igb_main.c 198.5 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
60 61
#include "igb.h"

C
Carolyn Wyborny 已提交
62
#define MAJ 4
C
Carolyn Wyborny 已提交
63 64
#define MIN 1
#define BUILD 2
C
Carolyn Wyborny 已提交
65
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66
__stringify(BUILD) "-k"
67 68 69 70
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
71
static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
72 73 74 75 76

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

77
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
78 79 80 81 82
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
83 84 85 86
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
90 91 92
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
93 94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
95 96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
97
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
98
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
100 101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
102
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
105 106 107 108 109 110 111 112 113 114 115 116 117 118
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
119
static void igb_setup_mrqc(struct igb_adapter *);
120
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
121
static void igb_remove(struct pci_dev *pdev);
122 123 124
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
125
static void igb_configure(struct igb_adapter *);
126 127 128 129
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
130 131
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
132
static void igb_set_rx_mode(struct net_device *);
133 134 135
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
136
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
137 138
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
139 140
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
141
static void igb_set_uta(struct igb_adapter *adapter);
142 143 144
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
145
static irqreturn_t igb_msix_ring(int irq, void *);
146
#ifdef CONFIG_IGB_DCA
147
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
148
static void igb_setup_dca(struct igb_adapter *);
149
#endif /* CONFIG_IGB_DCA */
150
static int igb_poll(struct napi_struct *, int);
151
static bool igb_clean_tx_irq(struct igb_q_vector *);
152
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
153 154 155
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
156
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
157 158
static int igb_vlan_rx_add_vid(struct net_device *, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, u16);
159
static void igb_restore_vlan(struct igb_adapter *);
160
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
161 162 163
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
164
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
165
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
166 167 168 169 170 171
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
172
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
173 174

#ifdef CONFIG_PCI_IOV
175
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
176
static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
R
RongQing Li 已提交
177
#endif
178 179

#ifdef CONFIG_PM
180
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
181
static int igb_suspend(struct device *);
182
#endif
Y
Yan, Zheng 已提交
183 184 185 186 187 188 189 190 191 192 193
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
194 195
#endif
static void igb_shutdown(struct pci_dev *);
196
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
197
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
198 199 200 201 202 203 204
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
205 206 207 208
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
209
#ifdef CONFIG_PCI_IOV
210 211 212 213 214 215
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

216 217 218 219 220
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

221
static const struct pci_error_handlers igb_err_handler = {
222 223 224 225 226
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

227
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
228 229 230 231 232

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
233
	.remove   = igb_remove,
234
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
235
	.driver.pm = &igb_pm_ops,
236 237
#endif
	.shutdown = igb_shutdown,
238
	.sriov_configure = igb_pci_sriov_configure,
239 240 241 242 243 244 245 246
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

247 248 249 250 251
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
352
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
353 354 355 356
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
357 358
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
375
	u16 i, n;
376 377 378 379 380 381 382

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
383 384 385 386
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
387 388 389 390
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
391
	pr_info(" Register Name   Value\n");
392 393 394 395 396 397 398 399 400 401
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
402
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
403
	for (n = 0; n < adapter->num_tx_queues; n++) {
404
		struct igb_tx_buffer *buffer_info;
405
		tx_ring = adapter->tx_ring[n];
406
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
407 408
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
409 410
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
411 412
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
434 435 436 437 438 439
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
440 441

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
442
			const char *next_desc;
443
			struct igb_tx_buffer *buffer_info;
444
			tx_desc = IGB_TX_DESC(tx_ring, i);
445
			buffer_info = &tx_ring->tx_buffer_info[i];
446
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
447 448 449 450 451 452 453 454 455 456 457 458
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
459 460
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
461 462
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
463 464
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
465
				buffer_info->skb, next_desc);
466

467
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
468 469
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
470
					16, 1, buffer_info->skb->data,
471 472
					dma_unmap_len(buffer_info, len),
					true);
473 474 475 476 477 478
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
479
	pr_info("Queue [NTU] [NTC]\n");
480 481
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
482 483
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
515 516 517 518 519 520 521
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
522 523

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
524
			const char *next_desc;
525 526
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
527
			rx_desc = IGB_RX_DESC(rx_ring, i);
528 529
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
530 531 532 533 534 535 536 537

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

538 539
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
540 541
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
542 543
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
544
					next_desc);
545
			} else {
546 547
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
548 549 550
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
551
					next_desc);
552

553
				if (netif_msg_pktdata(adapter) &&
554
				    buffer_info->dma && buffer_info->page) {
555 556 557
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
558 559
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
560
					  IGB_RX_BUFSZ, true);
561 562 563 564 565 566 567 568 569
				}
			}
		}
	}

exit:
	return;
}

570
/**
571
 * igb_get_hw_dev - return device
572 573
 * used by hardware layer to print debugging information
 **/
574
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
575 576
{
	struct igb_adapter *adapter = hw->back;
577
	return adapter->netdev;
578
}
P
Patrick Ohly 已提交
579

580 581 582 583 584 585 586 587 588
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
589
	pr_info("%s - version %s\n",
590 591
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
592
	pr_info("%s\n", igb_copyright);
593

594
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
595 596
	dca_register_notify(&dca_notifier);
#endif
597
	ret = pci_register_driver(&igb_driver);
598 599 600 601 602 603 604 605 606 607 608 609 610
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
611
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
612 613
	dca_unregister_notify(&dca_notifier);
#endif
614 615 616 617 618
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

619 620 621 622 623 624 625 626 627 628
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
629
	int i = 0, j = 0;
630
	u32 rbase_offset = adapter->vfs_allocated_count;
631 632 633 634 635 636 637 638

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
639
		if (adapter->vfs_allocated_count) {
640
			for (; i < adapter->rss_queues; i++)
641 642
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
643
		}
644
	case e1000_82575:
645
	case e1000_82580:
646
	case e1000_i350:
647 648
	case e1000_i210:
	case e1000_i211:
649
	default:
650
		for (; i < adapter->num_rx_queues; i++)
651
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
652
		for (; j < adapter->num_tx_queues; j++)
653
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
654 655 656 657
		break;
	}
}

A
Alexander Duyck 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

684
#define IGB_N0_QUEUE -1
685
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
686
{
687
	struct igb_adapter *adapter = q_vector->adapter;
688
	struct e1000_hw *hw = &adapter->hw;
689 690
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
691
	u32 msixbm = 0;
692

693 694 695 696
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
697 698 699

	switch (hw->mac.type) {
	case e1000_82575:
700 701 702 703
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
704
		if (rx_queue > IGB_N0_QUEUE)
705
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
706
		if (tx_queue > IGB_N0_QUEUE)
707
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
708 709
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
710
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
711
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
712 713
		break;
	case e1000_82576:
A
Alexander Duyck 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727
		/*
		 * 82576 uses a table that essentially consists of 2 columns
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
728
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
729
		break;
730
	case e1000_82580:
731
	case e1000_i350:
732 733
	case e1000_i210:
	case e1000_i211:
A
Alexander Duyck 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
		/*
		 * On 82580 and newer adapters the scheme is similar to 82576
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
749 750
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
751 752 753 754
	default:
		BUG();
		break;
	}
755 756 757 758 759 760

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
778 779
	switch (hw->mac.type) {
	case e1000_82575:
780 781 782 783 784 785 786 787 788
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
789 790 791 792

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
793
		adapter->eims_other = E1000_EIMS_OTHER;
794

A
Alexander Duyck 已提交
795 796 797
		break;

	case e1000_82576:
798
	case e1000_82580:
799
	case e1000_i350:
800 801
	case e1000_i210:
	case e1000_i211:
802 803 804 805 806 807 808 809
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
810 811
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

812
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
813 814 815 816 817
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
818 819 820

	adapter->eims_enable_mask |= adapter->eims_other;

821 822
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
823

824 825 826 827 828 829 830 831 832 833 834 835
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
836
	struct e1000_hw *hw = &adapter->hw;
837
	int i, err = 0, vector = 0, free_vector = 0;
838

839
	err = request_irq(adapter->msix_entries[vector].vector,
840
	                  igb_msix_other, 0, netdev->name, adapter);
841
	if (err)
842
		goto err_out;
843 844 845 846

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

847 848
		vector++;

849 850
		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

851
		if (q_vector->rx.ring && q_vector->tx.ring)
852
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
853 854
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
855
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
856 857
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
858
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
859
				q_vector->rx.ring->queue_index);
860
		else
861 862
			sprintf(q_vector->name, "%s-unused", netdev->name);

863
		err = request_irq(adapter->msix_entries[vector].vector,
864
		                  igb_msix_ring, 0, q_vector->name,
865
		                  q_vector);
866
		if (err)
867
			goto err_free;
868 869 870 871
	}

	igb_configure_msix(adapter);
	return 0;
872 873 874 875 876 877 878 879 880 881 882

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
883 884 885 886 887 888 889 890 891
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
892
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
893
		pci_disable_msi(adapter->pdev);
894
	}
895 896
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/**
 * igb_free_q_vector - Free memory allocated for specific interrupt vector
 * @adapter: board private structure to initialize
 * @v_idx: Index of vector to be freed
 *
 * This function frees the memory allocated to the q_vector.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	adapter->q_vector[v_idx] = NULL;
	netif_napi_del(&q_vector->napi);

	/*
	 * ixgbe_get_stats64() might access the rings on this vector,
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

926 927 928 929 930 931 932 933 934 935
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
936 937 938 939
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
940
	adapter->num_q_vectors = 0;
941 942 943

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);
944 945 946 947 948 949 950 951 952 953 954 955 956
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
957 958 959 960 961 962 963

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
964
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
965 966 967 968
{
	int err;
	int numvecs, i;

969 970 971
	if (!msix)
		goto msi_only;

972
	/* Number of supported queues. */
973
	adapter->num_rx_queues = adapter->rss_queues;
974 975 976 977
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
978

