igb_main.c 196.8 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
60 61
#include "igb.h"

C
Carolyn Wyborny 已提交
62 63 64
#define MAJ 4
#define MIN 0
#define BUILD 1
C
Carolyn Wyborny 已提交
65
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66
__stringify(BUILD) "-k"
67 68 69 70
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
71
static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
72 73 74 75 76

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

77
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
78 79 80 81 82
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
83 84 85 86
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
90 91 92
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
93 94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
95 96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
97
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
98
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
100 101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
102
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
105 106 107 108 109 110 111 112 113 114 115 116 117 118
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
119
static void igb_setup_mrqc(struct igb_adapter *);
120 121 122 123 124 125 126 127 128
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
129 130
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
131
static void igb_set_rx_mode(struct net_device *);
132 133 134
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
135
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
136 137
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
138 139
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
140
static void igb_set_uta(struct igb_adapter *adapter);
141 142 143
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
144
static irqreturn_t igb_msix_ring(int irq, void *);
145
#ifdef CONFIG_IGB_DCA
146
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
147
static void igb_setup_dca(struct igb_adapter *);
148
#endif /* CONFIG_IGB_DCA */
149
static int igb_poll(struct napi_struct *, int);
150
static bool igb_clean_tx_irq(struct igb_q_vector *);
151
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
152 153 154
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
155
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
156 157
static int igb_vlan_rx_add_vid(struct net_device *, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, u16);
158
static void igb_restore_vlan(struct igb_adapter *);
159
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
160 161 162
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
163
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
164
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
165 166 167 168 169 170
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
171
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
172 173

#ifdef CONFIG_PCI_IOV
174
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
175
static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
R
RongQing Li 已提交
176
#endif
177 178

#ifdef CONFIG_PM
179
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
180
static int igb_suspend(struct device *);
181
#endif
Y
Yan, Zheng 已提交
182 183 184 185 186 187 188 189 190 191 192
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
193 194
#endif
static void igb_shutdown(struct pci_dev *);
195
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
196 197 198 199 200 201 202
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
203 204 205 206
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
207
#ifdef CONFIG_PCI_IOV
208 209 210 211 212 213
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

214 215 216 217 218
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

219
static const struct pci_error_handlers igb_err_handler = {
220 221 222 223 224
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

225
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226 227 228 229 230 231 232

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
233
	.driver.pm = &igb_pm_ops,
234 235 236 237 238 239 240 241 242 243
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

244 245 246 247 248
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
349
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
350 351 352 353
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
354 355
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
372
	u16 i, n;
373 374 375 376 377 378 379

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
380 381 382 383
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
384 385 386 387
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
388
	pr_info(" Register Name   Value\n");
389 390 391 392 393 394 395 396 397 398
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
399
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
400
	for (n = 0; n < adapter->num_tx_queues; n++) {
401
		struct igb_tx_buffer *buffer_info;
402
		tx_ring = adapter->tx_ring[n];
403
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
404 405
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
406 407
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
408 409
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
431 432 433 434 435 436
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
437 438

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
439
			const char *next_desc;
440
			struct igb_tx_buffer *buffer_info;
441
			tx_desc = IGB_TX_DESC(tx_ring, i);
442
			buffer_info = &tx_ring->tx_buffer_info[i];
443
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
444 445 446 447 448 449 450 451 452 453 454 455
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
456 457
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
458 459
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
460 461
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
462
				buffer_info->skb, next_desc);
463

464
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
465 466
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
467
					16, 1, buffer_info->skb->data,
468 469
					dma_unmap_len(buffer_info, len),
					true);
470 471 472 473 474 475
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
476
	pr_info("Queue [NTU] [NTC]\n");
477 478
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
479 480
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
512 513 514 515 516 517 518
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
519 520

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
521
			const char *next_desc;
522 523
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
524
			rx_desc = IGB_RX_DESC(rx_ring, i);
525 526
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
527 528 529 530 531 532 533 534

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

535 536
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
537 538
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
539 540
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
541
					next_desc);
542
			} else {
543 544
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
545 546 547
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
548
					next_desc);
549

550
				if (netif_msg_pktdata(adapter) &&
551
				    buffer_info->dma && buffer_info->page) {
552 553 554
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
555 556
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
557
					  PAGE_SIZE/2, true);
558 559 560 561 562 563 564 565 566
				}
			}
		}
	}

exit:
	return;
}

567
/**
568
 * igb_get_hw_dev - return device
569 570
 * used by hardware layer to print debugging information
 **/
571
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
572 573
{
	struct igb_adapter *adapter = hw->back;
574
	return adapter->netdev;
575
}
P
Patrick Ohly 已提交
576

577 578 579 580 581 582 583 584 585
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
586
	pr_info("%s - version %s\n",
587 588
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
589
	pr_info("%s\n", igb_copyright);
590

591
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
592 593
	dca_register_notify(&dca_notifier);
#endif
594
	ret = pci_register_driver(&igb_driver);
595 596 597 598 599 600 601 602 603 604 605 606 607
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
608
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
609 610
	dca_unregister_notify(&dca_notifier);
#endif
611 612 613 614 615
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

616 617 618 619 620 621 622 623 624 625
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
626
	int i = 0, j = 0;
627
	u32 rbase_offset = adapter->vfs_allocated_count;
628 629 630 631 632 633 634 635

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
636
		if (adapter->vfs_allocated_count) {
637
			for (; i < adapter->rss_queues; i++)
638 639
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
640
		}
641
	case e1000_82575:
642
	case e1000_82580:
643
	case e1000_i350:
644 645
	case e1000_i210:
	case e1000_i211:
646
	default:
647
		for (; i < adapter->num_rx_queues; i++)
648
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
649
		for (; j < adapter->num_tx_queues; j++)
650
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
651 652 653 654
		break;
	}
}

655 656
static void igb_free_queues(struct igb_adapter *adapter)
{
657
	int i;
658

659 660 661 662 663 664 665 666
	for (i = 0; i < adapter->num_tx_queues; i++) {
		kfree(adapter->tx_ring[i]);
		adapter->tx_ring[i] = NULL;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		kfree(adapter->rx_ring[i]);
		adapter->rx_ring[i] = NULL;
	}
667 668 669 670
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

671 672 673 674 675 676 677 678 679
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
680
	struct igb_ring *ring;
681 682
	int i;

683
	for (i = 0; i < adapter->num_tx_queues; i++) {
684
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
685 686
		if (!ring)
			goto err;
687
		ring->count = adapter->tx_ring_count;
688
		ring->queue_index = i;
689
		ring->dev = &adapter->pdev->dev;
690
		ring->netdev = adapter->netdev;
691 692
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
693
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
694
		adapter->tx_ring[i] = ring;
695
	}
696

697
	for (i = 0; i < adapter->num_rx_queues; i++) {
698
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
699 700
		if (!ring)
			goto err;
701
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
702
		ring->queue_index = i;
703
		ring->dev = &adapter->pdev->dev;
704
		ring->netdev = adapter->netdev;
705 706
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
707
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
708

709 710 711 712 713
		/*
		 * On i350, i210, and i211, loopback VLAN packets
		 * have the tag byte-swapped.
		 * */
		if (adapter->hw.mac.type >= e1000_i350)
714 715
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);

716
		adapter->rx_ring[i] = ring;
717
	}
718 719

	igb_cache_ring_register(adapter);
720

721
	return 0;
A
Alexander Duyck 已提交
722

723 724
err:
	igb_free_queues(adapter);
725

726
	return -ENOMEM;
A
Alexander Duyck 已提交
727 728
}

A
Alexander Duyck 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

755
#define IGB_N0_QUEUE -1
756
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
757
{
758
	struct igb_adapter *adapter = q_vector->adapter;
759
	struct e1000_hw *hw = &adapter->hw;
760 761
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
762
	u32 msixbm = 0;
763

764 765 766 767
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
768 769 770

	switch (hw->mac.type) {
	case e1000_82575:
771 772 773 774
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
775
		if (rx_queue > IGB_N0_QUEUE)
776
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
777
		if (tx_queue > IGB_N0_QUEUE)
778
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
779 780
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
781
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
782
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
783 784
		break;
	case e1000_82576:
A
Alexander Duyck 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798
		/*
		 * 82576 uses a table that essentially consists of 2 columns
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
799
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
800
		break;
801
	case e1000_82580:
802
	case e1000_i350:
803 804
	case e1000_i210:
	case e1000_i211:
A
Alexander Duyck 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
		/*
		 * On 82580 and newer adapters the scheme is similar to 82576
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
820 821
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
822 823 824 825
	default:
		BUG();
		break;
	}
826 827 828 829 830 831

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
849 850
	switch (hw->mac.type) {
	case e1000_82575:
851 852 853 854 855 856 857 858 859
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
860 861 862 863

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
864
		adapter->eims_other = E1000_EIMS_OTHER;
865

A
Alexander Duyck 已提交
866 867 868
		break;

	case e1000_82576:
869
	case e1000_82580:
870
	case e1000_i350:
871 872
	case e1000_i210:
	case e1000_i211:
873 874 875 876 877 878 879 880
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
881 882
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

883
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
884 885 886 887 888
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
889 890 891

	adapter->eims_enable_mask |= adapter->eims_other;

892 893
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
894

895 896 897 898 899 900 901 902 903 904 905 906
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
907
	struct e1000_hw *hw = &adapter->hw;
908 909
	int i, err = 0, vector = 0;

910
	err = request_irq(adapter->msix_entries[vector].vector,
911
	                  igb_msix_other, 0, netdev->name, adapter);
912 913 914 915 916 917 918 919 920
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

921
		if (q_vector->rx.ring && q_vector->tx.ring)
922
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
923 924
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
925
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
926 927
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
928
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
929
				q_vector->rx.ring->queue_index);
930
		else
931 932
			sprintf(q_vector->name, "%s-unused", netdev->name);

933
		err = request_irq(adapter->msix_entries[vector].vector,
934
		                  igb_msix_ring, 0, q_vector->name,
935
		                  q_vector);
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
953
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
954
		pci_disable_msi(adapter->pdev);
955
	}
956 957
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
973 974
		if (!q_vector)
			continue;
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
993 994 995 996 997 998 999

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1000
static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1001 1002 1003 1004
{
	int err;
	int numvecs, i;

