
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
6089 6090

			/* unmap any remaining paged data */
6091
			if (dma_unmap_len(tx_buffer, len)) {
6092
				dma_unmap_page(tx_ring->dev,
6093 6094
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
6095
					       DMA_TO_DEVICE);
6096
				dma_unmap_len_set(tx_buffer, len, 0);
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
6109 6110 6111 6112 6113 6114 6115

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
6116

6117 6118
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
6119
	i += tx_ring->count;
6120
	tx_ring->next_to_clean = i;
6121 6122 6123 6124
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
6125 6126
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
6127

6128
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6129
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
6130

6131
		/* Detect a transmit hang in hardware, this serializes the
6132 6133
		 * check with the clearing of time_stamp and movement of i
		 */
6134
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6135
		if (tx_buffer->next_to_watch &&
6136
		    time_after(jiffies, tx_buffer->time_stamp +
6137 6138
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6139 6140

			/* detected Tx unit hang */
6141
			dev_err(tx_ring->dev,
6142
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
6143
				"  Tx Queue             <%d>\n"
6144 6145 6146 6147 6148 6149
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
6150
				"  next_to_watch        <%p>\n"
6151 6152
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
6153
				tx_ring->queue_index,
6154
				rd32(E1000_TDH(tx_ring->reg_idx)),
6155
				readl(tx_ring->tail),
6156 6157
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
6158
				tx_buffer->time_stamp,
6159
				tx_buffer->next_to_watch,
6160
				jiffies,
6161
				tx_buffer->next_to_watch->wb.status);
6162 6163 6164 6165 6166
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
6167 6168
		}
	}
6169

6170
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6171
	if (unlikely(total_packets &&
6172 6173
	    netif_carrier_ok(tx_ring->netdev) &&
	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
6191 6192
}

6193
/**
6194 6195 6196
 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 *  @rx_ring: rx descriptor ring to store buffers on
 *  @old_buff: donor buffer to have page reused
6197
 *
6198
 *  Synchronizes page for reuse by the adapter
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
6218
					 IGB_RX_BUFSZ,
6219 6220 6221
					 DMA_FROM_DEVICE);
}

6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
				  struct page *page,
				  unsigned int truesize)
{
	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;

	/* since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif

	return true;
}

6257
/**
6258 6259 6260 6261 6262
 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 *  @rx_ring: rx descriptor ring to transact packets on
 *  @rx_buffer: buffer containing page to add
 *  @rx_desc: descriptor containing length of buffer written by hardware
 *  @skb: sk_buff to place the data into
6263
 *
6264 6265 6266 6267
 *  This function will add the data contained in rx_buffer->page to the skb.
 *  This is done either through a direct copy if the data in the buffer is
 *  less than the skb header size, otherwise it will just attach the page as
 *  a frag to the skb.
6268
 *
6269 6270
 *  The function will then update the page offset if necessary and return
 *  true if the buffer can be reused by the adapter.
6271 6272 6273 6274 6275 6276 6277 6278
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6279 6280 6281 6282 6283
#if (PAGE_SIZE < 8192)
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6306
			rx_buffer->page_offset, size, truesize);
6307

6308 6309
	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
}
6310

6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

6341
		/* we will be copying header into skb->data in
6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6352
				      IGB_RX_BUFSZ,
6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6371
static inline void igb_rx_checksum(struct igb_ring *ring,
6372 6373
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6374
{
6375
	skb_checksum_none_assert(skb);
6376

6377
	/* Ignore Checksum bit is set */
6378
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6379 6380 6381 6382
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6383
		return;
6384

6385
	/* TCP/UDP checksum error bit is set */
6386 6387 6388
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6389
		/* work around errata with sctp packets where the TCPE aka
6390 6391 6392
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6393 6394
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6395
			u64_stats_update_begin(&ring->rx_syncp);
6396
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6397 6398
			u64_stats_update_end(&ring->rx_syncp);
		}
6399 6400 6401 6402
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6403 6404
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6405 6406
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6407 6408
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6409 6410
}

6411 6412 6413 6414 6415 6416 6417 6418
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

6419
/**
6420 6421 6422 6423
 *  igb_is_non_eop - process handling of non-EOP buffers
 *  @rx_ring: Rx ring being processed
 *  @rx_desc: Rx descriptor for current buffer
 *  @skb: current socket buffer containing buffer in progress
6424
 *
6425 6426 6427 6428
 *  This function updates next to clean.  If the buffer is an EOP buffer
 *  this function exits returning false, otherwise it will place the
 *  sk_buff in the next buffer to be chained and return true indicating
 *  that this is in fact a non-EOP buffer.
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6447
/**
6448 6449 6450
 *  igb_get_headlen - determine size of header for LRO/GRO
 *  @data: pointer to the start of the headers
 *  @max_len: total length of section to find headers in
6451
 *
6452 6453 6454 6455 6456
 *  This function is meant to determine the length of headers that will
 *  be recognized by hardware for LRO, and GRO offloads.  The main
 *  motivation of doing this is to only perform one pull for IPv4 TCP
 *  packets so that we can do basic things like calculating the gso_size
 *  based on the average data per packet.
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