979 980 981
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
982
	/* if tx handler is separate add 1 for every tx queue */
983 984
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
985 986 987 988 989 990

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
991 992
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
993

994 995 996 997 998 999 1000 1001 1002 1003
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1004
		return;
1005 1006 1007 1008 1009

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1021
		wrfl();
1022 1023 1024 1025
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1026
	adapter->vfs_allocated_count = 0;
1027
	adapter->rss_queues = 1;
1028
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1029
	adapter->num_rx_queues = 1;
1030
	adapter->num_tx_queues = 1;
1031
	adapter->num_q_vectors = 1;
1032
	if (!pci_enable_msi(adapter->pdev))
1033
		adapter->flags |= IGB_FLAG_HAS_MSI;
1034 1035
}

1036 1037 1038 1039 1040 1041 1042
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1043
/**
1044
 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1045
 * @adapter: board private structure to initialize
1046 1047 1048 1049 1050 1051
 * @v_count: q_vectors allocated on adapter, used for ring interleaving
 * @v_idx: index of vector in adapter struct
 * @txr_count: total number of Tx rings to allocate
 * @txr_idx: index of first Tx ring to allocate
 * @rxr_count: total number of Rx rings to allocate
 * @rxr_idx: index of first Rx ring to allocate
1052
 *
1053
 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1054
 **/
1055 1056 1057 1058
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1059 1060
{
	struct igb_q_vector *q_vector;
1061 1062
	struct igb_ring *ring;
	int ring_count, size;
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
	q_vector = kzalloc(size, GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1119
	}
1120

1121 1122 1123 1124
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1125

1126 1127
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1128

1129 1130
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1131

1132 1133 1134
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1135

1136 1137 1138 1139 1140 1141
		/*
		 * On i350, i210, and i211, loopback VLAN packets
		 * have the tag byte-swapped.
		 * */
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1152 1153
}

1154

1155
/**
1156 1157
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
1158
 *
1159 1160
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
1161
 **/
1162
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1163
{
1164 1165 1166 1167 1168
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1169

1170 1171 1172 1173
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1174

1175 1176 1177 1178 1179 1180
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1181 1182
		}
	}
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1200
	return 0;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1211 1212 1213 1214 1215 1216 1217
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
1218
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1219 1220 1221 1222
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1223
	igb_set_interrupt_capability(adapter, msix);
1224 1225 1226 1227 1228 1229 1230

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1231
	igb_cache_ring_register(adapter);
1232 1233

	return 0;
1234

1235 1236 1237 1238 1239
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1240 1241 1242 1243 1244 1245 1246 1247 1248
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1249
	struct pci_dev *pdev = adapter->pdev;
1250 1251 1252 1253
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1254
		if (!err)
1255 1256
			goto request_done;
		/* fall back to MSI */
1257 1258
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1259

1260
		igb_clear_interrupt_scheme(adapter);
1261 1262
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
1263
			goto request_done;
1264

1265 1266
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1267
		igb_configure(adapter);
1268
	}
P
PJ Waskiewicz 已提交
1269

1270 1271
	igb_assign_vector(adapter->q_vector[0], 0);

1272
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1273
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1274
				  netdev->name, adapter);
1275 1276
		if (!err)
			goto request_done;
1277

1278 1279
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1280
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1281 1282
	}

1283
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1284
			  netdev->name, adapter);
1285

A
Andy Gospodarek 已提交
1286
	if (err)
1287
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1299
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1300

1301
		for (i = 0; i < adapter->num_q_vectors; i++)
1302
			free_irq(adapter->msix_entries[vector++].vector,
1303
				 adapter->q_vector[i]);
1304 1305
	} else {
		free_irq(adapter->pdev->irq, adapter);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1317 1318 1319 1320 1321
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1322
	if (adapter->msix_entries) {
1323 1324 1325 1326 1327
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1328
	}
P
PJ Waskiewicz 已提交
1329 1330

	wr32(E1000_IAM, 0);
1331 1332
	wr32(E1000_IMC, ~0);
	wrfl();
1333 1334 1335 1336 1337 1338 1339
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1351
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1352 1353 1354 1355
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1356
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1357
		if (adapter->vfs_allocated_count) {
1358
			wr32(E1000_MBVFIMR, 0xFF);
1359 1360 1361
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1362
	} else {
1363 1364 1365 1366
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1367
	}
1368 1369 1370 1371
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1372
	struct e1000_hw *hw = &adapter->hw;
1373 1374
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1386
	    !test_bit(old_vid, adapter->active_vlans)) {
1387 1388
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1442
	igb_set_rx_mode(netdev);
1443 1444 1445

	igb_restore_vlan(adapter);

1446
	igb_setup_tctl(adapter);
1447
	igb_setup_mrqc(adapter);
1448
	igb_setup_rctl(adapter);
1449 1450

	igb_configure_tx(adapter);
1451
	igb_configure_rx(adapter);
1452 1453 1454

	igb_rx_fifo_flush_82575(&adapter->hw);

1455
	/* call igb_desc_unused which always leaves
1456 1457 1458
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1459
		struct igb_ring *ring = adapter->rx_ring[i];
1460
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1461 1462 1463
	}
}

1464 1465 1466 1467 1468 1469
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1470 1471
	igb_reset_phy(&adapter->hw);

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1504 1505 1506
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1507
	if (adapter->msix_entries)
1508
		igb_configure_msix(adapter);
1509 1510
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1511 1512 1513 1514 1515

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1516 1517 1518 1519 1520 1521 1522
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1523 1524
	netif_tx_start_all_queues(adapter->netdev);

1525 1526 1527 1528
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1529 1530 1531 1532 1533 1534
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1535
	struct e1000_hw *hw = &adapter->hw;
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1548
	netif_tx_stop_all_queues(netdev);
1549 1550 1551 1552 1553 1554 1555 1556 1557

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1558 1559
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_disable(&(adapter->q_vector[i]->napi));
1560 1561 1562 1563 1564 1565 1566

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1567 1568

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1569 1570 1571
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1572

1573 1574 1575
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1576 1577
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1578 1579
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1580 1581 1582 1583 1584
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1599
	struct pci_dev *pdev = adapter->pdev;
1600
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1601 1602
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1603
	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1604 1605 1606 1607

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1608
	switch (mac->type) {
1609
	case e1000_i350:
1610 1611 1612 1613
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1614
	case e1000_82576:
1615 1616
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1617 1618
		break;
	case e1000_82575:
1619 1620
	case e1000_i210:
	case e1000_i211:
1621 1622 1623
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1624
	}
1625

A
Alexander Duyck 已提交
1626 1627
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1645
				sizeof(union e1000_adv_tx_desc) -
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1666
		wr32(E1000_PBA, pba);
1667 1668 1669 1670 1671 1672 1673 1674 1675
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1676
			((pba << 10) - 2 * adapter->max_frame_size));
1677

1678
	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1679
	fc->low_water = fc->high_water - 16;
1680 1681
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1682
	fc->current_mode = fc->requested_mode;
1683

1684 1685 1686 1687
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1688
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1689 1690

		/* ping all the active vfs to let them know we are going down */
1691
		igb_ping_all_vfs(adapter);
1692 1693 1694 1695 1696 1697

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1698
	/* Allow time for pending master requests to run */
1699
	hw->mac.ops.reset_hw(hw);
1700 1701
	wr32(E1000_WUC, 0);

1702
	if (hw->mac.ops.init_hw(hw))
1703
		dev_err(&pdev->dev, "Hardware Error\n");
1704

1705 1706 1707 1708 1709 1710 1711
	/*
	 * Flow control settings reset on hardware reset, so guarantee flow
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1712
	igb_init_dmac(adapter, pba);
1713 1714 1715
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1716 1717 1718 1719 1720
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1721 1722 1723
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);

1724
	igb_get_phy_info(hw);
1725 1726
}

1727 1728
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
{
	/*
	 * Since there is no support for separate rx/tx vlan accel
	 * enable/disable make sure tx flag is always in same state as rx.
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1742 1743
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1744
{
1745
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
1746
	struct igb_adapter *adapter = netdev_priv(netdev);
1747

J
Jiri Pirko 已提交
1748 1749 1750
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

1761 1762 1763
	return 0;
}

S
Stephen Hemminger 已提交
1764
static const struct net_device_ops igb_netdev_ops = {
1765
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1766
	.ndo_stop		= igb_close,
1767
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1768
	.ndo_get_stats64	= igb_get_stats64,
1769
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1770 1771 1772 1773 1774 1775 1776
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1777 1778 1779 1780
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1781 1782 1783
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1784 1785
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1786 1787
};

1788 1789 1790 1791 1792 1793 1794 1795
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 *
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1796 1797 1798 1799 1800 1801
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
	case e1000_i211:
1802
		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
			 "%2d.%2d-%d",
			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
		break;

	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
		} else {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x",
				 fw.eep_major, fw.eep_minor, fw.etrack_id);
		}
		break;
1823 1824 1825 1826
	}
	return;
}

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
1838
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1839 1840 1841 1842
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1843
	u16 eeprom_data = 0;
1844
	s32 ret_val;
1845
	static int global_quad_port_a; /* global quad port a indication */
1846 1847
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1848
	int err, pci_using_dac;
1849
	u8 part_str[E1000_PBANUM_LENGTH];
1850

1851 1852 1853 1854 1855
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1856
			pci_name(pdev), pdev->vendor, pdev->device);
1857 1858 1859
		return -EINVAL;
	}

1860
	err = pci_enable_device_mem(pdev);
1861 1862 1863 1864
	if (err)
		return err;

	pci_using_dac = 0;
1865
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1866
	if (!err) {
1867
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1868 1869 1870
		if (!err)
			pci_using_dac = 1;
	} else {
1871
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1872
		if (err) {
1873
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1874 1875 1876 1877 1878 1879 1880 1881
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1882 1883 1884
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1885 1886 1887
	if (err)
		goto err_pci_reg;