1005
	/* Number of supported queues. */
1006
	adapter->num_rx_queues = adapter->rss_queues;
1007 1008 1009 1010
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1011

1012 1013 1014
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1015
	/* if tx handler is separate add 1 for every tx queue */
1016 1017
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1018 1019 1020 1021 1022 1023

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1024 1025
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1037
		goto out;
1038 1039 1040 1041 1042

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1054
		wrfl();
1055 1056 1057 1058
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1059
	adapter->vfs_allocated_count = 0;
1060
	adapter->rss_queues = 1;
1061
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1062
	adapter->num_rx_queues = 1;
1063
	adapter->num_tx_queues = 1;
1064
	adapter->num_q_vectors = 1;
1065
	if (!pci_enable_msi(adapter->pdev))
1066
		adapter->flags |= IGB_FLAG_HAS_MSI;
1067
out:
1068
	/* Notify the stack of the (possibly) reduced queue counts. */
1069
	rtnl_lock();
1070
	netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1071 1072 1073 1074
	err = netif_set_real_num_rx_queues(adapter->netdev,
		adapter->num_rx_queues);
	rtnl_unlock();
	return err;
1075 1076
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1091 1092
		q_vector = kzalloc(sizeof(struct igb_q_vector),
				   GFP_KERNEL);
1093 1094 1095 1096 1097 1098 1099 1100
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
1101

1102 1103 1104
	return 0;

err_out:
1105
	igb_free_q_vectors(adapter);
1106 1107 1108 1109 1110 1111
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1112
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1113

1114 1115 1116
	q_vector->rx.ring = adapter->rx_ring[ring_idx];
	q_vector->rx.ring->q_vector = q_vector;
	q_vector->rx.count++;
1117 1118 1119
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1120 1121 1122 1123 1124
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1125
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1126

1127 1128 1129
	q_vector->tx.ring = adapter->tx_ring[ring_idx];
	q_vector->tx.ring->q_vector = q_vector;
	q_vector->tx.count++;
1130
	q_vector->itr_val = adapter->tx_itr_setting;
1131
	q_vector->tx.work_limit = adapter->tx_work_limit;
1132 1133
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1178 1179 1180
	err = igb_set_interrupt_capability(adapter);
	if (err)
		return err;
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1211 1212 1213 1214 1215 1216 1217 1218 1219
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1220
	struct pci_dev *pdev = adapter->pdev;
1221 1222 1223 1224
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1225
		if (!err)
1226 1227
			goto request_done;
		/* fall back to MSI */
1228
		igb_clear_interrupt_scheme(adapter);
1229
		if (!pci_enable_msi(pdev))
1230
			adapter->flags |= IGB_FLAG_HAS_MSI;
1231 1232
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1233
		adapter->num_tx_queues = 1;
1234
		adapter->num_rx_queues = 1;
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1251
	}
P
PJ Waskiewicz 已提交
1252

1253 1254
	igb_assign_vector(adapter->q_vector[0], 0);

1255
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1256
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1257
				  netdev->name, adapter);
1258 1259
		if (!err)
			goto request_done;
1260

1261 1262
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1263
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1264 1265
	}

1266
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1267
			  netdev->name, adapter);
1268

A
Andy Gospodarek 已提交
1269
	if (err)
1270
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1282
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1283

1284
		for (i = 0; i < adapter->num_q_vectors; i++)
1285
			free_irq(adapter->msix_entries[vector++].vector,
1286
				 adapter->q_vector[i]);
1287 1288
	} else {
		free_irq(adapter->pdev->irq, adapter);
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1300 1301 1302 1303 1304
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1305
	if (adapter->msix_entries) {
1306 1307 1308 1309 1310
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1311
	}
P
PJ Waskiewicz 已提交
1312 1313

	wr32(E1000_IAM, 0);
1314 1315
	wr32(E1000_IMC, ~0);
	wrfl();
1316 1317 1318 1319 1320 1321 1322
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1334
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1335 1336 1337 1338
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1339
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1340
		if (adapter->vfs_allocated_count) {
1341
			wr32(E1000_MBVFIMR, 0xFF);
1342 1343 1344
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1345
	} else {
1346 1347 1348 1349
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1350
	}
1351 1352 1353 1354
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1355
	struct e1000_hw *hw = &adapter->hw;
1356 1357
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1369
	    !test_bit(old_vid, adapter->active_vlans)) {
1370 1371
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1425
	igb_set_rx_mode(netdev);
1426 1427 1428

	igb_restore_vlan(adapter);

1429
	igb_setup_tctl(adapter);
1430
	igb_setup_mrqc(adapter);
1431
	igb_setup_rctl(adapter);
1432 1433

	igb_configure_tx(adapter);
1434
	igb_configure_rx(adapter);
1435 1436 1437

	igb_rx_fifo_flush_82575(&adapter->hw);

1438
	/* call igb_desc_unused which always leaves
1439 1440 1441
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1442
		struct igb_ring *ring = adapter->rx_ring[i];
1443
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1444 1445 1446
	}
}

1447 1448 1449 1450 1451 1452
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1453 1454
	igb_reset_phy(&adapter->hw);

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1487 1488 1489
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1490
	if (adapter->msix_entries)
1491
		igb_configure_msix(adapter);
1492 1493
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1494 1495 1496 1497 1498

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1499 1500 1501 1502 1503 1504 1505
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1506 1507
	netif_tx_start_all_queues(adapter->netdev);

1508 1509 1510 1511
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1512 1513 1514 1515 1516 1517
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1518
	struct e1000_hw *hw = &adapter->hw;
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1531
	netif_tx_stop_all_queues(netdev);
1532 1533 1534 1535 1536 1537 1538 1539 1540

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1541 1542
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_disable(&(adapter->q_vector[i]->napi));
1543 1544 1545 1546 1547 1548 1549

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1550 1551

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1552 1553 1554
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1555

1556 1557 1558
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1559 1560
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1561 1562
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1563 1564 1565 1566 1567
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1582
	struct pci_dev *pdev = adapter->pdev;
1583
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1584 1585
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1586 1587 1588 1589 1590 1591
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1592
	switch (mac->type) {
1593
	case e1000_i350:
1594 1595 1596 1597
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1598
	case e1000_82576:
1599 1600
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1601 1602
		break;
	case e1000_82575:
1603 1604
	case e1000_i210:
	case e1000_i211:
1605 1606 1607
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1608
	}
1609

A
Alexander Duyck 已提交
1610 1611
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1629
				sizeof(union e1000_adv_tx_desc) -
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1650
		wr32(E1000_PBA, pba);
1651 1652 1653 1654 1655 1656 1657 1658 1659
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1660
			((pba << 10) - 2 * adapter->max_frame_size));
1661

1662 1663
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1664 1665
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1666
	fc->current_mode = fc->requested_mode;
1667

1668 1669 1670 1671
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1672
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1673 1674

		/* ping all the active vfs to let them know we are going down */
1675
		igb_ping_all_vfs(adapter);
1676 1677 1678 1679 1680 1681

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1682
	/* Allow time for pending master requests to run */
1683
	hw->mac.ops.reset_hw(hw);
1684 1685
	wr32(E1000_WUC, 0);

1686
	if (hw->mac.ops.init_hw(hw))
1687
		dev_err(&pdev->dev, "Hardware Error\n");
1688

1689 1690 1691 1692 1693 1694 1695
	/*
	 * Flow control settings reset on hardware reset, so guarantee flow
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1696
	igb_init_dmac(adapter, pba);
1697 1698 1699
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1700 1701 1702 1703 1704
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1705 1706 1707 1708 1709
#ifdef CONFIG_IGB_PTP
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);
#endif /* CONFIG_IGB_PTP */

1710
	igb_get_phy_info(hw);
1711 1712
}

1713 1714
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
{
	/*
	 * Since there is no support for separate rx/tx vlan accel
	 * enable/disable make sure tx flag is always in same state as rx.
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1728 1729
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1730
{
1731
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
1732
	struct igb_adapter *adapter = netdev_priv(netdev);
1733

J
Jiri Pirko 已提交
1734 1735 1736
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

1747 1748 1749
	return 0;
}

S
Stephen Hemminger 已提交
1750
static const struct net_device_ops igb_netdev_ops = {
1751
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1752
	.ndo_stop		= igb_close,
1753
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1754
	.ndo_get_stats64	= igb_get_stats64,
1755
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1756 1757 1758 1759 1760 1761 1762
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1763 1764 1765 1766
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1767 1768 1769
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1770 1771
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1772 1773
};

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 *
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 eeprom_verh, eeprom_verl, comb_verh, comb_verl, comb_offset;
	u16 major, build, patch, fw_version;
	u32 etrack_id;

	hw->nvm.ops.read(hw, 5, 1, &fw_version);
	if (adapter->hw.mac.type != e1000_i211) {
		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh);
		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl);
		etrack_id = (eeprom_verh << IGB_ETRACK_SHIFT) | eeprom_verl;

		/* combo image version needs to be found */
		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
		if ((comb_offset != 0x0) &&
		    (comb_offset != IGB_NVM_VER_INVALID)) {
			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
					 + 1), 1, &comb_verh);
			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
					 1, &comb_verl);

			/* Only display Option Rom if it exists and is valid */
			if ((comb_verh && comb_verl) &&
			    ((comb_verh != IGB_NVM_VER_INVALID) &&
			     (comb_verl != IGB_NVM_VER_INVALID))) {
				major = comb_verl >> IGB_COMB_VER_SHFT;
				build = (comb_verl << IGB_COMB_VER_SHFT) |
					(comb_verh >> IGB_COMB_VER_SHFT);
				patch = comb_verh & IGB_COMB_VER_MASK;
				snprintf(adapter->fw_version,
					 sizeof(adapter->fw_version),
					 "%d.%d%d, 0x%08x, %d.%d.%d",
					 (fw_version & IGB_MAJOR_MASK) >>
					 IGB_MAJOR_SHIFT,
					 (fw_version & IGB_MINOR_MASK) >>
					 IGB_MINOR_SHIFT,
					 (fw_version & IGB_BUILD_MASK),
					 etrack_id, major, build, patch);
				goto out;
			}
		}
		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
			 "%d.%d%d, 0x%08x",
			 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
			 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
			 (fw_version & IGB_BUILD_MASK), etrack_id);
	} else {
		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
			 "%d.%d%d",
			 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
			 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
			 (fw_version & IGB_BUILD_MASK));
	}
out:
	return;
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1854
	u16 eeprom_data = 0;
1855
	s32 ret_val;
1856
	static int global_quad_port_a; /* global quad port a indication */
1857 1858
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1859
	int err, pci_using_dac;
1860
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1861
	u8 part_str[E1000_PBANUM_LENGTH];
1862