6506
		/* record next protocol if header is present */
6507
		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6508
			nexthdr = hdr.ipv4->protocol;
6509 6510 6511 6512 6513 6514
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
6515
		hlen = sizeof(struct ipv6hdr);
6516 6517 6518 6519
	} else {
		return hdr.network - data;
	}

6520 6521 6522
	/* relocate pointer to start of L4 header */
	hdr.network += hlen;

6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

6543
	/* If everything has gone correctly hdr.network should be the
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
6555 6556 6557 6558
 *  igb_pull_tail - igb specific version of skb_pull_tail
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being adjusted
6559
 *
6560 6561 6562 6563 6564 6565
 *  This function is an igb specific version of __pskb_pull_tail.  The
 *  main difference between this version and the original function is that
 *  this function can make several assumptions about the state of things
 *  that allow for significant optimizations versus the standard function.
 *  As a result we can do things like drop a frag and maintain an accurate
 *  truesize for the skb.
6566 6567 6568 6569
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6570
{
6571 6572 6573 6574
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

6575
	/* it is valid to use page_address instead of kmap since we are
6576 6577
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6578
	 */
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
	va = skb_frag_address(frag);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

6595
	/* we need the header to contain the greater of either ETH_HLEN or
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
6611 6612 6613 6614
 *  igb_cleanup_headers - Correct corrupted or empty headers
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being fixed
6615
 *
6616 6617
 *  Address the case where we are pulling data in on pages only
 *  and as such no data is present in the skb header.
6618
 *
6619 6620
 *  In addition if skb is not at least 60 bytes we need to pad it so that
 *  it is large enough to qualify as a valid Ethernet frame.
6621
 *
6622
 *  Returns true if an error was encountered and skb was freed.
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{
	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6651 6652
}

6653
/**
6654 6655 6656 6657
 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being populated
6658
 *
6659 6660 6661
 *  This function checks the ring, descriptor, and packet information in
 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 *  other fields within the skb.
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

6673
	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6674

6675
	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6676 6677 6678 6679 6680 6681 6682 6683
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

6684
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6685 6686 6687 6688 6689 6690 6691
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6692
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6693
{
6694
	struct igb_ring *rx_ring = q_vector->rx.ring;
6695
	struct sk_buff *skb = rx_ring->skb;
6696
	unsigned int total_bytes = 0, total_packets = 0;
6697
	u16 cleaned_count = igb_desc_unused(rx_ring);
6698

6699 6700
	do {
		union e1000_adv_rx_desc *rx_desc;
6701

6702 6703 6704 6705 6706
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6707

6708
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6709

6710 6711
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6712

6713 6714 6715 6716 6717 6718
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();

6719
		/* retrieve a buffer from the ring */
6720
		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6721

6722 6723 6724
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6725

6726
		cleaned_count++;
6727

6728 6729 6730
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6731 6732 6733 6734 6735

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6736 6737
		}

6738
		/* probably a little skewed due to removing CRC */
6739 6740
		total_bytes += skb->len;

6741 6742
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6743

J
Jiri Pirko 已提交
6744
		napi_gro_receive(&q_vector->napi, skb);
6745

6746 6747 6748
		/* reset skb pointer */
		skb = NULL;

6749 6750 6751
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
6752

6753 6754 6755
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
6756
	u64_stats_update_begin(&rx_ring->rx_syncp);
6757 6758
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6759
	u64_stats_update_end(&rx_ring->rx_syncp);
6760 6761
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6762 6763

	if (cleaned_count)
6764
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6765

6766
	return (total_packets < budget);
6767 6768
}

6769
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6770
				  struct igb_rx_buffer *bi)
6771 6772
{
	struct page *page = bi->page;
6773
	dma_addr_t dma;
6774

6775 6776
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
6777 6778
		return true;

6779 6780 6781 6782 6783
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
6784 6785
	}

6786 6787
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6788

6789
	/* if mapping failed free memory back to system since
6790 6791
	 * there isn't much point in holding memory we can't use
	 */
6792
	if (dma_mapping_error(rx_ring->dev, dma)) {
6793 6794
		__free_page(page);