1888
	pci_enable_pcie_error_reporting(pdev);
1889

1890
	pci_set_master(pdev);
1891
	pci_save_state(pdev);
1892 1893

	err = -ENOMEM;
1894
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1895
				   IGB_MAX_TX_QUEUES);
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
1907
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
1908 1909 1910 1911 1912

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1913 1914
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1915 1916
		goto err_ioremap;

S
Stephen Hemminger 已提交
1917
	netdev->netdev_ops = &igb_netdev_ops;
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1940
		goto err_sw_init;
1941

1942
	/* setup the private structure */
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	/*
	 * features is initialized to 0 in allocation, it might have bits
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
1979
	netdev->hw_features |= NETIF_F_RXALL;
1980 1981 1982 1983 1984 1985 1986 1987 1988

	/* set this bit last since it cannot be part of hw_features */
	netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
1989

1990 1991
	netdev->priv_flags |= IFF_SUPP_NOFCS;

1992
	if (pci_using_dac) {
1993
		netdev->features |= NETIF_F_HIGHDMA;
1994 1995
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
1996

1997 1998
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
1999
		netdev->features |= NETIF_F_SCTP_CSUM;
2000
	}
2001

2002 2003
	netdev->priv_flags |= IFF_UNICAST_FLT;

2004
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2005 2006 2007 2008 2009

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	/*
	 * make sure the NVM is good , i211 parts have special NVM that
	 * doesn't contain a checksum
	 */
	if (hw->mac.type != e1000_i211) {
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2020 2021 2022 2023 2024 2025 2026 2027
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

2028
	if (!is_valid_ether_addr(netdev->dev_addr)) {
2029 2030 2031 2032 2033
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2034 2035 2036
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2037
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2038
	            (unsigned long) adapter);
2039
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2040
	            (unsigned long) adapter);
2041 2042 2043 2044

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2045
	/* Initialize link properties that are user-changeable */
2046 2047 2048 2049
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2050 2051
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2052 2053 2054

	igb_validate_mdi_setting(hw);

2055
	/* By default, support wake on port A */
2056
	if (hw->bus.func == 0)
2057 2058 2059 2060
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
2061 2062 2063
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
2064 2065
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2066

2067 2068
	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2069 2070 2071 2072 2073 2074

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2075
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2076 2077
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2078 2079
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2080 2081 2082
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2083
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2084
		break;
2085
	case E1000_DEV_ID_82576_QUAD_COPPER:
2086
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2087 2088
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
2089
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2090 2091 2092 2093 2094 2095
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2096 2097 2098 2099
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2100 2101 2102
	}

	/* initialize the wol settings based on the eeprom settings */
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2128 2129 2130
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2131
#ifdef CONFIG_IGB_DCA
2132
	if (dca_add_requester(&pdev->dev) == 0) {
2133
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2134 2135 2136 2137
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2138
#endif
2139

A
Anders Berggren 已提交
2140
	/* do hw tstamp init after resetting */
2141
	igb_ptp_init(adapter);
A
Anders Berggren 已提交
2142

2143 2144
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2145
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2146
		 netdev->name,
2147
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2148
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2149
		                                            "unknown"),
2150 2151 2152 2153
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2154
		 netdev->dev_addr);
2155

2156 2157 2158 2159
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2160 2161 2162
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2163
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2164
		adapter->num_rx_queues, adapter->num_tx_queues);
2165 2166
	switch (hw->mac.type) {
	case e1000_i350:
2167 2168
	case e1000_i210:
	case e1000_i211:
2169 2170 2171 2172 2173
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
Y
Yan, Zheng 已提交
2174 2175

	pm_runtime_put_noidle(&pdev->dev);
2176 2177 2178 2179 2180 2181
	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
2182
		igb_reset_phy(hw);
2183 2184 2185 2186

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2187
	igb_clear_interrupt_scheme(adapter);
2188 2189 2190 2191
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2192 2193
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2194 2195 2196 2197 2198 2199
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
#ifdef CONFIG_PCI_IOV
static int  igb_disable_sriov(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		if (igb_vfs_are_assigned(adapter)) {
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	int err = 0;
	int i;

	if (!num_vfs)
		goto out;
	else if (old_vfs && old_vfs == num_vfs)
		goto out;
	else if (old_vfs && old_vfs != num_vfs)
		err = igb_disable_sriov(pdev);

	if (err)
		goto out;

	if (num_vfs > 7) {
		err = -EPERM;
		goto out;
	}

	adapter->vfs_allocated_count = num_vfs;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF Data Storage\n");
		err = -ENOMEM;
		goto out;
	}

	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
	if (err)
		goto err_out;

	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
2293 2294 2295 2296 2297 2298 2299 2300 2301
/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
2302
static void igb_remove(struct pci_dev *pdev)
2303 2304 2305
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2306
	struct e1000_hw *hw = &adapter->hw;
2307

Y
Yan, Zheng 已提交
2308
	pm_runtime_get_noresume(&pdev->dev);
2309
	igb_ptp_stop(adapter);
Y
Yan, Zheng 已提交
2310

2311 2312 2313 2314
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2315 2316 2317 2318
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2319 2320
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2321

2322
#ifdef CONFIG_IGB_DCA
2323
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2324 2325
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2326
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2327
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2328 2329 2330
	}
#endif

2331 2332 2333 2334 2335 2336
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2337
	igb_clear_interrupt_scheme(adapter);
2338

2339
#ifdef CONFIG_PCI_IOV
2340
	igb_disable_sriov(pdev);
2341
#endif
2342

2343 2344 2345
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2346 2347
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2348

2349
	kfree(adapter->shadow_vfta);
2350 2351
	free_netdev(netdev);

2352
	pci_disable_pcie_error_reporting(pdev);
2353

2354 2355 2356
	pci_disable_device(pdev);
}

2357 2358 2359 2360 2361 2362 2363 2364 2365
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
2366
static void igb_probe_vfs(struct igb_adapter *adapter)
2367 2368 2369
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2370
	struct e1000_hw *hw = &adapter->hw;
2371

2372 2373 2374 2375
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2376 2377
	igb_enable_sriov(pdev, max_vfs);
	pci_sriov_set_totalvfs(pdev, 7);
2378

2379 2380 2381
#endif /* CONFIG_PCI_IOV */
}

2382
static void igb_init_queue_configuration(struct igb_adapter *adapter)
2383 2384
{
	struct e1000_hw *hw = &adapter->hw;
2385
	u32 max_rss_queues;
2386

2387
	/* Determine the maximum number of RSS queues supported. */
2388
	switch (hw->mac.type) {
2389 2390 2391 2392
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2393
	case e1000_i210:
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2412
		break;
2413 2414 2415 2416 2417 2418 2419
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2420
	case e1000_i211:
2421
		/* Device supports enough interrupts without queue pairing. */
2422
		break;
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	case e1000_82576:
		/*
		 * If VFs are going to be allocated with RSS queues then we
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
	case e1000_i210:
2436
	default:
2437 2438 2439 2440 2441 2442
		/*
		 * If rss_queues > half of max_rss_queues, pair the queues in
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2443 2444
		break;
	}
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
}

/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	igb_init_queue_configuration(adapter);
2499

2500 2501 2502 2503 2504
	/* Setup and initialize a copy of the hw vlan table array */
	adapter->shadow_vfta = kzalloc(sizeof(u32) *
				E1000_VLAN_FILTER_TBL_SIZE,
				GFP_ATOMIC);

2505
	/* This call may decrease the number of queues */
2506
	if (igb_init_interrupt_scheme(adapter, true)) {
2507 2508 2509 2510
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2511 2512
	igb_probe_vfs(adapter);

2513 2514 2515
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2516
	if (hw->mac.type >= e1000_i350)
2517 2518
		adapter->flags &= ~IGB_FLAG_DMAC;

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
Y
Yan, Zheng 已提交
2535
static int __igb_open(struct net_device *netdev, bool resuming)
2536 2537 2538
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2539
	struct pci_dev *pdev = adapter->pdev;
2540 2541 2542 2543
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2544 2545
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2546
		return -EBUSY;
Y
Yan, Zheng 已提交
2547 2548 2549 2550
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2551

2552 2553
	netif_carrier_off(netdev);

2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2564
	igb_power_up_link(adapter);
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

2587 2588 2589
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2590 2591
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2592 2593 2594

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2595 2596 2597

	igb_irq_enable(adapter);

2598 2599 2600 2601 2602 2603 2604
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2605 2606
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2607 2608 2609
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2610 2611 2612
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2613 2614 2615

	return 0;

2616 2617
err_set_queues:
	igb_free_irq(adapter);
2618 2619
err_req_irq:
	igb_release_hw_control(adapter);
2620
	igb_power_down_link(adapter);
2621 2622 2623 2624 2625
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2626 2627
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2628 2629 2630 2631

	return err;
}

Y
Yan, Zheng 已提交
2632 2633 2634 2635 2636
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
Y
Yan, Zheng 已提交
2648
static int __igb_close(struct net_device *netdev, bool suspending)
2649 2650
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2651
	struct pci_dev *pdev = adapter->pdev;
2652 2653 2654

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2655 2656 2657 2658
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2659 2660 2661 2662 2663
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2664 2665
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2666 2667 2668
	return 0;
}

Y
Yan, Zheng 已提交
2669 2670 2671 2672 2673
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2674 2675 2676 2677 2678 2679
/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2680
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2681
{
2682
	struct device *dev = tx_ring->dev;
2683 2684
	int size;

2685
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2686 2687

	tx_ring->tx_buffer_info = vzalloc(size);
2688
	if (!tx_ring->tx_buffer_info)
2689 2690 2691
		goto err;

	/* round up to nearest 4K */
2692
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2693 2694
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2695 2696
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
2697 2698 2699 2700 2701
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2702