1863 1864 1865 1866 1867
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1868
			pci_name(pdev), pdev->vendor, pdev->device);
1869 1870 1871
		return -EINVAL;
	}

1872
	err = pci_enable_device_mem(pdev);
1873 1874 1875 1876
	if (err)
		return err;

	pci_using_dac = 0;
1877
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1878
	if (!err) {
1879
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1880 1881 1882
		if (!err)
			pci_using_dac = 1;
	} else {
1883
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1884
		if (err) {
1885
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1886 1887 1888 1889 1890 1891 1892 1893
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1894 1895 1896
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1897 1898 1899
	if (err)
		goto err_pci_reg;

1900
	pci_enable_pcie_error_reporting(pdev);
1901

1902
	pci_set_master(pdev);
1903
	pci_save_state(pdev);
1904 1905

	err = -ENOMEM;
1906
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1907
				   IGB_MAX_TX_QUEUES);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
1919
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
1920 1921 1922 1923 1924

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1925 1926
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1927 1928
		goto err_ioremap;

S
Stephen Hemminger 已提交
1929
	netdev->netdev_ops = &igb_netdev_ops;
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1952
		goto err_sw_init;
1953

1954
	/* setup the private structure */
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	/*
	 * features is initialized to 0 in allocation, it might have bits
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
1991
	netdev->hw_features |= NETIF_F_RXALL;
1992 1993 1994 1995 1996 1997 1998 1999 2000

	/* set this bit last since it cannot be part of hw_features */
	netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2001

2002 2003
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2004
	if (pci_using_dac) {
2005
		netdev->features |= NETIF_F_HIGHDMA;
2006 2007
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2008

2009 2010
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2011
		netdev->features |= NETIF_F_SCTP_CSUM;
2012
	}
2013

2014 2015
	netdev->priv_flags |= IFF_UNICAST_FLT;

2016
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2017 2018 2019 2020 2021

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	/*
	 * make sure the NVM is good , i211 parts have special NVM that
	 * doesn't contain a checksum
	 */
	if (hw->mac.type != e1000_i211) {
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2047 2048 2049
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2050
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2051
	            (unsigned long) adapter);
2052
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2053
	            (unsigned long) adapter);
2054 2055 2056 2057

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2058
	/* Initialize link properties that are user-changeable */
2059 2060 2061 2062
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2063 2064
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2065 2066 2067 2068 2069 2070 2071

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

2072
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
2073
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2074
	else if (hw->mac.type >= e1000_82580)
2075 2076 2077
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
2078 2079
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2092 2093
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2094 2095 2096 2097 2098
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
2099
	case E1000_DEV_ID_82576_QUAD_COPPER:
2100
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2101 2102 2103 2104 2105 2106 2107 2108 2109
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2110 2111 2112 2113
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
2114
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2128 2129 2130
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2131
#ifdef CONFIG_IGB_DCA
2132
	if (dca_add_requester(&pdev->dev) == 0) {
2133
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2134 2135 2136 2137
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2138
#endif
2139

2140
#ifdef CONFIG_IGB_PTP
A
Anders Berggren 已提交
2141
	/* do hw tstamp init after resetting */
2142
	igb_ptp_init(adapter);
2143
#endif /* CONFIG_IGB_PTP */
A
Anders Berggren 已提交
2144

2145 2146
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2147
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2148
		 netdev->name,
2149
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2150
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2151
		                                            "unknown"),
2152 2153 2154 2155
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2156
		 netdev->dev_addr);
2157

2158 2159 2160 2161
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2162 2163 2164
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2165
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2166
		adapter->num_rx_queues, adapter->num_tx_queues);
2167 2168
	switch (hw->mac.type) {
	case e1000_i350:
2169 2170
	case e1000_i210:
	case e1000_i211:
2171 2172 2173 2174 2175
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
Y
Yan, Zheng 已提交
2176 2177

	pm_runtime_put_noidle(&pdev->dev);
2178 2179 2180 2181 2182 2183
	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
2184
		igb_reset_phy(hw);
2185 2186 2187 2188

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2189
	igb_clear_interrupt_scheme(adapter);
2190 2191 2192 2193
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2194 2195
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2215
	struct e1000_hw *hw = &adapter->hw;
2216

Y
Yan, Zheng 已提交
2217
	pm_runtime_get_noresume(&pdev->dev);
2218
#ifdef CONFIG_IGB_PTP
2219
	igb_ptp_stop(adapter);
2220
#endif /* CONFIG_IGB_PTP */
Y
Yan, Zheng 已提交
2221

2222 2223 2224 2225
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2226 2227 2228 2229
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2230 2231
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2232

2233
#ifdef CONFIG_IGB_DCA
2234
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2235 2236
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2237
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2238
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2239 2240 2241
	}
#endif

2242 2243 2244 2245 2246 2247
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2248
	igb_clear_interrupt_scheme(adapter);
2249

2250 2251 2252 2253
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
2254 2255 2256
		if (igb_vfs_are_assigned(adapter)) {
			dev_info(&pdev->dev, "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
		} else {
2257 2258 2259
			pci_disable_sriov(pdev);
			msleep(500);
		}
2260 2261 2262 2263

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2264
		wrfl();
2265 2266 2267 2268
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
2269

2270 2271 2272
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2273 2274
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2275

2276
	kfree(adapter->shadow_vfta);
2277 2278
	free_netdev(netdev);

2279
	pci_disable_pcie_error_reporting(pdev);
2280

2281 2282 2283
	pci_disable_device(pdev);
}

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2297
	struct e1000_hw *hw = &adapter->hw;
2298
	int old_vfs = pci_num_vf(adapter->pdev);
2299
	int i;
2300

2301 2302 2303 2304
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2305 2306 2307 2308
	if (old_vfs) {
		dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
			 "max_vfs setting of %d\n", old_vfs, max_vfs);
		adapter->vfs_allocated_count = old_vfs;
2309 2310
	}

2311 2312 2313 2314 2315
	if (!adapter->vfs_allocated_count)
		return;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);
2316

2317 2318
	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
2319
		adapter->vfs_allocated_count = 0;
2320 2321 2322
		dev_err(&pdev->dev, "Unable to allocate memory for VF "
			"Data Storage\n");
		goto out;
2323
	}
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342

	if (!old_vfs) {
		if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
			goto err_out;
	}
	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;
err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return;
2343 2344 2345
#endif /* CONFIG_PCI_IOV */
}

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
2359
	u32 max_rss_queues;
2360 2361 2362

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

2363
	/* set default ring sizes */
2364 2365
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2366 2367

	/* set default ITR values */
2368 2369 2370
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

2371 2372 2373
	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

2374 2375
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
2376 2377
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

E
Eric Dumazet 已提交
2378
	spin_lock_init(&adapter->stats64_lock);
2379
#ifdef CONFIG_PCI_IOV
2380 2381 2382
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
2383 2384 2385 2386 2387 2388
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
2389 2390 2391 2392
		break;
	default:
		break;
	}
2393
#endif /* CONFIG_PCI_IOV */
2394 2395

	/* Determine the maximum number of RSS queues supported. */
2396
	switch (hw->mac.type) {
2397 2398 2399 2400
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2401
	case e1000_i210:
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2420
		break;
2421 2422 2423 2424 2425 2426 2427
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2428
	case e1000_i211:
2429
		/* Device supports enough interrupts without queue pairing. */
2430
		break;
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	case e1000_82576:
		/*
		 * If VFs are going to be allocated with RSS queues then we
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
	case e1000_i210:
2444
	default:
2445 2446 2447 2448 2449 2450
		/*
		 * If rss_queues > half of max_rss_queues, pair the queues in
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2451 2452
		break;
	}
2453

2454 2455 2456 2457 2458
	/* Setup and initialize a copy of the hw vlan table array */
	adapter->shadow_vfta = kzalloc(sizeof(u32) *
				E1000_VLAN_FILTER_TBL_SIZE,
				GFP_ATOMIC);

2459
	/* This call may decrease the number of queues */
2460
	if (igb_init_interrupt_scheme(adapter)) {
2461 2462 2463 2464
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2465 2466
	igb_probe_vfs(adapter);

2467 2468 2469
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2470
	if (hw->mac.type >= e1000_i350)
2471 2472
		adapter->flags &= ~IGB_FLAG_DMAC;

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
Y
Yan, Zheng 已提交
2489
static int __igb_open(struct net_device *netdev, bool resuming)
2490 2491 2492
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2493
	struct pci_dev *pdev = adapter->pdev;
2494 2495 2496 2497
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2498 2499
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2500
		return -EBUSY;
Y
Yan, Zheng 已提交
2501 2502 2503 2504
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2505

2506 2507
	netif_carrier_off(netdev);

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2518
	igb_power_up_link(adapter);
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2533 2534
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2535 2536 2537

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2538 2539 2540

	igb_irq_enable(adapter);

2541 2542 2543 2544 2545 2546 2547
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2548 2549
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2550 2551 2552
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2553 2554 2555
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2556 2557 2558 2559 2560

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
2561
	igb_power_down_link(adapter);
2562 2563 2564 2565 2566
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2567 2568
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2569 2570 2571 2572

	return err;
}

Y
Yan, Zheng 已提交
2573 2574 2575 2576 2577
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
Y
Yan, Zheng 已提交
2589
static int __igb_close(struct net_device *netdev, bool suspending)
2590 2591
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2592
	struct pci_dev *pdev = adapter->pdev;
2593 2594 2595

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2596 2597 2598 2599
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2600 2601 2602 2603 2604
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2605 2606
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2607 2608 2609
	return 0;
}

Y
Yan, Zheng 已提交
2610 2611 2612 2613 2614
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2615 2616 2617 2618 2619 2620
/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2621
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2622
{
2623
	struct device *dev = tx_ring->dev;
2624 2625
	int size;

2626
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2627 2628

	tx_ring->tx_buffer_info = vzalloc(size);
2629
	if (!tx_ring->tx_buffer_info)
2630 2631 2632
		goto err;