6795 6796 6797 6798
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

6799
	bi->dma = dma;
6800 6801
	bi->page = page;
	bi->page_offset = 0;
6802

6803 6804 6805
	return true;
}

6806
/**
6807 6808
 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
 *  @adapter: address of board private structure
6809
 **/
6810
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6811 6812
{
	union e1000_adv_rx_desc *rx_desc;
6813
	struct igb_rx_buffer *bi;
6814
	u16 i = rx_ring->next_to_use;
6815

6816 6817 6818 6819
	/* nothing to do */
	if (!cleaned_count)
		return;

6820
	rx_desc = IGB_RX_DESC(rx_ring, i);
6821
	bi = &rx_ring->rx_buffer_info[i];
6822
	i -= rx_ring->count;
6823

6824
	do {
6825
		if (!igb_alloc_mapped_page(rx_ring, bi))
6826
			break;
6827

6828
		/* Refresh the desc even if buffer_addrs didn't change
6829 6830
		 * because each write-back erases this info.
		 */
6831
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6832

6833 6834
		rx_desc++;
		bi++;
6835
		i++;
6836
		if (unlikely(!i)) {
6837
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6838
			bi = rx_ring->rx_buffer_info;
6839 6840 6841 6842 6843
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6844 6845 6846

		cleaned_count--;
	} while (cleaned_count);
6847

6848 6849
	i += rx_ring->count;

6850
	if (rx_ring->next_to_use != i) {
6851
		/* record the next descriptor to use */
6852 6853
		rx_ring->next_to_use = i;

6854 6855 6856
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

6857
		/* Force memory writes to complete before letting h/w
6858 6859
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
6860 6861
		 * such as IA-64).
		 */
6862
		wmb();
6863
		writel(i, rx_ring->tail);
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6886 6887
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6910
	case SIOCSHWTSTAMP:
6911
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6912 6913 6914 6915 6916
	default:
		return -EOPNOTSUPP;
	}
}

6917 6918 6919 6920
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6921
	if (pcie_capability_read_word(adapter->pdev, reg, value))
6922 6923 6924 6925 6926 6927 6928 6929 6930
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6931
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6932 6933 6934 6935 6936
		return -E1000_ERR_CONFIG;

	return 0;
}

6937
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6938 6939 6940 6941
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6942
	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6943

6944
	if (enable) {
6945 6946 6947 6948 6949
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6950
		/* Disable CFI check */
6951 6952 6953 6954 6955 6956 6957 6958 6959 6960
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6961
	igb_rlpml_set(adapter);
6962 6963
}

6964 6965
static int igb_vlan_rx_add_vid(struct net_device *netdev,
			       __be16 proto, u16 vid)
6966 6967 6968
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6969
	int pf_id = adapter->vfs_allocated_count;
6970

6971 6972
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6973

6974 6975
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6976 6977

	set_bit(vid, adapter->active_vlans);
6978 6979

	return 0;
6980 6981
}

6982 6983
static int igb_vlan_rx_kill_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
6984 6985 6986
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6987
	int pf_id = adapter->vfs_allocated_count;
6988
	s32 err;
6989

6990 6991
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6992

6993 6994
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6995
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6996 6997

	clear_bit(vid, adapter->active_vlans);
6998 6999

	return 0;
7000 7001 7002 7003
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
7004
	u16 vid;
7005

7006 7007
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
7008
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7009
		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7010 7011
}

7012
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7013
{
7014
	struct pci_dev *pdev = adapter->pdev;
7015 7016 7017 7018
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

7019
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7020 7021
	 * for the switch() below to work
	 */
7022 7023 7024
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037
	/* Fiber NIC's only allow 1000 gbps Full duplex
	 * and 100Mbps Full duplex for 100baseFx sfp
	 */
	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
		switch (spd + dplx) {
		case SPEED_10 + DUPLEX_HALF:
		case SPEED_10 + DUPLEX_FULL:
		case SPEED_100 + DUPLEX_HALF:
			goto err_inval;
		default:
			break;
		}
	}
7038

7039
	switch (spd + dplx) {
7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
7058
		goto err_inval;
7059
	}
7060 7061 7062 7063

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

7064
	return 0;
7065 7066 7067 7068

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
7069 7070
}

Y
Yan, Zheng 已提交
7071 7072
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
7073 7074 7075 7076
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
7077
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
7078
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7079 7080 7081 7082 7083 7084
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
7085
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
7086
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
7087

7088
	igb_clear_interrupt_scheme(adapter);
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
7102
		igb_set_rx_mode(netdev);
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
7120
		igb_disable_pcie_master(hw);
7121 7122 7123 7124 7125 7126 7127 7128