2703 2704 2705
	return 0;

err:
2706
	vfree(tx_ring->tx_buffer_info);
2707 2708
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2721
	struct pci_dev *pdev = adapter->pdev;
2722 2723 2724
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2725
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2726
		if (err) {
2727
			dev_err(&pdev->dev,
2728 2729
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2730
				igb_free_tx_resources(adapter->tx_ring[i]);
2731 2732 2733 2734 2735 2736 2737 2738
			break;
		}
	}

	return err;
}

/**
2739 2740
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2741
 **/
2742
void igb_setup_tctl(struct igb_adapter *adapter)
2743 2744 2745 2746
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2747 2748
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2764 2765 2766 2767 2768 2769 2770
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2771 2772
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2773 2774
{
	struct e1000_hw *hw = &adapter->hw;
2775
	u32 txdctl = 0;
2776 2777 2778 2779
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2780
	wr32(E1000_TXDCTL(reg_idx), 0);
2781 2782 2783 2784 2785 2786 2787 2788 2789
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2790
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2791
	wr32(E1000_TDH(reg_idx), 0);
2792
	writel(0, ring->tail);
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2813
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2814 2815
}

2816 2817 2818 2819 2820 2821
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2822
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2823
{
2824
	struct device *dev = rx_ring->dev;
2825
	int size;
2826

2827
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2828 2829

	rx_ring->rx_buffer_info = vzalloc(size);
2830
	if (!rx_ring->rx_buffer_info)
2831 2832 2833
		goto err;

	/* Round up to nearest 4K */
2834
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
2835 2836
	rx_ring->size = ALIGN(rx_ring->size, 4096);

2837 2838
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
2839 2840 2841
	if (!rx_ring->desc)
		goto err;

2842
	rx_ring->next_to_alloc = 0;
2843 2844 2845 2846 2847 2848
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
2849 2850
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
2851
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2864
	struct pci_dev *pdev = adapter->pdev;
2865 2866 2867
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2868
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2869
		if (err) {
2870
			dev_err(&pdev->dev,
2871 2872
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2873
				igb_free_rx_resources(adapter->rx_ring[i]);
2874 2875 2876 2877 2878 2879 2880
			break;
		}
	}

	return err;
}

2881 2882 2883 2884 2885 2886 2887 2888
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
2889
	u32 j, num_rx_queues, shift = 0;
2890 2891 2892 2893
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
2894 2895

	/* Fill out hash function seeds */
2896 2897
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
2898

2899
	num_rx_queues = adapter->rss_queues;
2900

2901 2902 2903 2904 2905 2906 2907
	switch (hw->mac.type) {
	case e1000_82575:
		shift = 6;
		break;
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count) {
2908 2909 2910
			shift = 3;
			num_rx_queues = 2;
		}
2911 2912 2913
		break;
	default:
		break;
2914 2915
	}

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	/*
	 * Populate the indirection table 4 entries at a time.  To do this
	 * we are generating the results for n and n+2 and then interleaving
	 * those with the results with n+1 and n+3.
	 */
	for (j = 0; j < 32; j++) {
		/* first pass generates n and n+2 */
		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
		u32 reta = (base & 0x07800780) >> (7 - shift);

		/* second pass generates n+1 and n+3 */
		base += 0x00010001 * num_rx_queues;
		reta |= (base & 0x07800780) << (1 + shift);

		wr32(E1000_RETA(j), reta);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
2947

2948 2949 2950
	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
2951 2952 2953 2954 2955
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2956

2957 2958 2959 2960 2961
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2975
		if (adapter->rss_queues > 1)
2976
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2977
		else
2978
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
2979
	} else {
2980 2981
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
2982 2983 2984 2985 2986 2987
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

2988 2989 2990 2991
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2992
void igb_setup_rctl(struct igb_adapter *adapter)
2993 2994 2995 2996 2997 2998 2999
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3000
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3001

3002
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3003
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3004

3005 3006 3007 3008
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
3009
	 */
3010
	rctl |= E1000_RCTL_SECRC;
3011

3012
	/* disable store bad packets and clear size bits. */
3013
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3014

A
Alexander Duyck 已提交
3015 3016
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
3017

3018 3019
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
3020

3021 3022 3023 3024 3025 3026 3027 3028 3029
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
		 * in e1000e_set_rx_mode */
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3046 3047 3048
	wr32(E1000_RCTL, rctl);
}

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3069 3070 3071 3072 3073 3074 3075 3076
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3077
	u32 max_frame_size = adapter->max_frame_size;
3078 3079 3080 3081 3082
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3083 3084 3085 3086 3087 3088 3089
		/*
		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3090
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3091 3092 3093 3094 3095
	}

	wr32(E1000_RLPML, max_frame_size);
}

3096 3097
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3110 3111 3112 3113 3114
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3115 3116 3117 3118

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3119
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

3131 3132 3133 3134 3135 3136 3137
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
3138 3139
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3140 3141 3142 3143
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3144
	u32 srrctl = 0, rxdctl = 0;
3145 3146

	/* disable the queue */
3147
	wr32(E1000_RXDCTL(reg_idx), 0);
3148 3149 3150 3151 3152 3153 3154 3155 3156

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
3157
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3158
	wr32(E1000_RDH(reg_idx), 0);
3159
	writel(0, ring->tail);
3160

3161
	/* set descriptor configuration */
3162
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3163
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3164
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3165
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3166
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3167 3168 3169
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3170 3171 3172

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3173
	/* set filtering for VMDQ pools */
3174
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3175

3176 3177 3178
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3179 3180 3181

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3182 3183 3184
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3185 3186 3187 3188 3189 3190 3191 3192
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3193
	int i;
3194

3195 3196 3197
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3198 3199 3200 3201
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

3202 3203 3204
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
3205
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3206 3207 3208 3209 3210 3211 3212 3213
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3214
void igb_free_tx_resources(struct igb_ring *tx_ring)
3215
{
3216
	igb_clean_tx_ring(tx_ring);
3217

3218 3219
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3220

3221 3222 3223 3224
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3225 3226
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3242
		igb_free_tx_resources(adapter->tx_ring[i]);
3243 3244
}

3245 3246 3247 3248 3249
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3250
		if (dma_unmap_len(tx_buffer, len))
3251
			dma_unmap_single(ring->dev,
3252 3253
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3254
					 DMA_TO_DEVICE);
3255
	} else if (dma_unmap_len(tx_buffer, len)) {
3256
		dma_unmap_page(ring->dev,
3257 3258
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3259 3260 3261 3262
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3263
	dma_unmap_len_set(tx_buffer, len, 0);
3264
	/* buffer_info must be completely set up in the transmit path */
3265 3266 3267 3268 3269 3270
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3271
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3272
{
3273
	struct igb_tx_buffer *buffer_info;
3274
	unsigned long size;
3275
	u16 i;
3276

3277
	if (!tx_ring->tx_buffer_info)
3278 3279 3280 3281
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3282
		buffer_info = &tx_ring->tx_buffer_info[i];
3283
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3284 3285
	}

3286 3287
	netdev_tx_reset_queue(txring_txq(tx_ring));

3288 3289
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3307
		igb_clean_tx_ring(adapter->tx_ring[i]);
3308 3309 3310 3311 3312 3313 3314 3315
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3316
void igb_free_rx_resources(struct igb_ring *rx_ring)
3317
{
3318
	igb_clean_rx_ring(rx_ring);
3319

3320 3321
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3322

3323 3324 3325 3326
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3327 3328
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3344
		igb_free_rx_resources(adapter->rx_ring[i]);
3345 3346 3347 3348 3349 3350
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3351
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3352 3353
{
	unsigned long size;
3354
	u16 i;
3355

3356 3357 3358 3359
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3360
	if (!rx_ring->rx_buffer_info)
3361
		return;
3362

3363 3364
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3365
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3366

3367 3368 3369 3370 3371 3372 3373 3374 3375
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3376
		buffer_info->page = NULL;
3377 3378
	}

3379 3380
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3381 3382 3383 3384

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3385
	rx_ring->next_to_alloc = 0;
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3399
		igb_clean_rx_ring(adapter->rx_ring[i]);
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3412
	struct e1000_hw *hw = &adapter->hw;
3413 3414 3415 3416 3417 3418
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3419
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3420

3421 3422 3423
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3424

3425 3426 3427 3428
	return 0;
}

/**
3429
 * igb_write_mc_addr_list - write multicast addresses to MTA
3430 3431
 * @netdev: network interface device structure
 *
3432 3433 3434 3435
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3436
 **/
3437
static int igb_write_mc_addr_list(struct net_device *netdev)
3438 3439 3440
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3441
	struct netdev_hw_addr *ha;
3442
	u8  *mta_list;
3443 3444
	int i;

3445
	if (netdev_mc_empty(netdev)) {
3446 3447 3448 3449 3450
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3451

3452
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3453 3454
	if (!mta_list)
		return -ENOMEM;
3455

3456
	/* The shared function expects a packed array of only addresses. */
3457
	i = 0;
3458 3459
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3460 3461 3462 3463

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3464
	return netdev_mc_count(netdev);
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3485
	if (netdev_uc_count(netdev) > rar_entries)
3486
		return -ENOMEM;
3487

3488
	if (!netdev_uc_empty(netdev) && rar_entries) {
3489
		struct netdev_hw_addr *ha;
3490 3491

		netdev_for_each_uc_addr(ha, netdev) {
3492 3493
			if (!rar_entries)
				break;
3494 3495
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3496 3497
			                 vfn);
			count++;
3498 3499 3500 3501 3502 3503 3504 3505 3506
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3543
			 * then we should just turn on promiscuous mode so
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3557
		 * unicast promiscuous mode
3558 3559 3560 3561 3562 3563 3564
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3565
	}
3566
	wr32(E1000_RCTL, rctl);
3567

3568 3569 3570 3571 3572 3573
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
3574
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3575
		return;
3576

3577 3578 3579
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3580
	igb_restore_vf_multicasts(adapter);
3581 3582
}