	/* round up to nearest 4K */
2633
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2634 2635
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2636 2637 2638 2639
	tx_ring->desc = dma_alloc_coherent(dev,
					   tx_ring->size,
					   &tx_ring->dma,
					   GFP_KERNEL);
2640 2641 2642 2643 2644
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2645

2646 2647 2648
	return 0;

err:
2649
	vfree(tx_ring->tx_buffer_info);
2650 2651
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2664
	struct pci_dev *pdev = adapter->pdev;
2665 2666 2667
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2668
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2669
		if (err) {
2670
			dev_err(&pdev->dev,
2671 2672
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2673
				igb_free_tx_resources(adapter->tx_ring[i]);
2674 2675 2676 2677 2678 2679 2680 2681
			break;
		}
	}

	return err;
}

/**
2682 2683
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2684
 **/
2685
void igb_setup_tctl(struct igb_adapter *adapter)
2686 2687 2688 2689
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2690 2691
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2707 2708 2709 2710 2711 2712 2713
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2714 2715
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2716 2717
{
	struct e1000_hw *hw = &adapter->hw;
2718
	u32 txdctl = 0;
2719 2720 2721 2722
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2723
	wr32(E1000_TXDCTL(reg_idx), 0);
2724 2725 2726 2727 2728 2729 2730 2731 2732
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2733
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2734
	wr32(E1000_TDH(reg_idx), 0);
2735
	writel(0, ring->tail);
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2756
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2757 2758
}

2759 2760 2761 2762 2763 2764
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2765
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2766
{
2767
	struct device *dev = rx_ring->dev;
2768
	int size;
2769

2770
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2771 2772

	rx_ring->rx_buffer_info = vzalloc(size);
2773
	if (!rx_ring->rx_buffer_info)
2774 2775 2776 2777
		goto err;


	/* Round up to nearest 4K */
2778
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
2779 2780
	rx_ring->size = ALIGN(rx_ring->size, 4096);

2781 2782 2783 2784
	rx_ring->desc = dma_alloc_coherent(dev,
					   rx_ring->size,
					   &rx_ring->dma,
					   GFP_KERNEL);
2785 2786 2787
	if (!rx_ring->desc)
		goto err;

2788
	rx_ring->next_to_alloc = 0;
2789 2790 2791 2792 2793 2794
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
2795 2796
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
2797
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2810
	struct pci_dev *pdev = adapter->pdev;
2811 2812 2813
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2814
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2815
		if (err) {
2816
			dev_err(&pdev->dev,
2817 2818
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2819
				igb_free_rx_resources(adapter->rx_ring[i]);
2820 2821 2822 2823 2824 2825 2826
			break;
		}
	}

	return err;
}

2827 2828 2829 2830 2831 2832 2833 2834
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
2835
	u32 j, num_rx_queues, shift = 0;
2836 2837 2838 2839
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
2840 2841

	/* Fill out hash function seeds */
2842 2843
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
2844

2845
	num_rx_queues = adapter->rss_queues;
2846

2847 2848 2849 2850 2851 2852 2853
	switch (hw->mac.type) {
	case e1000_82575:
		shift = 6;
		break;
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count) {
2854 2855 2856
			shift = 3;
			num_rx_queues = 2;
		}
2857 2858 2859
		break;
	default:
		break;
2860 2861
	}

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
	/*
	 * Populate the indirection table 4 entries at a time.  To do this
	 * we are generating the results for n and n+2 and then interleaving
	 * those with the results with n+1 and n+3.
	 */
	for (j = 0; j < 32; j++) {
		/* first pass generates n and n+2 */
		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
		u32 reta = (base & 0x07800780) >> (7 - shift);

		/* second pass generates n+1 and n+3 */
		base += 0x00010001 * num_rx_queues;
		reta |= (base & 0x07800780) << (1 + shift);

		wr32(E1000_RETA(j), reta);
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
	/*
	 * Generate RSS hash based on TCP port numbers and/or
	 * IPv4/v6 src and dst addresses since UDP cannot be
	 * hashed reliably due to IP fragmentation
	 */

	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2918
		if (adapter->rss_queues > 1)
2919
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2920
		else
2921
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
2922
	} else {
2923 2924
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
2925 2926 2927 2928 2929 2930
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

2931 2932 2933 2934
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2935
void igb_setup_rctl(struct igb_adapter *adapter)
2936 2937 2938 2939 2940 2941 2942
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2943
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2944

2945
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2946
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2947

2948 2949 2950 2951
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2952
	 */
2953
	rctl |= E1000_RCTL_SECRC;
2954

2955
	/* disable store bad packets and clear size bits. */
2956
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2957

A
Alexander Duyck 已提交
2958 2959
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2960

2961 2962
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2963

2964 2965 2966 2967 2968 2969 2970 2971 2972
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
		 * in e1000e_set_rx_mode */
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

2989 2990 2991
	wr32(E1000_RCTL, rctl);
}

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3012 3013 3014 3015 3016 3017 3018 3019
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3020
	u32 max_frame_size = adapter->max_frame_size;
3021 3022 3023 3024 3025
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3026 3027 3028 3029 3030 3031 3032
		/*
		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3033
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3034 3035 3036 3037 3038
	}

	wr32(E1000_RLPML, max_frame_size);
}

3039 3040
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3053 3054 3055 3056 3057
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3058 3059 3060 3061

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3062
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

3074 3075 3076 3077 3078 3079 3080
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
3081 3082
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3083 3084 3085 3086
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3087
	u32 srrctl = 0, rxdctl = 0;
3088 3089

	/* disable the queue */
3090
	wr32(E1000_RXDCTL(reg_idx), 0);
3091 3092 3093 3094 3095 3096 3097 3098 3099

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
3100
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3101
	wr32(E1000_RDH(reg_idx), 0);
3102
	writel(0, ring->tail);
3103

3104
	/* set descriptor configuration */
3105
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3106
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3107
	srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3108
#else
3109
	srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3110
#endif
3111
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3112
#ifdef CONFIG_IGB_PTP
3113
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3114
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3115
#endif /* CONFIG_IGB_PTP */
3116 3117 3118
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3119 3120 3121

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3122
	/* set filtering for VMDQ pools */
3123
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3124

3125 3126 3127
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3128 3129 3130

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3131 3132 3133
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3134 3135 3136 3137 3138 3139 3140 3141
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3142
	int i;
3143

3144 3145 3146
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3147 3148 3149 3150
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

3151 3152 3153
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
3154
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3155 3156 3157 3158 3159 3160 3161 3162
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3163
void igb_free_tx_resources(struct igb_ring *tx_ring)
3164
{
3165
	igb_clean_tx_ring(tx_ring);
3166

3167 3168
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3169

3170 3171 3172 3173
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3174 3175
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3191
		igb_free_tx_resources(adapter->tx_ring[i]);
3192 3193
}

3194 3195 3196 3197 3198
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3199
		if (dma_unmap_len(tx_buffer, len))
3200
			dma_unmap_single(ring->dev,
3201 3202
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3203
					 DMA_TO_DEVICE);
3204
	} else if (dma_unmap_len(tx_buffer, len)) {
3205
		dma_unmap_page(ring->dev,
3206 3207
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3208 3209 3210 3211
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3212
	dma_unmap_len_set(tx_buffer, len, 0);
3213
	/* buffer_info must be completely set up in the transmit path */
3214 3215 3216 3217 3218 3219
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3220
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3221
{
3222
	struct igb_tx_buffer *buffer_info;
3223
	unsigned long size;
3224
	u16 i;
3225

3226
	if (!tx_ring->tx_buffer_info)
3227 3228 3229 3230
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3231
		buffer_info = &tx_ring->tx_buffer_info[i];
3232
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3233 3234
	}

3235 3236
	netdev_tx_reset_queue(txring_txq(tx_ring));

3237 3238
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3256
		igb_clean_tx_ring(adapter->tx_ring[i]);
3257 3258 3259 3260 3261 3262 3263 3264
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3265
void igb_free_rx_resources(struct igb_ring *rx_ring)
3266
{
3267
	igb_clean_rx_ring(rx_ring);
3268

3269 3270
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3271

3272 3273 3274 3275
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3276 3277
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3293
		igb_free_rx_resources(adapter->rx_ring[i]);
3294 3295 3296 3297 3298 3299
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3300
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3301 3302
{
	unsigned long size;
3303
	u16 i;
3304

3305 3306 3307 3308
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3309
	if (!rx_ring->rx_buffer_info)
3310
		return;
3311

3312 3313
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3314
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3315

3316 3317 3318 3319 3320 3321 3322 3323 3324
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3325
		buffer_info->page = NULL;
3326 3327
	}

3328 3329
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3330 3331 3332 3333

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3334
	rx_ring->next_to_alloc = 0;
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3348
		igb_clean_rx_ring(adapter->rx_ring[i]);
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3361
	struct e1000_hw *hw = &adapter->hw;
3362 3363 3364 3365 3366 3367
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3368
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3369

3370 3371 3372
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3373

3374 3375 3376 3377
	return 0;
}

/**
3378
 * igb_write_mc_addr_list - write multicast addresses to MTA
3379 3380
 * @netdev: network interface device structure
 *
3381 3382 3383 3384
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3385
 **/
3386
static int igb_write_mc_addr_list(struct net_device *netdev)
3387 3388 3389
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3390
	struct netdev_hw_addr *ha;
3391
	u8  *mta_list;
3392 3393
	int i;

3394
	if (netdev_mc_empty(netdev)) {
3395 3396 3397 3398 3399
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3400

3401
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3402 3403
	if (!mta_list)
		return -ENOMEM;
3404

3405
	/* The shared function expects a packed array of only addresses. */
3406
	i = 0;
3407 3408
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3409 3410 3411 3412

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3413
	return netdev_mc_count(netdev);
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3434
	if (netdev_uc_count(netdev) > rar_entries)
3435
		return -ENOMEM;
3436

3437
	if (!netdev_uc_empty(netdev) && rar_entries) {
3438
		struct netdev_hw_addr *ha;
3439 3440

		netdev_for_each_uc_addr(ha, netdev) {
3441 3442
			if (!rar_entries)
				break;
3443 3444
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3445 3446
			                 vfn);
			count++;
3447 3448 3449 3450 3451 3452 3453 3454 3455
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3492
			 * then we should just turn on promiscuous mode so
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3506
		 * unicast promiscuous mode
3507 3508 3509 3510 3511 3512 3513
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3514
	}
3515
	wr32(E1000_RCTL, rctl);
3516