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

7129 7130
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
7131 7132 7133
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
7134 7135

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7136 7137
	 * would have already happened in close and is redundant.
	 */
7138 7139 7140 7141 7142 7143 7144 7145
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
7146
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
7147
static int igb_suspend(struct device *dev)
7148 7149 7150
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
7151
	struct pci_dev *pdev = to_pci_dev(dev);
7152

Y
Yan, Zheng 已提交
7153
	retval = __igb_shutdown(pdev, &wake, 0);
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
7166
#endif /* CONFIG_PM_SLEEP */
7167

Y
Yan, Zheng 已提交
7168
static int igb_resume(struct device *dev)
7169
{
Y
Yan, Zheng 已提交
7170
	struct pci_dev *pdev = to_pci_dev(dev);
7171 7172 7173 7174 7175 7176 7177
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
7178
	pci_save_state(pdev);
T
Taku Izumi 已提交
7179

7180
	err = pci_enable_device_mem(pdev);
7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

7191
	if (igb_init_interrupt_scheme(adapter, true)) {
A
Alexander Duyck 已提交
7192 7193
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
7194 7195 7196
	}

	igb_reset(adapter);
7197 7198

	/* let the f/w know that the h/w is now under the control of the
7199 7200
	 * driver.
	 */
7201 7202
	igb_get_hw_control(adapter);

7203 7204
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
7205
	if (netdev->flags & IFF_UP) {
7206
		rtnl_lock();
Y
Yan, Zheng 已提交
7207
		err = __igb_open(netdev, true);
7208
		rtnl_unlock();
A
Alexander Duyck 已提交
7209 7210 7211
		if (err)
			return err;
	}
7212 7213

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7246 7247 7248

	return 0;
}
Y
Yan, Zheng 已提交
7249 7250 7251 7252 7253 7254

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
7255 7256 7257 7258
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
7259 7260
	bool wake;

Y
Yan, Zheng 已提交
7261
	__igb_shutdown(pdev, &wake, 0);
7262 7263 7264 7265 7266

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7267 7268
}

7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

7335
#ifdef CONFIG_NET_POLL_CONTROLLER
7336
/* Polling 'interrupt' - used by things like netconsole to send skbs
7337 7338 7339 7340 7341 7342
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
7343
	struct e1000_hw *hw = &adapter->hw;
7344
	struct igb_q_vector *q_vector;
7345 7346
	int i;

7347
	for (i = 0; i < adapter->num_q_vectors; i++) {
7348 7349 7350 7351 7352
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
7353
		napi_schedule(&q_vector->napi);
7354
	}
7355 7356 7357 7358
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
7359 7360 7361
 *  igb_io_error_detected - called when PCI error is detected
 *  @pdev: Pointer to PCI device
 *  @state: The current pci connection state
7362
 *
7363 7364 7365
 *  This function is called after a PCI bus error affecting
 *  this device has been detected.
 **/
7366 7367 7368 7369 7370 7371 7372 7373
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

7374 7375 7376
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

7377 7378 7379 7380 7381 7382 7383 7384 7385
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
7386 7387
 *  igb_io_slot_reset - called after the pci bus has been reset.
 *  @pdev: Pointer to PCI device
7388
 *
7389 7390 7391
 *  Restart the card from scratch, as if from a cold-boot. Implementation
 *  resembles the first-half of the igb_resume routine.
 **/
7392 7393 7394 7395 7396
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7397
	pci_ers_result_t result;
T
Taku Izumi 已提交
7398
	int err;
7399

7400
	if (pci_enable_device_mem(pdev)) {
7401 7402
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
7403 7404 7405 7406
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
7407
		pci_save_state(pdev);
7408

7409 7410
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
7411

7412 7413 7414 7415
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
7416

7417 7418
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
7419 7420 7421
		dev_err(&pdev->dev,
			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
			err);
7422 7423
		/* non-fatal, continue */
	}
7424 7425

	return result;
7426 7427 7428
}

/**
7429 7430
 *  igb_io_resume - called when traffic can start flowing again.
 *  @pdev: Pointer to PCI device
7431
 *
7432 7433 7434
 *  This callback is called when the error recovery driver tells us that
 *  its OK to resume normal operation. Implementation resembles the
 *  second-half of the igb_resume routine.
7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
7451 7452
	 * driver.
	 */
7453 7454 7455
	igb_get_hw_control(adapter);
}