G
Greg Rose 已提交
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3622 3623 3624 3625 3626
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3627
	igb_get_phy_info(&adapter->hw);
3628 3629
}

A
Alexander Duyck 已提交
3630 3631 3632 3633
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3634
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3666 3667 3668 3669 3670
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

3671
	/* check for thermal sensor event on i350 copper only */
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
			ret = !!(thstat & event);
		}
	}

	return ret;
}

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3699 3700
	                                           struct igb_adapter,
                                                   watchdog_task);
3701 3702
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3703
	u32 link;
3704
	int i;
3705

A
Alexander Duyck 已提交
3706
	link = igb_has_link(adapter);
3707
	if (link) {
Y
Yan, Zheng 已提交
3708 3709 3710
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3711 3712
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3713 3714 3715
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3716 3717

			ctrl = rd32(E1000_CTRL);
3718
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3719 3720
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3721 3722 3723
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3724 3725 3726 3727 3728
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3729

3730
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3731 3732 3733 3734 3735
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3736
			}
3737

3738
			/* adjust timeout factor according to speed/duplex */
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3751
			igb_ping_all_vfs(adapter);
3752
			igb_check_vf_rate_limit(adapter);
3753

3754
			/* link state has changed, schedule phy info update */
3755 3756 3757 3758 3759 3760 3761 3762
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3763 3764

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3765 3766 3767 3768
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
3769
			}
3770

3771 3772 3773
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3774
			netif_carrier_off(netdev);
3775

3776 3777
			igb_ping_all_vfs(adapter);

3778
			/* link state has changed, schedule phy info update */
3779 3780 3781
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
3782 3783 3784

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
3785 3786 3787
		}
	}

E
Eric Dumazet 已提交
3788 3789 3790
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3791

3792
	for (i = 0; i < adapter->num_tx_queues; i++) {
3793
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3794
		if (!netif_carrier_ok(netdev)) {
3795 3796 3797 3798
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3799 3800 3801 3802 3803 3804
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3805 3806
		}

3807
		/* Force detection of hung controller every watchdog period */
3808
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3809
	}
3810

3811
	/* Cause software interrupt to ensure rx ring is cleaned */
3812
	if (adapter->msix_entries) {
3813
		u32 eics = 0;
3814 3815
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
3816 3817 3818 3819
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3820

G
Greg Rose 已提交
3821 3822
	igb_spoof_check(adapter);

3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3836 3837 3838 3839 3840 3841
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
3842
 *      receive rings.  The divisors and thresholds used by this function
3843 3844 3845 3846 3847 3848 3849
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3850
 * @q_vector: pointer to q_vector
3851
 **/
3852
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3853
{
3854
	int new_val = q_vector->itr_val;
3855
	int avg_wire_size = 0;
3856
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
3857
	unsigned int packets;
3858

3859 3860 3861 3862
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3863
		new_val = IGB_4K_ITR;
3864
		goto set_itr_val;
3865
	}
3866

3867 3868 3869
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
3870

3871 3872 3873 3874
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
3875 3876 3877 3878

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3879

3880 3881 3882 3883 3884
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3885

3886 3887 3888 3889 3890
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3891

3892 3893 3894 3895 3896
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
3897

3898
set_itr_val:
3899 3900 3901
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3902
	}
3903
clear_counts:
3904 3905 3906 3907
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
3923 3924
 * @q_vector: pointer to q_vector
 * @ring_container: ring info to update the itr for
3925
 **/
3926 3927
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
3928
{
3929 3930 3931
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
3932

3933
	/* no packets, exit with status unchanged */
3934
	if (packets == 0)
3935
		return;
3936

3937
	switch (itrval) {
3938 3939 3940
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
3941
			itrval = bulk_latency;
3942
		else if ((packets < 5) && (bytes > 512))
3943
			itrval = low_latency;
3944 3945 3946 3947 3948
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
3949
				itrval = bulk_latency;
3950
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
3951
				itrval = bulk_latency;
3952
			} else if ((packets > 35)) {
3953
				itrval = lowest_latency;
3954 3955
			}
		} else if (bytes/packets > 2000) {
3956
			itrval = bulk_latency;
3957
		} else if (packets <= 2 && bytes < 512) {
3958
			itrval = lowest_latency;
3959 3960 3961 3962 3963
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
3964
				itrval = low_latency;
3965
		} else if (bytes < 1500) {
3966
			itrval = low_latency;
3967 3968 3969 3970
		}
		break;
	}

3971 3972 3973 3974 3975 3976
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
3977 3978
}

3979
static void igb_set_itr(struct igb_q_vector *q_vector)
3980
{
3981
	struct igb_adapter *adapter = q_vector->adapter;
3982
	u32 new_itr = q_vector->itr_val;
3983
	u8 current_itr = 0;
3984 3985 3986 3987

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
3988
		new_itr = IGB_4K_ITR;
3989 3990 3991
		goto set_itr_now;
	}

3992 3993
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
3994

3995
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3996

3997
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3998 3999 4000
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4001 4002
		current_itr = low_latency;

4003 4004 4005
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
4006
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4007 4008
		break;
	case low_latency:
4009
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4010 4011
		break;
	case bulk_latency:
4012
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4013 4014 4015 4016 4017 4018
		break;
	default:
		break;
	}

set_itr_now:
4019
	if (new_itr != q_vector->itr_val) {
4020 4021 4022
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
4023 4024 4025
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
4026
				 new_itr) :
4027 4028 4029 4030 4031 4032 4033
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4034 4035
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4036 4037 4038
	}
}

4039 4040
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4054
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4055 4056 4057 4058 4059 4060 4061 4062
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4063 4064 4065
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4066
{
4067
	struct sk_buff *skb = first->skb;
4068 4069 4070
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

4071 4072 4073
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

4074 4075
	if (!skb_is_gso(skb))
		return 0;
4076 4077

	if (skb_header_cloned(skb)) {
4078
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4079 4080 4081 4082
		if (err)
			return err;
	}

4083 4084
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4085

4086
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4087 4088 4089 4090 4091 4092 4093
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4094
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4095 4096 4097
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4098
	} else if (skb_is_gso_v6(skb)) {
4099 4100 4101 4102
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4103 4104
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4105 4106
	}

4107
	/* compute header lengths */
4108 4109
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4110

4111 4112 4113 4114
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4115
	/* MSS L4LEN IDX */
4116 4117
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4118

4119 4120 4121
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4122
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4123

4124
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4125

4126
	return 1;
4127 4128
}

4129
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4130
{
4131
	struct sk_buff *skb = first->skb;
4132 4133 4134
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4135

4136
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4137 4138
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4139 4140
	} else {
		u8 l4_hdr = 0;
4141
		switch (first->protocol) {
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but proto=%x!\n",
4155
				 first->protocol);
4156
			}
4157 4158
			break;
		}
4159

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but l4 proto=%x!\n",
				 l4_hdr);
4180
			}
4181
			break;
4182
		}
4183 4184 4185

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4186
	}
4187

4188
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4189
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4190

4191
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4192 4193
}

4194 4195 4196 4197 4198 4199
#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4200 4201
{
	/* set type for advanced descriptor with frame checksum insertion */
4202 4203 4204
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;
4205 4206

	/* set HW vlan bit if vlan is present */
4207 4208 4209 4210 4211 4212
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));
4213 4214

	/* set timestamp bit if present */
4215 4216
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));
4217

4218 4219
	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4220 4221 4222 4223

	return cmd_type;
}

4224 4225 4226
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4227 4228 4229
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

4230 4231
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4232 4233 4234
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
4235 4236 4237
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));
4238

4239 4240 4241 4242
	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));
4243

4244
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4245 4246
}

4247 4248 4249 4250 4251
/*
 * The largest size we can write to the descriptor is 65535.  In order to
 * maintain a power of two alignment we have to limit ourselves to 32K.
 */
#define IGB_MAX_TXD_PWR	15
4252
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4253

4254 4255
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4256
		       const u8 hdr_len)
4257
{
4258
	struct sk_buff *skb = first->skb;
4259
	struct igb_tx_buffer *tx_buffer;
4260
	union e1000_adv_tx_desc *tx_desc;
4261
	struct skb_frag_struct *frag;
4262
	dma_addr_t dma;
4263
	unsigned int data_len, size;
4264
	u32 tx_flags = first->tx_flags;
4265
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4266 4267 4268 4269
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4270 4271 4272 4273
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;
4274 4275

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4276

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4288 4289 4290

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
4291
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4292 4293 4294 4295 4296 4297 4298

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
4299
			tx_desc->read.olinfo_status = 0;
4300 4301 4302 4303 4304 4305 4306 4307 4308

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4309

4310
		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4311

4312
		i++;
4313 4314 4315
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4316
			i = 0;
4317
		}
4318
		tx_desc->read.olinfo_status = 0;
4319

E
Eric Dumazet 已提交
4320
		size = skb_frag_size(frag);
4321 4322 4323
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4324
				       size, DMA_TO_DEVICE);
4325

4326
		tx_buffer = &tx_ring->tx_buffer_info[i];
4327 4328
	}

4329
	/* write last descriptor with RS and EOP bits */
4330 4331
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4332

4333 4334
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4335 4336 4337
	/* set the timestamp */
	first->time_stamp = jiffies;

4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
	/*
	 * Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4348
	/* set next_to_watch value indicating a packet is present */
4349
	first->next_to_watch = tx_desc;
4350

4351 4352 4353
	i++;
	if (i == tx_ring->count)
		i = 0;
4354

4355
	tx_ring->next_to_use = i;
4356

4357
	writel(i, tx_ring->tail);
4358

4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4370 4371 4372
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4373
			break;
4374 4375
		if (i == 0)
			i = tx_ring->count;
4376 4377 4378
		i--;
	}

4379 4380 4381
	tx_ring->next_to_use = i;
}

4382
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4383
{
4384 4385
	struct net_device *netdev = tx_ring->netdev;