3517 3518 3519 3520 3521 3522
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
3523
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3524
		return;
3525

3526 3527 3528
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3529
	igb_restore_vf_multicasts(adapter);
3530 3531
}

G
Greg Rose 已提交
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3571 3572 3573 3574 3575
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3576
	igb_get_phy_info(&adapter->hw);
3577 3578
}

A
Alexander Duyck 已提交
3579 3580 3581 3582
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3583
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3615 3616 3617 3618 3619
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

3620
	/* check for thermal sensor event on i350 copper only */
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
			ret = !!(thstat & event);
		}
	}

	return ret;
}

3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3648 3649
	                                           struct igb_adapter,
                                                   watchdog_task);
3650 3651
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3652
	u32 link;
3653
	int i;
3654

A
Alexander Duyck 已提交
3655
	link = igb_has_link(adapter);
3656
	if (link) {
Y
Yan, Zheng 已提交
3657 3658 3659
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3660 3661
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3662 3663 3664
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3665 3666

			ctrl = rd32(E1000_CTRL);
3667
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3668 3669
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3670 3671 3672
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3673 3674 3675 3676 3677
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3678

3679
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3680 3681 3682 3683 3684
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3685
			}
3686

3687
			/* adjust timeout factor according to speed/duplex */
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3700
			igb_ping_all_vfs(adapter);
3701
			igb_check_vf_rate_limit(adapter);
3702

3703
			/* link state has changed, schedule phy info update */
3704 3705 3706 3707 3708 3709 3710 3711
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3712 3713

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3714 3715 3716 3717
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
3718
			}
3719

3720 3721 3722
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3723
			netif_carrier_off(netdev);
3724

3725 3726
			igb_ping_all_vfs(adapter);

3727
			/* link state has changed, schedule phy info update */
3728 3729 3730
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
3731 3732 3733

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
3734 3735 3736
		}
	}

E
Eric Dumazet 已提交
3737 3738 3739
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3740

3741
	for (i = 0; i < adapter->num_tx_queues; i++) {
3742
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3743
		if (!netif_carrier_ok(netdev)) {
3744 3745 3746 3747
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3748 3749 3750 3751 3752 3753
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3754 3755
		}

3756
		/* Force detection of hung controller every watchdog period */
3757
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3758
	}
3759

3760
	/* Cause software interrupt to ensure rx ring is cleaned */
3761
	if (adapter->msix_entries) {
3762
		u32 eics = 0;
3763 3764
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
3765 3766 3767 3768
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3769

G
Greg Rose 已提交
3770 3771
	igb_spoof_check(adapter);

3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3785 3786 3787 3788 3789 3790
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
3791
 *      receive rings.  The divisors and thresholds used by this function
3792 3793 3794 3795 3796 3797 3798
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3799
 * @q_vector: pointer to q_vector
3800
 **/
3801
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3802
{
3803
	int new_val = q_vector->itr_val;
3804
	int avg_wire_size = 0;
3805
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
3806
	unsigned int packets;
3807

3808 3809 3810 3811
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3812
		new_val = IGB_4K_ITR;
3813
		goto set_itr_val;
3814
	}
3815

3816 3817 3818
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
3819

3820 3821 3822 3823
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
3824 3825 3826 3827

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3828

3829 3830 3831 3832 3833
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3834

3835 3836 3837 3838 3839
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3840

3841 3842 3843 3844 3845
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
3846

3847
set_itr_val:
3848 3849 3850
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3851
	}
3852
clear_counts:
3853 3854 3855 3856
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
3872 3873
 * @q_vector: pointer to q_vector
 * @ring_container: ring info to update the itr for
3874
 **/
3875 3876
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
3877
{
3878 3879 3880
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
3881

3882
	/* no packets, exit with status unchanged */
3883
	if (packets == 0)
3884
		return;
3885

3886
	switch (itrval) {
3887 3888 3889
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
3890
			itrval = bulk_latency;
3891
		else if ((packets < 5) && (bytes > 512))
3892
			itrval = low_latency;
3893 3894 3895 3896 3897
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
3898
				itrval = bulk_latency;
3899
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
3900
				itrval = bulk_latency;
3901
			} else if ((packets > 35)) {
3902
				itrval = lowest_latency;
3903 3904
			}
		} else if (bytes/packets > 2000) {
3905
			itrval = bulk_latency;
3906
		} else if (packets <= 2 && bytes < 512) {
3907
			itrval = lowest_latency;
3908 3909 3910 3911 3912
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
3913
				itrval = low_latency;
3914
		} else if (bytes < 1500) {
3915
			itrval = low_latency;
3916 3917 3918 3919
		}
		break;
	}

3920 3921 3922 3923 3924 3925
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
3926 3927
}

3928
static void igb_set_itr(struct igb_q_vector *q_vector)
3929
{
3930
	struct igb_adapter *adapter = q_vector->adapter;
3931
	u32 new_itr = q_vector->itr_val;
3932
	u8 current_itr = 0;
3933 3934 3935 3936

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
3937
		new_itr = IGB_4K_ITR;
3938 3939 3940
		goto set_itr_now;
	}

3941 3942
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
3943

3944
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3945

3946
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3947 3948 3949
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3950 3951
		current_itr = low_latency;

3952 3953 3954
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3955
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3956 3957
		break;
	case low_latency:
3958
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3959 3960
		break;
	case bulk_latency:
3961
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3962 3963 3964 3965 3966 3967
		break;
	default:
		break;
	}

set_itr_now:
3968
	if (new_itr != q_vector->itr_val) {
3969 3970 3971
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3972 3973 3974
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
3975
				 new_itr) :
3976 3977 3978 3979 3980 3981 3982
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3983 3984
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3985 3986 3987
	}
}

3988 3989
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4003
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4004 4005 4006 4007 4008 4009 4010 4011
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4012 4013 4014
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4015
{
4016
	struct sk_buff *skb = first->skb;
4017 4018 4019 4020 4021
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

	if (!skb_is_gso(skb))
		return 0;
4022 4023

	if (skb_header_cloned(skb)) {
4024
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4025 4026 4027 4028
		if (err)
			return err;
	}

4029 4030
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4031

4032
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4033 4034 4035 4036 4037 4038 4039
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4040
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4041 4042 4043
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4044
	} else if (skb_is_gso_v6(skb)) {
4045 4046 4047 4048
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4049 4050
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4051 4052
	}

4053
	/* compute header lengths */
4054 4055
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4056

4057 4058 4059 4060
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4061
	/* MSS L4LEN IDX */
4062 4063
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4064

4065 4066 4067
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4068
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4069

4070
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4071

4072
	return 1;
4073 4074
}

4075
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4076
{
4077
	struct sk_buff *skb = first->skb;
4078 4079 4080
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4081

4082
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4083 4084
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4085 4086
	} else {
		u8 l4_hdr = 0;
4087
		switch (first->protocol) {
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but proto=%x!\n",
4101
				 first->protocol);
4102
			}
4103 4104
			break;
		}
4105

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but l4 proto=%x!\n",
				 l4_hdr);
4126
			}
4127
			break;
4128
		}
4129 4130 4131

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4132
	}
4133

4134
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4135
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4136

4137
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4138 4139
}

4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
static __le32 igb_tx_cmd_type(u32 tx_flags)
{
	/* set type for advanced descriptor with frame checksum insertion */
	__le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
				      E1000_ADVTXD_DCMD_IFCS |
				      E1000_ADVTXD_DCMD_DEXT);

	/* set HW vlan bit if vlan is present */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);

4151
#ifdef CONFIG_IGB_PTP
4152
	/* set timestamp bit if present */
4153
	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP))
4154
		cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4155
#endif /* CONFIG_IGB_PTP */
4156 4157 4158 4159 4160 4161 4162 4163

	/* set segmentation bits for TSO */
	if (tx_flags & IGB_TX_FLAGS_TSO)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);

	return cmd_type;
}

4164 4165 4166
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4167 4168 4169 4170 4171
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

	/* 82575 requires a unique index per ring if any offload is enabled */
	if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4172
	    test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
	if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert IPv4 checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
	}

4184
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4185 4186
}

4187 4188 4189 4190 4191
/*
 * The largest size we can write to the descriptor is 65535.  In order to
 * maintain a power of two alignment we have to limit ourselves to 32K.
 */
#define IGB_MAX_TXD_PWR	15
4192
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4193

4194 4195
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4196
		       const u8 hdr_len)
4197
{
4198
	struct sk_buff *skb = first->skb;
4199
	struct igb_tx_buffer *tx_buffer;
4200 4201 4202 4203 4204 4205 4206
	union e1000_adv_tx_desc *tx_desc;
	dma_addr_t dma;
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	unsigned int paylen = skb->len - hdr_len;
	__le32 cmd_type;
4207
	u32 tx_flags = first->tx_flags;
4208 4209 4210 4211
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4212
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4213 4214 4215 4216
	cmd_type = igb_tx_cmd_type(tx_flags);

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
	if (dma_mapping_error(tx_ring->dev, dma))
4217
		goto dma_error;
4218

4219
	/* record length, and DMA address */
4220 4221
	dma_unmap_len_set(first, len, size);
	dma_unmap_addr_set(first, dma, dma);
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
	tx_desc->read.buffer_addr = cpu_to_le64(dma);

	for (;;) {
		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
				cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.olinfo_status = 0;
			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4245

4246
		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4247

4248
		i++;
4249 4250 4251
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4252
			i = 0;
4253
		}
4254

E
Eric Dumazet 已提交
4255
		size = skb_frag_size(frag);
4256 4257 4258 4259 4260
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
				   size, DMA_TO_DEVICE);
		if (dma_mapping_error(tx_ring->dev, dma))
4261 4262
			goto dma_error;

4263 4264 4265
		tx_buffer = &tx_ring->tx_buffer_info[i];
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);
4266 4267 4268 4269 4270

		tx_desc->read.olinfo_status = 0;
		tx_desc->read.buffer_addr = cpu_to_le64(dma);

		frag++;
4271 4272
	}

4273 4274
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4275 4276
	/* write last descriptor with RS and EOP bits */
	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4277 4278
	if (unlikely(skb->no_fcs))
		cmd_type &= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS));
4279
	tx_desc->read.cmd_type_len = cmd_type;
4280 4281 4282 4283

