igb_main.c 208.4 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2013 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
C
Carolyn Wyborny 已提交
60
#include <linux/i2c.h>
61 62
#include "igb.h"

C
Carolyn Wyborny 已提交
63 64 65
#define MAJ 5
#define MIN 0
#define BUILD 3
C
Carolyn Wyborny 已提交
66
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67
__stringify(BUILD) "-k"
68 69 70 71
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
72 73
static const char igb_copyright[] =
				"Copyright (c) 2007-2013 Intel Corporation.";
74 75 76 77 78

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

79
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 81 82
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 84 85 86 87
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
90 91 92 93
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
94 95
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
97 98 99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
100 101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
102 103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
105
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
106
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
107 108
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
109
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
110
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
111
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
112 113 114 115 116 117 118 119 120 121 122 123 124 125
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
126
static void igb_setup_mrqc(struct igb_adapter *);
127
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
128
static void igb_remove(struct pci_dev *pdev);
129 130 131
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
132
static void igb_configure(struct igb_adapter *);
133 134 135 136
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
137 138
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
139
static void igb_set_rx_mode(struct net_device *);
140 141 142
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
143
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
144 145
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
146 147
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
148
static void igb_set_uta(struct igb_adapter *adapter);
149 150 151
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
152
static irqreturn_t igb_msix_ring(int irq, void *);
153
#ifdef CONFIG_IGB_DCA
154
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
155
static void igb_setup_dca(struct igb_adapter *);
156
#endif /* CONFIG_IGB_DCA */
157
static int igb_poll(struct napi_struct *, int);
158
static bool igb_clean_tx_irq(struct igb_q_vector *);
159
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
160 161 162
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
163
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
164 165
static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
166
static void igb_restore_vlan(struct igb_adapter *);
167
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
168 169 170
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
171
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
172
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
173 174 175 176
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
L
Lior Levy 已提交
177 178
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting);
179 180
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
181
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
182 183

#ifdef CONFIG_PCI_IOV
184
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
R
RongQing Li 已提交
185
#endif
186 187

#ifdef CONFIG_PM
188
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
189
static int igb_suspend(struct device *);
190
#endif
Y
Yan, Zheng 已提交
191 192 193 194 195 196 197 198 199 200 201
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
202 203
#endif
static void igb_shutdown(struct pci_dev *);
204
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
206 207 208 209 210 211 212
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
213 214 215 216
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
217
#ifdef CONFIG_PCI_IOV
218 219 220 221 222 223
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

224 225 226 227 228
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

229
static const struct pci_error_handlers igb_err_handler = {
230 231 232 233 234
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

235
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236 237 238 239 240

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
241
	.remove   = igb_remove,
242
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
243
	.driver.pm = &igb_pm_ops,
244 245
#endif
	.shutdown = igb_shutdown,
246
	.sriov_configure = igb_pci_sriov_configure,
247 248 249 250 251 252 253 254
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

255 256 257 258 259
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

301
/* igb_regdump - register printout routine */
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
358
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359 360 361 362
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
363 364
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
365 366
}

367
/* igb_dump - Print registers, Tx-rings and Rx-rings */
368 369 370 371 372 373 374 375 376 377 378
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
379
	u16 i, n;
380 381 382 383 384 385 386

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
387 388 389 390
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
391 392 393 394
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
395
	pr_info(" Register Name   Value\n");
396 397 398 399 400 401 402 403 404 405
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
406
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
407
	for (n = 0; n < adapter->num_tx_queues; n++) {
408
		struct igb_tx_buffer *buffer_info;
409
		tx_ring = adapter->tx_ring[n];
410
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
411 412
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
413 414
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
415 416
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
438 439 440 441 442 443
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
444 445

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
446
			const char *next_desc;
447
			struct igb_tx_buffer *buffer_info;
448
			tx_desc = IGB_TX_DESC(tx_ring, i);
449
			buffer_info = &tx_ring->tx_buffer_info[i];
450
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
451 452 453 454 455 456 457 458 459 460 461 462
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
463 464
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
465 466
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
467 468
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
469
				buffer_info->skb, next_desc);
470