4386 4387
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4388 4389 4390 4391 4392 4393 4394
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4395
	if (igb_desc_unused(tx_ring) < size)
4396 4397 4398
		return -EBUSY;

	/* A reprieve! */
4399
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4400 4401 4402 4403 4404

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4405 4406 4407
	return 0;
}

4408
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4409
{
4410
	if (igb_desc_unused(tx_ring) >= size)
4411
		return 0;
4412
	return __igb_maybe_stop_tx(tx_ring, size);
4413 4414
}

4415 4416
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4417
{
4418
	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4419
	struct igb_tx_buffer *first;
4420
	int tso;
N
Nick Nunley 已提交
4421
	u32 tx_flags = 0;
4422
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4423
	u8 hdr_len = 0;
4424 4425 4426 4427 4428 4429

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4430
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4431 4432 4433
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4434

4435 4436 4437 4438 4439 4440
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4441 4442
	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
		     !(adapter->ptp_tx_skb))) {
4443
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4444
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4445 4446 4447 4448

		adapter->ptp_tx_skb = skb_get(skb);
		if (adapter->hw.mac.type == e1000_82576)
			schedule_work(&adapter->ptp_tx_work);
4449
	}
4450

4451
	if (vlan_tx_tag_present(skb)) {
4452 4453 4454 4455
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4456 4457 4458
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4459

4460 4461
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4462
		goto out_drop;
4463 4464
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4465

4466
	igb_tx_map(tx_ring, first, hdr_len);
4467 4468

	/* Make sure there is space in the ring for the next send. */
4469
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4470

4471
	return NETDEV_TX_OK;
4472 4473

out_drop:
4474 4475
	igb_unmap_and_free_tx_resource(tx_ring, first);

4476
	return NETDEV_TX_OK;
4477 4478
}

4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4490 4491
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4492 4493
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4505 4506 4507 4508
	/*
	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
4509 4510
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
4511 4512
			return NETDEV_TX_OK;
		skb->len = 17;
4513
		skb_set_tail_pointer(skb, 17);
4514
	}
4515

4516
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4530

4531
	if (hw->mac.type >= e1000_82580)
4532 4533
		hw->dev_spec._82575.global_device_reset = true;

4534
	schedule_work(&adapter->reset_task);
4535 4536
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4537 4538 4539 4540 4541 4542 4543
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4544 4545
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4546 4547 4548 4549
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4550
 * igb_get_stats64 - Get System Network Statistics
4551
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4552
 * @stats: rtnl_link_stats64 pointer
4553 4554
 *
 **/
E
Eric Dumazet 已提交
4555 4556
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4557
{
E
Eric Dumazet 已提交
4558 4559 4560 4561 4562 4563 4564 4565
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4578
	struct pci_dev *pdev = adapter->pdev;
4579
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4580

4581
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4582
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4583 4584 4585
		return -EINVAL;
	}

4586
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4587
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4588
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4589 4590 4591 4592 4593
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4594

4595 4596
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4597

4598 4599
	if (netif_running(netdev))
		igb_down(adapter);
4600

4601
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4620 4621
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4622 4623 4624
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4625
	u32 reg, mpc;
4626
	u16 phy_tmp;
4627 4628
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4629 4630
	unsigned int start;
	u64 _bytes, _packets;
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4643 4644 4645
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
4646
		u32 rqdpc = rd32(E1000_RQDPC(i));
4647
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4648

4649 4650 4651 4652
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
4653 4654 4655 4656 4657 4658 4659 4660

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4661 4662
	}

4663 4664
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4665 4666 4667 4668

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4669
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4670 4671 4672 4673 4674 4675 4676
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4677
	}
4678 4679
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4680 4681

	/* read stats registers */
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4699 4700 4701
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4716
	adapter->stats.rnbc += rd32(E1000_RNBC);
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4734 4735
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4736 4737

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4738 4739 4740 4741
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4742 4743 4744 4745 4746

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
4747 4748
	}

4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4763 4764
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4765 4766 4767 4768

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4769
	 * our own version based on RUC and ROC */
4770
	net_stats->rx_errors = adapter->stats.rxerrc +
4771 4772 4773
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4774 4775 4776 4777 4778
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4779 4780

	/* Tx Errors */
4781 4782 4783 4784 4785
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4786 4787 4788 4789 4790 4791

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4792
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4793 4794 4795 4796 4797 4798 4799 4800 4801
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4802 4803 4804 4805 4806 4807 4808 4809 4810

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
4811 4812 4813 4814
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4815
	struct igb_adapter *adapter = data;
4816
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4817 4818
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4819

4820 4821 4822
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4823
	if (icr & E1000_ICR_DOUTSYNC) {
4824 4825
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
4826 4827 4828 4829
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
4830
	}
4831

4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

P
PJ Waskiewicz 已提交
4854
	wr32(E1000_EIMS, adapter->eims_other);
4855 4856 4857 4858

	return IRQ_HANDLED;
}

4859
static void igb_write_itr(struct igb_q_vector *q_vector)
4860
{
4861
	struct igb_adapter *adapter = q_vector->adapter;
4862
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4863

4864 4865
	if (!q_vector->set_itr)
		return;
4866

4867 4868
	if (!itr_val)
		itr_val = 0x4;
4869

4870 4871
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4872
	else
4873
		itr_val |= E1000_EITR_CNT_IGNR;
4874

4875 4876
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4877 4878
}

4879
static irqreturn_t igb_msix_ring(int irq, void *data)
4880
{
4881
	struct igb_q_vector *q_vector = data;
4882

4883 4884
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4885

4886
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4887

4888
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4889 4890
}

4891
#ifdef CONFIG_IGB_DCA
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

	/*
	 * We can enable relaxed ordering for reads, but not writes when
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

	/*
	 * We can enable relaxed ordering for reads, but not writes when
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

4935
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4936
{
4937
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4938 4939
	int cpu = get_cpu();

4940 4941 4942
	if (q_vector->cpu == cpu)
		goto out_no_update;

4943 4944 4945 4946 4947 4948
	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

4949 4950
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4951 4952 4953 4954 4955
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4956
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4957 4958
	int i;

4959
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4960 4961
		return;

4962 4963 4964
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4965
	for (i = 0; i < adapter->num_q_vectors; i++) {
4966 4967
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4968 4969 4970 4971 4972 4973 4974
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4975
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4976 4977 4978 4979 4980 4981
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4982
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4983 4984
			break;
		if (dca_add_requester(dev) == 0) {
4985
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4986
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4987 4988 4989 4990 4991
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4992
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4993
			/* without this a class_device is left
4994
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4995
			dca_remove_requester(dev);
4996
			dev_info(&pdev->dev, "DCA disabled\n");
4997
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4998
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4999 5000 5001
		}
		break;
	}
5002

J
Jeb Cramer 已提交
5003
	return 0;
5004 5005
}

J
Jeb Cramer 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
5016
#endif /* CONFIG_IGB_DCA */
5017

5018 5019 5020 5021 5022
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

J
Joe Perches 已提交
5023
	eth_random_addr(mac_addr);
5024 5025
	igb_set_vf_mac(adapter, vf, mac_addr);

5026
	return 0;
5027 5028
}

5029
static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5030 5031
{
	struct pci_dev *pdev = adapter->pdev;
5032 5033
	struct pci_dev *vfdev;
	int dev_id;
5034 5035 5036

	switch (adapter->hw.mac.type) {
	case e1000_82576:
5037
		dev_id = IGB_82576_VF_DEV_ID;
5038 5039
		break;
	case e1000_i350:
5040
		dev_id = IGB_I350_VF_DEV_ID;
5041 5042
		break;
	default:
5043
		return false;
5044 5045
	}

5046 5047 5048 5049 5050 5051 5052
	/* loop through all the VFs to see if we own any that are assigned */
	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
	while (vfdev) {
		/* if we don't own it we don't care */
		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
			/* if it is assigned we cannot release it */
			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5053 5054
				return true;
		}
5055 5056

		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5057
	}
5058

5059 5060 5061 5062
	return false;
}

#endif
5063 5064 5065 5066 5067 5068 5069 5070
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5071
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5072 5073 5074 5075 5076
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5077 5078 5079 5080 5081 5082
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5083
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5084 5085 5086 5087 5088
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5089
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

5117 5118 5119 5120 5121 5122 5123 5124
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5125
	/* salt away the number of multicast addresses assigned
5126 5127 5128 5129 5130
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5131 5132 5133 5134 5135
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5136
	for (i = 0; i < n; i++)
5137
		vf_data->vf_mc_hashes[i] = hash_list[i];
5138 5139

	/* Flush and reset the mta with the new values */
5140
	igb_set_rx_mode(adapter->netdev);
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5152 5153 5154
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5155
		vf_data = &adapter->vf_data[i];
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5194 5195

	adapter->vf_data[vf].vlans_enabled = 0;
5196 5197 5198 5199 5200 5201 5202
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5203 5204 5205 5206 5207
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5237 5238
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5239 5240
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5241 5242
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5243
			wr32(E1000_VLVF(i), reg);
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5259
			adapter->vf_data[vf].vlans_enabled++;
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5286 5287
		}
	}
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5347
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5348
{
G
Greg Rose 已提交
5349 5350
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5351
	adapter->vf_data[vf].last_nack = jiffies;
5352 5353

	/* reset offloads to defaults */
5354
	igb_set_vmolr(adapter, vf, true);
5355 5356 5357

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5358 5359 5360 5361 5362 5363
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5364 5365 5366 5367 5368

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5369
	igb_set_rx_mode(adapter->netdev);
5370 5371
}

5372 5373 5374 5375 5376
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
5377
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
J
Joe Perches 已提交
5378
		eth_random_addr(vf_mac);
5379 5380 5381 5382 5383 5384

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5385 5386 5387
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5388
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5389 5390 5391 5392
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5393
	igb_vf_reset(adapter, vf);
5394 5395

	/* set vf mac address */
5396
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5397 5398 5399 5400 5401 5402 5403