	/* set the timestamp */
	first->time_stamp = jiffies;

4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
	/*
	 * Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4294
	/* set next_to_watch value indicating a packet is present */
4295
	first->next_to_watch = tx_desc;
4296

4297 4298 4299
	i++;
	if (i == tx_ring->count)
		i = 0;
4300

4301
	tx_ring->next_to_use = i;
4302

4303
	writel(i, tx_ring->tail);
4304

4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4316 4317 4318
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4319
			break;
4320 4321
		if (i == 0)
			i = tx_ring->count;
4322 4323 4324
		i--;
	}

4325 4326 4327
	tx_ring->next_to_use = i;
}

4328
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4329
{
4330 4331
	struct net_device *netdev = tx_ring->netdev;

4332 4333
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4334 4335 4336 4337 4338 4339 4340
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4341
	if (igb_desc_unused(tx_ring) < size)
4342 4343 4344
		return -EBUSY;

	/* A reprieve! */
4345
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4346 4347 4348 4349 4350

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4351 4352 4353
	return 0;
}

4354
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4355
{
4356
	if (igb_desc_unused(tx_ring) >= size)
4357
		return 0;
4358
	return __igb_maybe_stop_tx(tx_ring, size);
4359 4360
}

4361 4362
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4363
{
4364 4365 4366
#ifdef CONFIG_IGB_PTP
	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
#endif /* CONFIG_IGB_PTP */
4367
	struct igb_tx_buffer *first;
4368
	int tso;
N
Nick Nunley 已提交
4369
	u32 tx_flags = 0;
4370
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4371
	u8 hdr_len = 0;
4372 4373 4374 4375 4376 4377

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4378
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4379 4380 4381
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4382

4383 4384 4385 4386 4387 4388
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4389
#ifdef CONFIG_IGB_PTP
4390 4391
	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
		     !(adapter->ptp_tx_skb))) {
4392
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4393
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4394 4395 4396 4397

		adapter->ptp_tx_skb = skb_get(skb);
		if (adapter->hw.mac.type == e1000_82576)
			schedule_work(&adapter->ptp_tx_work);
4398
	}
4399
#endif /* CONFIG_IGB_PTP */
4400

4401
	if (vlan_tx_tag_present(skb)) {
4402 4403 4404 4405
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4406 4407 4408
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4409

4410 4411
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4412
		goto out_drop;
4413 4414
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4415

4416
	igb_tx_map(tx_ring, first, hdr_len);
4417 4418

	/* Make sure there is space in the ring for the next send. */
4419
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4420

4421
	return NETDEV_TX_OK;
4422 4423

out_drop:
4424 4425
	igb_unmap_and_free_tx_resource(tx_ring, first);

4426
	return NETDEV_TX_OK;
4427 4428
}

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4440 4441
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4442 4443
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4455 4456 4457 4458
	/*
	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
4459 4460
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
4461 4462
			return NETDEV_TX_OK;
		skb->len = 17;
4463
		skb_set_tail_pointer(skb, 17);
4464
	}
4465

4466
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4480

4481
	if (hw->mac.type >= e1000_82580)
4482 4483
		hw->dev_spec._82575.global_device_reset = true;

4484
	schedule_work(&adapter->reset_task);
4485 4486
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4487 4488 4489 4490 4491 4492 4493
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4494 4495
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4496 4497 4498 4499
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4500
 * igb_get_stats64 - Get System Network Statistics
4501
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4502
 * @stats: rtnl_link_stats64 pointer
4503 4504
 *
 **/
E
Eric Dumazet 已提交
4505 4506
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4507
{
E
Eric Dumazet 已提交
4508 4509 4510 4511 4512 4513 4514 4515
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4528
	struct pci_dev *pdev = adapter->pdev;
4529
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4530

4531
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4532
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4533 4534 4535
		return -EINVAL;
	}

4536
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4537
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4538
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4539 4540 4541 4542 4543
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4544

4545 4546
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4547

4548 4549
	if (netif_running(netdev))
		igb_down(adapter);
4550

4551
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4570 4571
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4572 4573 4574
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4575
	u32 reg, mpc;
4576
	u16 phy_tmp;
4577 4578
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4579 4580
	unsigned int start;
	u64 _bytes, _packets;
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4593 4594 4595
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
4596
		u32 rqdpc = rd32(E1000_RQDPC(i));
4597
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4598

4599 4600 4601 4602
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
4603 4604 4605 4606 4607 4608 4609 4610

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4611 4612
	}

4613 4614
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4615 4616 4617 4618

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4619
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4620 4621 4622 4623 4624 4625 4626
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4627
	}
4628 4629
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4630 4631

	/* read stats registers */
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4649 4650 4651
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4666
	adapter->stats.rnbc += rd32(E1000_RNBC);
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4684 4685
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4686 4687

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4688 4689 4690 4691
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4692 4693 4694 4695 4696

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
4697 4698
	}

4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4713 4714
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4715 4716 4717 4718

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4719
	 * our own version based on RUC and ROC */
4720
	net_stats->rx_errors = adapter->stats.rxerrc +
4721 4722 4723
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4724 4725 4726 4727 4728
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4729 4730

	/* Tx Errors */
4731 4732 4733 4734 4735
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4736 4737 4738 4739 4740 4741

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4742
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4743 4744 4745 4746 4747 4748 4749 4750 4751
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4752 4753 4754 4755 4756 4757 4758 4759 4760

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
4761 4762 4763 4764
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4765
	struct igb_adapter *adapter = data;
4766
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4767 4768
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4769

4770 4771 4772
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4773
	if (icr & E1000_ICR_DOUTSYNC) {
4774 4775
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
4776 4777 4778 4779
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
4780
	}
4781

4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
#ifdef CONFIG_IGB_PTP
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}
#endif /* CONFIG_IGB_PTP */

P
PJ Waskiewicz 已提交
4806
	wr32(E1000_EIMS, adapter->eims_other);
4807 4808 4809 4810

	return IRQ_HANDLED;
}

4811
static void igb_write_itr(struct igb_q_vector *q_vector)
4812
{
4813
	struct igb_adapter *adapter = q_vector->adapter;
4814
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4815

4816 4817
	if (!q_vector->set_itr)
		return;
4818

4819 4820
	if (!itr_val)
		itr_val = 0x4;
4821

4822 4823
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4824
	else
4825
		itr_val |= E1000_EITR_CNT_IGNR;
4826

4827 4828
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4829 4830
}

4831
static irqreturn_t igb_msix_ring(int irq, void *data)
4832
{
4833
	struct igb_q_vector *q_vector = data;
4834

4835 4836
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4837

4838
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4839

4840
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4841 4842
}

4843
#ifdef CONFIG_IGB_DCA
4844
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4845
{
4846
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4847 4848 4849
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4850 4851 4852
	if (q_vector->cpu == cpu)
		goto out_no_update;

4853 4854
	if (q_vector->tx.ring) {
		int q = q_vector->tx.ring->reg_idx;
4855 4856 4857 4858
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4859
		} else {
4860 4861 4862 4863 4864 4865 4866
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
4867 4868
	if (q_vector->rx.ring) {
		int q = q_vector->rx.ring->reg_idx;
4869 4870
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4871
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4872
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4873 4874 4875 4876
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4877
		}
J
Jeb Cramer 已提交
4878 4879 4880 4881 4882
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4883 4884
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4885 4886 4887 4888 4889
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4890
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4891 4892
	int i;

4893
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4894 4895
		return;

4896 4897 4898
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4899
	for (i = 0; i < adapter->num_q_vectors; i++) {
4900 4901
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4902 4903 4904 4905 4906 4907 4908
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4909
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4910 4911 4912 4913 4914 4915
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4916
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4917 4918
			break;
		if (dca_add_requester(dev) == 0) {
4919
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4920
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4921 4922 4923 4924 4925
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4926
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4927
			/* without this a class_device is left
4928
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4929
			dca_remove_requester(dev);
4930
			dev_info(&pdev->dev, "DCA disabled\n");
4931
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4932
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4933 4934 4935
		}
		break;
	}
4936

J
Jeb Cramer 已提交
4937
	return 0;
4938 4939
}

J
Jeb Cramer 已提交
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4950
#endif /* CONFIG_IGB_DCA */
4951

4952 4953 4954 4955 4956
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

J
Joe Perches 已提交
4957
	eth_random_addr(mac_addr);
4958 4959
	igb_set_vf_mac(adapter, vf, mac_addr);

4960
	return 0;
4961 4962
}

4963
static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
4964 4965
{
	struct pci_dev *pdev = adapter->pdev;
4966 4967
	struct pci_dev *vfdev;
	int dev_id;
4968 4969 4970

	switch (adapter->hw.mac.type) {
	case e1000_82576:
4971
		dev_id = IGB_82576_VF_DEV_ID;
4972 4973
		break;
	case e1000_i350:
4974
		dev_id = IGB_I350_VF_DEV_ID;
4975 4976
		break;
	default:
4977
		return false;
4978 4979
	}

4980 4981 4982 4983 4984 4985 4986
	/* loop through all the VFs to see if we own any that are assigned */
	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
	while (vfdev) {
		/* if we don't own it we don't care */
		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
			/* if it is assigned we cannot release it */
			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
4987 4988
				return true;
		}
4989 4990

		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
4991
	}
4992

4993 4994 4995 4996
	return false;
}

#endif
4997 4998 4999 5000 5001 5002 5003 5004
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5005
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5006 5007 5008 5009 5010
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5011 5012 5013 5014 5015 5016
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5017
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5018 5019 5020 5021 5022
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5023
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

5051 5052 5053 5054 5055 5056 5057 5058
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5059
	/* salt away the number of multicast addresses assigned
5060 5061 5062 5063 5064
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5065 5066 5067 5068 5069
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5070
	for (i = 0; i < n; i++)
5071
		vf_data->vf_mc_hashes[i] = hash_list[i];
5072 5073