471
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
472 473
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
474
					16, 1, buffer_info->skb->data,
475 476
					dma_unmap_len(buffer_info, len),
					true);
477 478 479 480 481 482
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
483
	pr_info("Queue [NTU] [NTC]\n");
484 485
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
486 487
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
519 520 521 522 523 524 525
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526 527

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
528
			const char *next_desc;
529 530
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
531
			rx_desc = IGB_RX_DESC(rx_ring, i);
532 533
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
534 535 536 537 538 539 540 541

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

542 543
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
544 545
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
546 547
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
548
					next_desc);
549
			} else {
550 551
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
552 553 554
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
555
					next_desc);
556

557
				if (netif_msg_pktdata(adapter) &&
558
				    buffer_info->dma && buffer_info->page) {
559 560 561
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
562 563
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
564
					  IGB_RX_BUFSZ, true);
565 566 567 568 569 570 571 572 573
				}
			}
		}
	}

exit:
	return;
}

574 575
/**
 *  igb_get_i2c_data - Reads the I2C SDA data bit
C
Carolyn Wyborny 已提交
576 577 578 579
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
580
 **/
C
Carolyn Wyborny 已提交
581 582 583 584 585 586 587 588 589
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
}

590 591
/**
 *  igb_set_i2c_data - Sets the I2C data bit
C
Carolyn Wyborny 已提交
592 593 594 595
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
596
 **/
C
Carolyn Wyborny 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

615 616
/**
 *  igb_set_i2c_clk - Sets the I2C SCL clock
C
Carolyn Wyborny 已提交
617 618 619 620
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
621
 **/
C
Carolyn Wyborny 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

639 640
/**
 *  igb_get_i2c_clk - Gets the I2C SCL clock state
C
Carolyn Wyborny 已提交
641 642 643
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
644
 **/
C
Carolyn Wyborny 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

663
/**
664 665 666 667
 *  igb_get_hw_dev - return device
 *  @hw: pointer to hardware structure
 *
 *  used by hardware layer to print debugging information
668
 **/
669
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670 671
{
	struct igb_adapter *adapter = hw->back;
672
	return adapter->netdev;
673
}
P
Patrick Ohly 已提交
674

675
/**
676
 *  igb_init_module - Driver Registration Routine
677
 *
678 679
 *  igb_init_module is the first routine called when the driver is
 *  loaded. All it does is register with the PCI subsystem.
680 681 682 683
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
684
	pr_info("%s - version %s\n",
685 686
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
687
	pr_info("%s\n", igb_copyright);
688

689
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
690 691
	dca_register_notify(&dca_notifier);
#endif
692
	ret = pci_register_driver(&igb_driver);
693 694 695 696 697 698
	return ret;
}

module_init(igb_init_module);

/**
699
 *  igb_exit_module - Driver Exit Cleanup Routine
700
 *
701 702
 *  igb_exit_module is called just before the driver is removed
 *  from memory.
703 704 705
 **/
static void __exit igb_exit_module(void)
{
706
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
707 708
	dca_unregister_notify(&dca_notifier);
#endif
709 710 711 712 713
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

714 715
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
716 717
 *  igb_cache_ring_register - Descriptor ring to register mapping
 *  @adapter: board private structure to initialize
718
 *
719 720
 *  Once we know the feature-set enabled for the device, we'll cache
 *  the register offset the descriptor ring is assigned to.
721 722 723
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
724
	int i = 0, j = 0;
725
	u32 rbase_offset = adapter->vfs_allocated_count;
726 727 728 729 730 731 732 733

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
734
		if (adapter->vfs_allocated_count) {
735
			for (; i < adapter->rss_queues; i++)
736
				adapter->rx_ring[i]->reg_idx = rbase_offset +
737
							       Q_IDX_82576(i);
738
		}
739
	case e1000_82575:
740
	case e1000_82580:
741
	case e1000_i350:
742
	case e1000_i354:
743 744
	case e1000_i210:
	case e1000_i211:
745
	default:
746
		for (; i < adapter->num_rx_queues; i++)
747
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748
		for (; j < adapter->num_tx_queues; j++)
749
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750 751 752 753
		break;
	}
}