7456
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7457
			     u8 qsel)
7458 7459 7460 7461 7462 7463 7464 7465
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7466
		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7483
static int igb_set_vf_mac(struct igb_adapter *adapter,
7484
			  int vf, unsigned char *mac_addr)
7485 7486
{
	struct e1000_hw *hw = &adapter->hw;
7487
	/* VF MAC addresses start at end of receive addresses and moves
7488 7489
	 * towards the first, as a result a collision should not be possible
	 */
7490
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7491

7492
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7493

7494
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7495 7496 7497 7498

	return 0;
}

7499 7500 7501 7502 7503 7504 7505
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7506 7507
	dev_info(&adapter->pdev->dev,
		 "Reload the VF driver to make this change effective.");
7508
	if (test_bit(__IGB_DOWN, &adapter->state)) {
7509 7510 7511 7512
		dev_warn(&adapter->pdev->dev,
			 "The VF MAC address has been set, but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev,
			 "Bring the PF device up before attempting to use the VF device.\n");
7513 7514 7515 7516
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
7539 7540
		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
			 tx_rate;
7541 7542

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7543 7544
		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
			      E1000_RTTBCNRC_RF_INT_MASK);
7545 7546 7547 7548 7549 7550
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7551
	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
L
Lior Levy 已提交
7552 7553 7554
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
7573
			 "Link speed has been changed. VF Transmit rate is disabled\n");
7574 7575 7576 7577 7578 7579 7580
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
7581 7582
				      adapter->vf_data[i].tx_rate,
				      actual_link_speed);
7583 7584 7585
	}
}

7586 7587
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7606 7607
}

L
Lior Levy 已提交
7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 reg_val, reg_offset;

	if (!adapter->vfs_allocated_count)
		return -EOPNOTSUPP;

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;

	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
	reg_val = rd32(reg_offset);
	if (setting)
		reg_val |= ((1 << vf) |
			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	else
		reg_val &= ~((1 << vf) |
			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	wr32(reg_offset, reg_val);

	adapter->vf_data[vf].spoofchk_enabled = setting;
	return E1000_SUCCESS;
}

7635 7636 7637 7638 7639 7640 7641 7642
static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7643
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7644 7645
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
L
Lior Levy 已提交
7646
	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7647 7648 7649
	return 0;
}

7650 7651 7652
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7653
	u32 reg;
7654

7655 7656
	switch (hw->mac.type) {
	case e1000_82575:
7657 7658
	case e1000_i210:
	case e1000_i211:
7659
	case e1000_i354:
7660 7661
	default:
		/* replication is not supported for 82575 */
7662
		return;
7663 7664 7665 7666 7667 7668 7669 7670 7671 7672
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7673 7674
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7675 7676
		break;
	}
7677

7678 7679 7680
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7681
		igb_vmdq_set_anti_spoofing_pf(hw, true,
7682
					      adapter->vfs_allocated_count);
7683 7684 7685 7686
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7687 7688
}

7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

7702
			/* DMA Coalescing high water mark needs to be greater
7703 7704
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7705
			 */
7706 7707 7708 7709 7710 7711 7712 7713 7714
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

7715
			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7716 7717 7718 7719 7720
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7721 7722 7723 7724 7725 7726 7727 7728 7729 7730
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7731 7732

			/* Disable BMC-to-OS Watchdog Enable */
7733 7734 7735
			if (hw->mac.type != e1000_i354)
				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;

7736 7737
			wr32(E1000_DMACR, reg);

7738
			/* no lower threshold to disable
7739 7740 7741 7742 7743 7744 7745 7746
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

7747
			/* free space in tx packet buffer to wake from
7748 7749 7750 7751 7752
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

7753
			/* make low power state decision controlled
7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

7767 7768
/**
 *  igb_read_i2c_byte - Reads 8 bit word over I2C
C
Carolyn Wyborny 已提交
7769 7770 7771 7772 7773 7774 7775
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
7776
 **/
C
Carolyn Wyborny 已提交
7777
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7778
		      u8 dev_addr, u8 *data)
C
Carolyn Wyborny 已提交
7779 7780
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7781
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
	    != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
		return E1000_SUCCESS;
	}
}

7805 7806
/**
 *  igb_write_i2c_byte - Writes 8 bit word over I2C
C
Carolyn Wyborny 已提交
7807 7808 7809 7810 7811 7812 7813
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
7814
 **/
C
Carolyn Wyborny 已提交
7815
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7816
		       u8 dev_addr, u8 data)
C
Carolyn Wyborny 已提交
7817 7818
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7819
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
		return E1000_SUCCESS;

}
7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858

int igb_reinit_queues(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	int err = 0;

	if (netif_running(netdev))
		igb_close(netdev);

	igb_clear_interrupt_scheme(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		err = igb_open(netdev);

	return err;
}
7859
/* igb_main.c */