	/* Flush and reset the mta with the new values */
5074
	igb_set_rx_mode(adapter->netdev);
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5086 5087 5088
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5089
		vf_data = &adapter->vf_data[i];
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5128 5129

	adapter->vf_data[vf].vlans_enabled = 0;
5130 5131 5132 5133 5134 5135 5136
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5137 5138 5139 5140 5141
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5171 5172
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5173 5174
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5175 5176
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5177
			wr32(E1000_VLVF(i), reg);
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5193
			adapter->vf_data[vf].vlans_enabled++;
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5220 5221
		}
	}
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5281
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5282
{
G
Greg Rose 已提交
5283 5284
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5285
	adapter->vf_data[vf].last_nack = jiffies;
5286 5287

	/* reset offloads to defaults */
5288
	igb_set_vmolr(adapter, vf, true);
5289 5290 5291

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5292 5293 5294 5295 5296 5297
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5298 5299 5300 5301 5302

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5303
	igb_set_rx_mode(adapter->netdev);
5304 5305
}

5306 5307 5308 5309 5310
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
5311
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
J
Joe Perches 已提交
5312
		eth_random_addr(vf_mac);
5313 5314 5315 5316 5317 5318

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5319 5320 5321
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5322
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5323 5324 5325 5326
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5327
	igb_vf_reset(adapter, vf);
5328 5329

	/* set vf mac address */
5330
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5331 5332 5333 5334 5335 5336 5337

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5338
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5339 5340 5341 5342 5343 5344 5345 5346 5347

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5348 5349 5350 5351
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5352 5353
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5354

5355 5356
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5357

5358
	return err;
5359 5360 5361 5362 5363
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5364
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5365 5366 5367
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5368 5369
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5370
		igb_write_mbx(hw, &msg, 1, vf);
5371
		vf_data->last_nack = jiffies;
5372 5373 5374
	}
}

5375
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5376
{
5377 5378
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5379
	struct e1000_hw *hw = &adapter->hw;
5380
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5381 5382
	s32 retval;

5383
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5384

5385 5386
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5387
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5388 5389 5390 5391 5392
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5393 5394 5395

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5396
		return;
5397 5398 5399 5400 5401 5402 5403 5404

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5405
		return;
5406 5407
	}

5408
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5409 5410 5411 5412
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5413 5414 5415 5416
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5417 5418 5419 5420 5421 5422 5423 5424
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5425
		break;
5426 5427 5428
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5429 5430 5431 5432 5433 5434 5435
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5436 5437 5438 5439 5440 5441
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5442 5443
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5444 5445
		break;
	default:
5446
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5447 5448 5449 5450
		retval = -1;
		break;
	}

5451 5452
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5453 5454 5455 5456 5457 5458 5459
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5460
}
5461

5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5480 5481
}

5482 5483 5484 5485 5486 5487 5488
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5489 5490
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5509 5510 5511 5512 5513 5514 5515
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5516 5517
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5518 5519 5520 5521
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5522
	igb_write_itr(q_vector);
5523

5524 5525 5526
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5527
	if (icr & E1000_ICR_DOUTSYNC) {
5528 5529 5530 5531
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5532 5533 5534 5535 5536 5537
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
#ifdef CONFIG_IGB_PTP
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}
#endif /* CONFIG_IGB_PTP */

5551
	napi_schedule(&q_vector->napi);
5552 5553 5554 5555 5556

	return IRQ_HANDLED;
}

/**
5557
 * igb_intr - Legacy Interrupt Handler
5558 5559 5560 5561 5562
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5563 5564
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5575 5576
	igb_write_itr(q_vector);

5577 5578 5579
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5580
	if (icr & E1000_ICR_DOUTSYNC) {
5581 5582 5583 5584
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5585 5586 5587 5588 5589 5590 5591
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
#ifdef CONFIG_IGB_PTP
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}
#endif /* CONFIG_IGB_PTP */

5605
	napi_schedule(&q_vector->napi);
5606 5607 5608 5609

	return IRQ_HANDLED;
}

5610
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5611
{
5612
	struct igb_adapter *adapter = q_vector->adapter;
5613
	struct e1000_hw *hw = &adapter->hw;
5614

5615 5616 5617 5618
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5619
		else
5620
			igb_update_ring_itr(q_vector);
5621 5622
	}

5623 5624
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5625
			wr32(E1000_EIMS, q_vector->eims_value);
5626 5627 5628
		else
			igb_irq_enable(adapter);
	}
5629 5630
}

5631 5632 5633 5634 5635 5636
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5637
{
5638 5639 5640
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
5641
	bool clean_complete = true;
5642

5643
#ifdef CONFIG_IGB_DCA
5644 5645
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5646
#endif
5647
	if (q_vector->tx.ring)
5648
		clean_complete = igb_clean_tx_irq(q_vector);
5649

5650
	if (q_vector->rx.ring)
5651
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5652

5653 5654 5655
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5656

5657
	/* If not enough Rx work done, exit the polling mode */
5658 5659
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5660

5661
	return 0;
5662
}
A
Al Viro 已提交
5663

5664 5665
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5666
 * @q_vector: pointer to q_vector containing needed info
5667
 *
5668 5669
 * returns true if ring is completely cleaned
 **/
5670
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5671
{
5672
	struct igb_adapter *adapter = q_vector->adapter;
5673
	struct igb_ring *tx_ring = q_vector->tx.ring;
5674
	struct igb_tx_buffer *tx_buffer;
5675
	union e1000_adv_tx_desc *tx_desc;
5676
	unsigned int total_bytes = 0, total_packets = 0;
5677
	unsigned int budget = q_vector->tx.work_limit;
5678
	unsigned int i = tx_ring->next_to_clean;
5679

5680 5681
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5682

5683
	tx_buffer = &tx_ring->tx_buffer_info[i];
5684
	tx_desc = IGB_TX_DESC(tx_ring, i);
5685
	i -= tx_ring->count;
5686

5687 5688
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5689 5690 5691 5692

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5693

5694 5695 5696
		/* prevent any other reads prior to eop_desc */
		rmb();

5697 5698 5699 5700
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5701 5702
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5703

5704 5705 5706
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5707

5708 5709
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
5710

5711 5712
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
5713 5714
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
5715 5716
				 DMA_TO_DEVICE);

5717 5718 5719 5720
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

5721 5722
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
5723 5724
			tx_buffer++;
			tx_desc++;
5725
			i++;
5726 5727
			if (unlikely(!i)) {
				i -= tx_ring->count;
5728
				tx_buffer = tx_ring->tx_buffer_info;
5729 5730
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5731 5732

			/* unmap any remaining paged data */
5733
			if (dma_unmap_len(tx_buffer, len)) {
5734
				dma_unmap_page(tx_ring->dev,
5735 5736
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
5737
					       DMA_TO_DEVICE);
5738
				dma_unmap_len_set(tx_buffer, len, 0);
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
5751 5752 5753 5754 5755 5756 5757

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
5758

5759 5760
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
5761
	i += tx_ring->count;
5762
	tx_ring->next_to_clean = i;
5763 5764 5765 5766
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
5767 5768
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
5769

5770
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5771
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
5772

5773 5774
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
5775
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5776
		if (tx_buffer->next_to_watch &&
5777
		    time_after(jiffies, tx_buffer->time_stamp +
5778 5779
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5780 5781

			/* detected Tx unit hang */
5782
			dev_err(tx_ring->dev,
5783
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5784
				"  Tx Queue             <%d>\n"
5785 5786 5787 5788 5789 5790
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
5791
				"  next_to_watch        <%p>\n"
5792 5793
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5794
				tx_ring->queue_index,
5795
				rd32(E1000_TDH(tx_ring->reg_idx)),
5796
				readl(tx_ring->tail),
5797 5798
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5799
				tx_buffer->time_stamp,
5800
				tx_buffer->next_to_watch,
5801
				jiffies,
5802
				tx_buffer->next_to_watch->wb.status);
5803 5804 5805 5806 5807
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
5808 5809
		}
	}
5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830

	if (unlikely(total_packets &&
		     netif_carrier_ok(tx_ring->netdev) &&
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
5831 5832
}

5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
/**
 * igb_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
					 PAGE_SIZE / 2,
					 DMA_FROM_DEVICE);
}

/**
 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @rx_desc: descriptor containing length of buffer written by hardware
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

#ifdef CONFIG_IGB_PTP
		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

#endif
		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			rx_buffer->page_offset, size, PAGE_SIZE / 2);

	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= PAGE_SIZE / 2;

	/*
	 * since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);

	return true;
}

5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	/*
	 * This memory barrier is needed to keep us from reading
	 * any other fields out of the rx_desc until we know the
	 * RXD_STAT_DD bit is set
	 */
	rmb();

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

		/*
		 * we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      PAGE_SIZE / 2,
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

5999
static inline void igb_rx_checksum(struct igb_ring *ring,
6000 6001
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6002
{
6003
	skb_checksum_none_assert(skb);
6004

6005
	/* Ignore Checksum bit is set */
6006
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6007 6008 6009 6010
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6011
		return;
6012

6013
	/* TCP/UDP checksum error bit is set */
6014 6015 6016
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6017 6018 6019 6020 6021
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6022 6023
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6024
			u64_stats_update_begin(&ring->rx_syncp);
6025
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6026 6027
			u64_stats_update_end(&ring->rx_syncp);
		}
6028 6029 6030 6031
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6032 6033
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6034 6035
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6036 6037
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6038 6039
}

6040 6041 6042 6043 6044 6045 6046 6047
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
/**
 * igb_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
/**
 * igb_get_headlen - determine size of header for LRO/GRO
 * @data: pointer to the start of the headers
 * @max_len: total length of section to find headers in
 *
 * This function is meant to determine the length of headers that will
 * be recognized by hardware for LRO, and GRO offloads.  The main
 * motivation of doing this is to only perform one pull for IPv4 TCP
 * packets so that we can do basic things like calculating the gso_size
 * based on the average data per packet.
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

		/* record next protocol */
		nexthdr = hdr.ipv4->protocol;
		hdr.network += hlen;
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
		hdr.network += sizeof(struct ipv6hdr);
	} else {
		return hdr.network - data;
	}

	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

	/*
	 * If everything has gone correctly hdr.network should be the
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
 * igb_pull_tail - igb specific version of skb_pull_tail
 * @rx_ring: rx descriptor ring packet is being transacted on
6184
 * @rx_desc: pointer to the EOP Rx descriptor
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
 * @skb: pointer to current skb being adjusted
 *
 * This function is an igb specific version of __pskb_pull_tail.  The
 * main difference between this version and the original function is that
 * this function can make several assumptions about the state of things
 * that allow for significant optimizations versus the standard function.
 * As a result we can do things like drop a frag and maintain an accurate
 * truesize for the skb.
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6197
{
6198 6199 6200 6201 6202 6203 6204 6205
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