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5404
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5405 5406 5407 5408 5409 5410 5411 5412 5413

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5414 5415 5416 5417
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5418 5419
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5420

5421 5422
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5423

5424
	return err;
5425 5426 5427 5428 5429
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5430
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5431 5432 5433
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5434 5435
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5436
		igb_write_mbx(hw, &msg, 1, vf);
5437
		vf_data->last_nack = jiffies;
5438 5439 5440
	}
}

5441
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5442
{
5443 5444
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5445
	struct e1000_hw *hw = &adapter->hw;
5446
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5447 5448
	s32 retval;

5449
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5450

5451 5452
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5453
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5454 5455 5456 5457 5458
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5459 5460 5461

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5462
		return;
5463 5464 5465 5466 5467 5468 5469 5470

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5471
		return;
5472 5473
	}

5474
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5475 5476 5477 5478
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5479 5480 5481 5482
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5483 5484 5485 5486 5487 5488 5489 5490
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5491
		break;
5492 5493 5494
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5495 5496 5497 5498 5499 5500 5501
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5502 5503 5504 5505 5506 5507
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5508 5509
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5510 5511
		break;
	default:
5512
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5513 5514 5515 5516
		retval = -1;
		break;
	}

5517 5518
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5519 5520 5521 5522 5523 5524 5525
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5526
}
5527

5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5546 5547
}

5548 5549 5550 5551 5552 5553 5554
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5555 5556
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5575 5576 5577 5578 5579 5580 5581
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5582 5583
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5584 5585 5586 5587
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5588
	igb_write_itr(q_vector);
5589

5590 5591 5592
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5593
	if (icr & E1000_ICR_DOUTSYNC) {
5594 5595 5596 5597
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5598 5599 5600 5601 5602 5603
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5615
	napi_schedule(&q_vector->napi);
5616 5617 5618 5619 5620

	return IRQ_HANDLED;
}

/**
5621
 * igb_intr - Legacy Interrupt Handler
5622 5623 5624 5625 5626
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5627 5628
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5639 5640
	igb_write_itr(q_vector);

5641 5642 5643
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5644
	if (icr & E1000_ICR_DOUTSYNC) {
5645 5646 5647 5648
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5649 5650 5651 5652 5653 5654 5655
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5667
	napi_schedule(&q_vector->napi);
5668 5669 5670 5671

	return IRQ_HANDLED;
}

5672
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5673
{
5674
	struct igb_adapter *adapter = q_vector->adapter;
5675
	struct e1000_hw *hw = &adapter->hw;
5676

5677 5678 5679 5680
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5681
		else
5682
			igb_update_ring_itr(q_vector);
5683 5684
	}

5685 5686
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5687
			wr32(E1000_EIMS, q_vector->eims_value);
5688 5689 5690
		else
			igb_irq_enable(adapter);
	}
5691 5692
}

5693 5694 5695 5696 5697 5698
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5699
{
5700 5701 5702
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
5703
	bool clean_complete = true;
5704

5705
#ifdef CONFIG_IGB_DCA
5706 5707
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5708
#endif
5709
	if (q_vector->tx.ring)
5710
		clean_complete = igb_clean_tx_irq(q_vector);
5711

5712
	if (q_vector->rx.ring)
5713
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5714

5715 5716 5717
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5718

5719
	/* If not enough Rx work done, exit the polling mode */
5720 5721
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5722

5723
	return 0;
5724
}
A
Al Viro 已提交
5725

5726 5727
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5728
 * @q_vector: pointer to q_vector containing needed info
5729
 *
5730 5731
 * returns true if ring is completely cleaned
 **/
5732
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5733
{
5734
	struct igb_adapter *adapter = q_vector->adapter;
5735
	struct igb_ring *tx_ring = q_vector->tx.ring;
5736
	struct igb_tx_buffer *tx_buffer;
5737
	union e1000_adv_tx_desc *tx_desc;
5738
	unsigned int total_bytes = 0, total_packets = 0;
5739
	unsigned int budget = q_vector->tx.work_limit;
5740
	unsigned int i = tx_ring->next_to_clean;
5741

5742 5743
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5744

5745
	tx_buffer = &tx_ring->tx_buffer_info[i];
5746
	tx_desc = IGB_TX_DESC(tx_ring, i);
5747
	i -= tx_ring->count;
5748

5749 5750
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5751 5752 5753 5754

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5755

5756 5757 5758
		/* prevent any other reads prior to eop_desc */
		rmb();

5759 5760 5761 5762
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5763 5764
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5765

5766 5767 5768
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5769

5770 5771
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
5772

5773 5774
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
5775 5776
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
5777 5778
				 DMA_TO_DEVICE);

5779 5780 5781 5782
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

5783 5784
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
5785 5786
			tx_buffer++;
			tx_desc++;
5787
			i++;
5788 5789
			if (unlikely(!i)) {
				i -= tx_ring->count;
5790
				tx_buffer = tx_ring->tx_buffer_info;
5791 5792
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5793 5794

			/* unmap any remaining paged data */
5795
			if (dma_unmap_len(tx_buffer, len)) {
5796
				dma_unmap_page(tx_ring->dev,
5797 5798
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
5799
					       DMA_TO_DEVICE);
5800
				dma_unmap_len_set(tx_buffer, len, 0);
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
5813 5814 5815 5816 5817 5818 5819

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
5820

5821 5822
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
5823
	i += tx_ring->count;
5824
	tx_ring->next_to_clean = i;
5825 5826 5827 5828
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
5829 5830
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
5831

5832
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5833
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
5834

5835 5836
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
5837
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5838
		if (tx_buffer->next_to_watch &&
5839
		    time_after(jiffies, tx_buffer->time_stamp +
5840 5841
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5842 5843

			/* detected Tx unit hang */
5844
			dev_err(tx_ring->dev,
5845
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5846
				"  Tx Queue             <%d>\n"
5847 5848 5849 5850 5851 5852
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
5853
				"  next_to_watch        <%p>\n"
5854 5855
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5856
				tx_ring->queue_index,
5857
				rd32(E1000_TDH(tx_ring->reg_idx)),
5858
				readl(tx_ring->tail),
5859 5860
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5861
				tx_buffer->time_stamp,
5862
				tx_buffer->next_to_watch,
5863
				jiffies,
5864
				tx_buffer->next_to_watch->wb.status);
5865 5866 5867 5868 5869
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
5870 5871
		}
	}
5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892

	if (unlikely(total_packets &&
		     netif_carrier_ok(tx_ring->netdev) &&
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
5893 5894
}

5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
/**
 * igb_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
5920
					 IGB_RX_BUFSZ,
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
					 DMA_FROM_DEVICE);
}

/**
 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @rx_desc: descriptor containing length of buffer written by hardware
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
5968
			rx_buffer->page_offset, size, IGB_RX_BUFSZ);
5969 5970 5971 5972 5973

	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

5974
#if (PAGE_SIZE < 8192)
5975 5976 5977 5978 5979
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
5980
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
5981 5982 5983 5984 5985 5986 5987

	/*
	 * since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += SKB_DATA_ALIGN(size);

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif
5998 5999 6000 6001

	return true;
}

6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	/*
	 * This memory barrier is needed to keep us from reading
	 * any other fields out of the rx_desc until we know the
	 * RXD_STAT_DD bit is set
	 */
	rmb();

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

		/*
		 * we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6051
				      IGB_RX_BUFSZ,
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6070
static inline void igb_rx_checksum(struct igb_ring *ring,
6071 6072
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6073
{
6074
	skb_checksum_none_assert(skb);
6075

6076
	/* Ignore Checksum bit is set */
6077
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6078 6079 6080 6081
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6082
		return;
6083

6084
	/* TCP/UDP checksum error bit is set */
6085 6086 6087
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6088 6089 6090 6091 6092
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6093 6094
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6095
			u64_stats_update_begin(&ring->rx_syncp);
6096
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6097 6098
			u64_stats_update_end(&ring->rx_syncp);
		}
6099 6100 6101 6102
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6103 6104
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6105 6106
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6107 6108
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6109 6110
}

6111 6112 6113 6114 6115 6116 6117 6118
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
/**
 * igb_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
/**
 * igb_get_headlen - determine size of header for LRO/GRO
 * @data: pointer to the start of the headers
 * @max_len: total length of section to find headers in
 *
 * This function is meant to determine the length of headers that will
 * be recognized by hardware for LRO, and GRO offloads.  The main
 * motivation of doing this is to only perform one pull for IPv4 TCP
 * packets so that we can do basic things like calculating the gso_size
 * based on the average data per packet.
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

6206 6207 6208
		/* record next protocol if header is present */
		if (!hdr.ipv4->frag_off)
			nexthdr = hdr.ipv4->protocol;
6209 6210 6211 6212 6213 6214
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
6215
		hlen = sizeof(struct ipv6hdr);
6216 6217 6218 6219
	} else {
		return hdr.network - data;
	}

6220 6221 6222
	/* relocate pointer to start of L4 header */
	hdr.network += hlen;

6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

	/*
	 * If everything has gone correctly hdr.network should be the
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
 * igb_pull_tail - igb specific version of skb_pull_tail
 * @rx_ring: rx descriptor ring packet is being transacted on
6258
 * @rx_desc: pointer to the EOP Rx descriptor
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
 * @skb: pointer to current skb being adjusted
 *
 * This function is an igb specific version of __pskb_pull_tail.  The
 * main difference between this version and the original function is that
 * this function can make several assumptions about the state of things
 * that allow for significant optimizations versus the standard function.
 * As a result we can do things like drop a frag and maintain an accurate
 * truesize for the skb.
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6271
{
6272 6273 6274 6275 6276 6277 6278 6279
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

	/*
	 * it is valid to use page_address instead of kmap since we are
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6280
	 */
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
	va = skb_frag_address(frag);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

	/*
	 * we need the header to contain the greater of either ETH_HLEN or
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
 * igb_cleanup_headers - Correct corrupted or empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being fixed
 *
 * Address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{