	/*
	 * it is valid to use page_address instead of kmap since we are
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6206
	 */
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
	va = skb_frag_address(frag);

#ifdef CONFIG_IGB_PTP
	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

#endif
	/*
	 * we need the header to contain the greater of either ETH_HLEN or
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
 * igb_cleanup_headers - Correct corrupted or empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being fixed
 *
 * Address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{

	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6283 6284
}

6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
/**
 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 * other fields within the skb.
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

#ifdef CONFIG_IGB_PTP
	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
#endif /* CONFIG_IGB_PTP */

	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, vid);
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6326
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6327
{
6328
	struct igb_ring *rx_ring = q_vector->rx.ring;
6329
	struct sk_buff *skb = rx_ring->skb;
6330
	unsigned int total_bytes = 0, total_packets = 0;
6331
	u16 cleaned_count = igb_desc_unused(rx_ring);
6332

6333 6334
	do {
		union e1000_adv_rx_desc *rx_desc;
6335

6336 6337 6338 6339 6340
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6341

6342
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6343

6344 6345
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6346

6347 6348
		/* retrieve a buffer from the ring */
		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6349

6350 6351 6352
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6353

6354
		cleaned_count++;
6355

6356 6357 6358
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6359 6360 6361 6362 6363

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6364 6365
		}

6366
		/* probably a little skewed due to removing CRC */
6367 6368
		total_bytes += skb->len;

6369 6370
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6371

J
Jiri Pirko 已提交
6372
		napi_gro_receive(&q_vector->napi, skb);
6373

6374 6375 6376
		/* reset skb pointer */
		skb = NULL;

6377 6378 6379
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
6380

6381 6382 6383
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
6384
	u64_stats_update_begin(&rx_ring->rx_syncp);
6385 6386
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6387
	u64_stats_update_end(&rx_ring->rx_syncp);
6388 6389
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6390 6391

	if (cleaned_count)
6392
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6393

6394
	return (total_packets < budget);
6395 6396
}

6397
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6398
				  struct igb_rx_buffer *bi)
6399 6400
{
	struct page *page = bi->page;
6401
	dma_addr_t dma;
6402

6403 6404
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
6405 6406
		return true;

6407 6408 6409 6410 6411
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
6412 6413
	}

6414 6415
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6416

6417 6418 6419 6420
	/*
	 * if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
	 */
6421
	if (dma_mapping_error(rx_ring->dev, dma)) {
6422 6423
		__free_page(page);

6424 6425 6426 6427
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

6428
	bi->dma = dma;
6429 6430
	bi->page = page;
	bi->page_offset = 0;
6431

6432 6433 6434
	return true;
}

6435
/**
6436
 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6437 6438
 * @adapter: address of board private structure
 **/
6439
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6440 6441
{
	union e1000_adv_rx_desc *rx_desc;
6442
	struct igb_rx_buffer *bi;
6443
	u16 i = rx_ring->next_to_use;
6444

6445 6446 6447 6448
	/* nothing to do */
	if (!cleaned_count)
		return;

6449
	rx_desc = IGB_RX_DESC(rx_ring, i);
6450
	bi = &rx_ring->rx_buffer_info[i];
6451
	i -= rx_ring->count;
6452

6453
	do {
6454
		if (!igb_alloc_mapped_page(rx_ring, bi))
6455
			break;
6456

6457 6458 6459 6460 6461
		/*
		 * Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6462

6463 6464
		rx_desc++;
		bi++;
6465
		i++;
6466
		if (unlikely(!i)) {
6467
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6468
			bi = rx_ring->rx_buffer_info;
6469 6470 6471 6472 6473
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6474 6475 6476

		cleaned_count--;
	} while (cleaned_count);
6477

6478 6479
	i += rx_ring->count;

6480
	if (rx_ring->next_to_use != i) {
6481
		/* record the next descriptor to use */
6482 6483
		rx_ring->next_to_use = i;

6484 6485 6486 6487 6488
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

		/*
		 * Force memory writes to complete before letting h/w
6489 6490
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
6491 6492
		 * such as IA-64).
		 */
6493
		wmb();
6494
		writel(i, rx_ring->tail);
6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6517 6518
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6541
#ifdef CONFIG_IGB_PTP
6542
	case SIOCSHWTSTAMP:
6543
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6544
#endif /* CONFIG_IGB_PTP */
6545 6546 6547 6548 6549
	default:
		return -EOPNOTSUPP;
	}
}

6550 6551 6552 6553
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6554
	if (pcie_capability_read_word(adapter->pdev, reg, value))
6555 6556 6557 6558 6559 6560 6561 6562 6563
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6564
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6565 6566 6567 6568 6569
		return -E1000_ERR_CONFIG;

	return 0;
}

6570
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6571 6572 6573 6574
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6575
	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6576

6577
	if (enable) {
6578 6579 6580 6581 6582
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6583
		/* Disable CFI check */
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6594
	igb_rlpml_set(adapter);
6595 6596
}

6597
static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6598 6599 6600
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6601
	int pf_id = adapter->vfs_allocated_count;
6602

6603 6604
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6605

6606 6607
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6608 6609

	set_bit(vid, adapter->active_vlans);
6610 6611

	return 0;
6612 6613
}

6614
static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6615 6616 6617
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6618
	int pf_id = adapter->vfs_allocated_count;
6619
	s32 err;
6620

6621 6622
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6623

6624 6625
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6626
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6627 6628

	clear_bit(vid, adapter->active_vlans);
6629 6630

	return 0;
6631 6632 6633 6634
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6635
	u16 vid;
6636

6637 6638
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6639 6640
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
6641 6642
}

6643
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6644
{
6645
	struct pci_dev *pdev = adapter->pdev;
6646 6647 6648 6649
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6650 6651 6652 6653 6654
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6655 6656
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6657 6658 6659
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL)
		goto err_inval;
6660

6661
	switch (spd + dplx) {
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6680
		goto err_inval;
6681
	}
6682 6683 6684 6685

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

6686
	return 0;
6687 6688 6689 6690

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
6691 6692
}

Y
Yan, Zheng 已提交
6693 6694
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
6695 6696 6697 6698
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6699
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
6700
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6701 6702 6703 6704 6705 6706
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6707
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
6708
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
6709

6710
	igb_clear_interrupt_scheme(adapter);
6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6724
		igb_set_rx_mode(netdev);
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6742
		igb_disable_pcie_master(hw);
6743 6744 6745 6746 6747 6748 6749 6750

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6751 6752
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6753 6754 6755
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
6767
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
6768
static int igb_suspend(struct device *dev)
6769 6770 6771
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
6772
	struct pci_dev *pdev = to_pci_dev(dev);
6773

Y
Yan, Zheng 已提交
6774
	retval = __igb_shutdown(pdev, &wake, 0);
6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
6787
#endif /* CONFIG_PM_SLEEP */
6788

Y
Yan, Zheng 已提交
6789
static int igb_resume(struct device *dev)
6790
{
Y
Yan, Zheng 已提交
6791
	struct pci_dev *pdev = to_pci_dev(dev);
6792 6793 6794 6795 6796 6797 6798
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
6799
	pci_save_state(pdev);
T
Taku Izumi 已提交
6800

6801
	err = pci_enable_device_mem(pdev);
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

6812
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
6813 6814
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
6815 6816 6817
	}

	igb_reset(adapter);
6818 6819 6820 6821 6822

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

6823 6824
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
6825 6826
	if (netdev->flags & IFF_UP) {
		err = __igb_open(netdev, true);
A
Alexander Duyck 已提交
6827 6828 6829
		if (err)
			return err;
	}
6830 6831

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6864 6865 6866

	return 0;
}
Y
Yan, Zheng 已提交
6867 6868 6869 6870 6871 6872

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
6873 6874 6875 6876
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
6877 6878
	bool wake;

Y
Yan, Zheng 已提交
6879
	__igb_shutdown(pdev, &wake, 0);
6880 6881 6882 6883 6884

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
6896
	struct e1000_hw *hw = &adapter->hw;
6897
	struct igb_q_vector *q_vector;
6898 6899
	int i;

6900
	for (i = 0; i < adapter->num_q_vectors; i++) {
6901 6902 6903 6904 6905
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
6906
		napi_schedule(&q_vector->napi);
6907
	}
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

6927 6928 6929
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6950
	pci_ers_result_t result;
T
Taku Izumi 已提交
6951
	int err;
6952

6953
	if (pci_enable_device_mem(pdev)) {
6954 6955
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
6956 6957 6958 6959
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
6960
		pci_save_state(pdev);
6961

6962 6963
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
6964

6965 6966 6967 6968
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
6969

6970 6971 6972 6973 6974 6975
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
6976 6977

	return result;
6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7034 7035 7036 7037
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
7038 7039 7040
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7041

7042
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7043

7044
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7045 7046 7047 7048

	return 0;
}

7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
L
Lior Levy 已提交
7100 7101 7102 7103 7104
	/*
	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

7137 7138
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7167
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7168 7169 7170 7171 7172
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

7173 7174 7175
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7176
	u32 reg;
7177

7178 7179
	switch (hw->mac.type) {
	case e1000_82575:
7180 7181
	case e1000_i210:
	case e1000_i211:
7182 7183
	default:
		/* replication is not supported for 82575 */
7184
		return;
7185 7186 7187 7188 7189 7190 7191 7192 7193 7194
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7195 7196
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7197 7198
		break;
	}
7199

7200 7201 7202
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7203 7204
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
7205 7206 7207 7208
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7209 7210
}

7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

			/*
7225 7226 7227
			 * DMA Coalescing high water mark needs to be greater
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7228
			 */
7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

			/*
			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7245 7246 7247 7248 7249 7250 7251 7252 7253 7254
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7255 7256 7257

			/* Disable BMC-to-OS Watchdog Enable */
			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
			wr32(E1000_DMACR, reg);

			/*
			 * no lower threshold to disable
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

			/*
			 * free space in tx packet buffer to wake from
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

			/*
			 * make low power state decision controlled
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

7292
/* igb_main.c */