	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6355 6356
}

6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
/**
 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 * other fields within the skb.
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);

	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, vid);
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6396
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6397
{
6398
	struct igb_ring *rx_ring = q_vector->rx.ring;
6399
	struct sk_buff *skb = rx_ring->skb;
6400
	unsigned int total_bytes = 0, total_packets = 0;
6401
	u16 cleaned_count = igb_desc_unused(rx_ring);
6402

6403 6404
	do {
		union e1000_adv_rx_desc *rx_desc;
6405

6406 6407 6408 6409 6410
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6411

6412
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6413

6414 6415
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6416

6417 6418
		/* retrieve a buffer from the ring */
		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6419

6420 6421 6422
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6423

6424
		cleaned_count++;
6425

6426 6427 6428
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6429 6430 6431 6432 6433

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6434 6435
		}

6436
		/* probably a little skewed due to removing CRC */
6437 6438
		total_bytes += skb->len;

6439 6440
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6441

J
Jiri Pirko 已提交
6442
		napi_gro_receive(&q_vector->napi, skb);
6443

6444 6445 6446
		/* reset skb pointer */
		skb = NULL;

6447 6448 6449
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
6450

6451 6452 6453
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
6454
	u64_stats_update_begin(&rx_ring->rx_syncp);
6455 6456
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6457
	u64_stats_update_end(&rx_ring->rx_syncp);
6458 6459
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6460 6461

	if (cleaned_count)
6462
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6463

6464
	return (total_packets < budget);
6465 6466
}

6467
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6468
				  struct igb_rx_buffer *bi)
6469 6470
{
	struct page *page = bi->page;
6471
	dma_addr_t dma;
6472

6473 6474
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
6475 6476
		return true;

6477 6478 6479 6480 6481
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
6482 6483
	}

6484 6485
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6486

6487 6488 6489 6490
	/*
	 * if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
	 */
6491
	if (dma_mapping_error(rx_ring->dev, dma)) {
6492 6493
		__free_page(page);

6494 6495 6496 6497
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

6498
	bi->dma = dma;
6499 6500
	bi->page = page;
	bi->page_offset = 0;
6501

6502 6503 6504
	return true;
}

6505
/**
6506
 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6507 6508
 * @adapter: address of board private structure
 **/
6509
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6510 6511
{
	union e1000_adv_rx_desc *rx_desc;
6512
	struct igb_rx_buffer *bi;
6513
	u16 i = rx_ring->next_to_use;
6514

6515 6516 6517 6518
	/* nothing to do */
	if (!cleaned_count)
		return;

6519
	rx_desc = IGB_RX_DESC(rx_ring, i);
6520
	bi = &rx_ring->rx_buffer_info[i];
6521
	i -= rx_ring->count;
6522

6523
	do {
6524
		if (!igb_alloc_mapped_page(rx_ring, bi))
6525
			break;
6526

6527 6528 6529 6530 6531
		/*
		 * Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6532

6533 6534
		rx_desc++;
		bi++;
6535
		i++;
6536
		if (unlikely(!i)) {
6537
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6538
			bi = rx_ring->rx_buffer_info;
6539 6540 6541 6542 6543
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6544 6545 6546

		cleaned_count--;
	} while (cleaned_count);
6547

6548 6549
	i += rx_ring->count;

6550
	if (rx_ring->next_to_use != i) {
6551
		/* record the next descriptor to use */
6552 6553
		rx_ring->next_to_use = i;

6554 6555 6556 6557 6558
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

		/*
		 * Force memory writes to complete before letting h/w
6559 6560
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
6561 6562
		 * such as IA-64).
		 */
6563
		wmb();
6564
		writel(i, rx_ring->tail);
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6587 6588
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6611
	case SIOCSHWTSTAMP:
6612
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6613 6614 6615 6616 6617
	default:
		return -EOPNOTSUPP;
	}
}

6618 6619 6620 6621
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6622
	if (pcie_capability_read_word(adapter->pdev, reg, value))
6623 6624 6625 6626 6627 6628 6629 6630 6631
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6632
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6633 6634 6635 6636 6637
		return -E1000_ERR_CONFIG;

	return 0;
}

6638
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6639 6640 6641 6642
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6643
	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6644

6645
	if (enable) {
6646 6647 6648 6649 6650
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6651
		/* Disable CFI check */
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6662
	igb_rlpml_set(adapter);
6663 6664
}

6665
static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6666 6667 6668
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6669
	int pf_id = adapter->vfs_allocated_count;
6670

6671 6672
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6673

6674 6675
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6676 6677

	set_bit(vid, adapter->active_vlans);
6678 6679

	return 0;
6680 6681
}

6682
static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6683 6684 6685
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6686
	int pf_id = adapter->vfs_allocated_count;
6687
	s32 err;
6688

6689 6690
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6691

6692 6693
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6694
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6695 6696

	clear_bit(vid, adapter->active_vlans);
6697 6698

	return 0;
6699 6700 6701 6702
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6703
	u16 vid;
6704

6705 6706
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6707 6708
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
6709 6710
}

6711
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6712
{
6713
	struct pci_dev *pdev = adapter->pdev;
6714 6715 6716 6717
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6718 6719 6720 6721 6722
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6723 6724
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6725 6726 6727
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL)
		goto err_inval;
6728

6729
	switch (spd + dplx) {
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6748
		goto err_inval;
6749
	}
6750 6751 6752 6753

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

6754
	return 0;
6755 6756 6757 6758

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
6759 6760
}

Y
Yan, Zheng 已提交
6761 6762
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
6763 6764 6765 6766
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6767
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
6768
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6769 6770 6771 6772 6773 6774
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6775
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
6776
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
6777

6778
	igb_clear_interrupt_scheme(adapter);
6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6792
		igb_set_rx_mode(netdev);
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6810
		igb_disable_pcie_master(hw);
6811 6812 6813 6814 6815 6816 6817 6818

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6819 6820
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6821 6822 6823
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
6835
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
6836
static int igb_suspend(struct device *dev)
6837 6838 6839
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
6840
	struct pci_dev *pdev = to_pci_dev(dev);
6841

Y
Yan, Zheng 已提交
6842
	retval = __igb_shutdown(pdev, &wake, 0);
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
6855
#endif /* CONFIG_PM_SLEEP */
6856

Y
Yan, Zheng 已提交
6857
static int igb_resume(struct device *dev)
6858
{
Y
Yan, Zheng 已提交
6859
	struct pci_dev *pdev = to_pci_dev(dev);
6860 6861 6862 6863 6864 6865 6866
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
6867
	pci_save_state(pdev);
T
Taku Izumi 已提交
6868

6869
	err = pci_enable_device_mem(pdev);
6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

6880
	if (igb_init_interrupt_scheme(adapter, true)) {
A
Alexander Duyck 已提交
6881 6882
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
6883 6884 6885
	}

	igb_reset(adapter);
6886 6887 6888 6889 6890

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

6891 6892
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
6893
	if (netdev->flags & IFF_UP) {
6894
		rtnl_lock();
Y
Yan, Zheng 已提交
6895
		err = __igb_open(netdev, true);
6896
		rtnl_unlock();
A
Alexander Duyck 已提交
6897 6898 6899
		if (err)
			return err;
	}
6900 6901

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6934 6935 6936

	return 0;
}
Y
Yan, Zheng 已提交
6937 6938 6939 6940 6941 6942

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
6943 6944 6945 6946
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
6947 6948
	bool wake;

Y
Yan, Zheng 已提交
6949
	__igb_shutdown(pdev, &wake, 0);
6950 6951 6952 6953 6954

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6955 6956
}

6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

7023 7024 7025 7026 7027 7028 7029 7030 7031
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
7032
	struct e1000_hw *hw = &adapter->hw;
7033
	struct igb_q_vector *q_vector;
7034 7035
	int i;

7036
	for (i = 0; i < adapter->num_q_vectors; i++) {
7037 7038 7039 7040 7041
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
7042
		napi_schedule(&q_vector->napi);
7043
	}
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

7063 7064 7065
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7086
	pci_ers_result_t result;
T
Taku Izumi 已提交
7087
	int err;
7088

7089
	if (pci_enable_device_mem(pdev)) {
7090 7091
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
7092 7093 7094 7095
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
7096
		pci_save_state(pdev);
7097

7098 7099
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
7100

7101 7102 7103 7104
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
7105

7106 7107 7108 7109 7110 7111
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
7112 7113

	return result;
7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7170 7171 7172 7173
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
7174 7175 7176
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7177

7178
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7179

7180
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7181 7182 7183 7184

	return 0;
}

7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
L
Lior Levy 已提交
7236 7237 7238 7239 7240
	/*
	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

7273 7274
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7293 7294 7295 7296 7297 7298 7299 7300 7301 7302
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7303
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7304 7305 7306 7307 7308
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

7309 7310 7311
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7312
	u32 reg;
7313

7314 7315
	switch (hw->mac.type) {
	case e1000_82575:
7316 7317
	case e1000_i210:
	case e1000_i211:
7318 7319
	default:
		/* replication is not supported for 82575 */
7320
		return;
7321 7322 7323 7324 7325 7326 7327 7328 7329 7330
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7331 7332
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7333 7334
		break;
	}
7335

7336 7337 7338
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7339 7340
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
7341 7342 7343 7344
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7345 7346
}

7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

			/*
7361 7362 7363
			 * DMA Coalescing high water mark needs to be greater
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7364
			 */
7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

			/*
			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7381 7382 7383 7384 7385 7386 7387 7388 7389 7390
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7391 7392 7393

			/* Disable BMC-to-OS Watchdog Enable */
			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427
			wr32(E1000_DMACR, reg);

			/*
			 * no lower threshold to disable
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

			/*
			 * free space in tx packet buffer to wake from
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

			/*
			 * make low power state decision controlled
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

7428
/* igb_main.c */