A
Alexander Duyck 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

780
#define IGB_N0_QUEUE -1
781
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782
{
783
	struct igb_adapter *adapter = q_vector->adapter;
784
	struct e1000_hw *hw = &adapter->hw;
785 786
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
787
	u32 msixbm = 0;
788

789 790 791 792
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
793 794 795

	switch (hw->mac.type) {
	case e1000_82575:
796
		/* The 82575 assigns vectors using a bitmask, which matches the
797 798 799 800
		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
		 * or more queues to a vector, we write the appropriate bits
		 * into the MSIXBM register for that vector.
		 */
801
		if (rx_queue > IGB_N0_QUEUE)
802
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803
		if (tx_queue > IGB_N0_QUEUE)
804
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 806
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
807
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
809 810
		break;
	case e1000_82576:
811
		/* 82576 uses a table that essentially consists of 2 columns
A
Alexander Duyck 已提交
812 813 814 815 816 817 818 819 820 821 822 823
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
824
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
825
		break;
826
	case e1000_82580:
827
	case e1000_i350:
828
	case e1000_i354:
829 830
	case e1000_i210:
	case e1000_i211:
831
		/* On 82580 and newer adapters the scheme is similar to 82576
A
Alexander Duyck 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
845 846
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
847 848 849 850
	default:
		BUG();
		break;
	}
851 852 853 854 855 856

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
857 858 859
}

/**
860 861
 *  igb_configure_msix - Configure MSI-X hardware
 *  @adapter: board private structure to initialize
862
 *
863 864
 *  igb_configure_msix sets up the hardware to properly
 *  generate MSI-X interrupts.
865 866 867 868 869 870 871 872 873 874
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
875 876
	switch (hw->mac.type) {
	case e1000_82575:
877 878 879 880 881 882 883 884 885
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
886 887

		/* enable msix_other interrupt */
888
		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
889
		adapter->eims_other = E1000_EIMS_OTHER;
890

A
Alexander Duyck 已提交
891 892 893
		break;

	case e1000_82576:
894
	case e1000_82580:
895
	case e1000_i350:
896
	case e1000_i354:
897 898
	case e1000_i210:
	case e1000_i211:
899
		/* Turn on MSI-X capability first, or our settings
900 901
		 * won't stick.  And it will take days to debug.
		 */
902
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 904
		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
		     E1000_GPIE_NSICR);
905 906 907

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
908 909
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

910
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
911 912 913 914 915
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
916 917 918

	adapter->eims_enable_mask |= adapter->eims_other;

919 920
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
921

922 923 924 925
	wrfl();
}

/**
926 927
 *  igb_request_msix - Initialize MSI-X interrupts
 *  @adapter: board private structure to initialize
928
 *
929 930
 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 *  kernel.
931 932 933 934
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
935
	struct e1000_hw *hw = &adapter->hw;
936
	int i, err = 0, vector = 0, free_vector = 0;
937

938
	err = request_irq(adapter->msix_entries[vector].vector,
939
			  igb_msix_other, 0, netdev->name, adapter);
940
	if (err)
941
		goto err_out;
942 943 944 945

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

946 947
		vector++;

948 949
		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

950
		if (q_vector->rx.ring && q_vector->tx.ring)
951
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
952 953
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
954
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
955 956
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
957
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
958
				q_vector->rx.ring->queue_index);
959
		else
960 961
			sprintf(q_vector->name, "%s-unused", netdev->name);

962
		err = request_irq(adapter->msix_entries[vector].vector,
963 964
				  igb_msix_ring, 0, q_vector->name,
				  q_vector);
965
		if (err)
966
			goto err_free;
967 968 969 970
	}

	igb_configure_msix(adapter);
	return 0;
971 972 973 974 975 976 977 978 979 980 981

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
982 983 984 985 986 987 988 989 990
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
991
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
992
		pci_disable_msi(adapter->pdev);
993
	}
994 995
}

996
/**
997 998 999
 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be freed
1000
 *
1001 1002 1003
 *  This function frees the memory allocated to the q_vector.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	adapter->q_vector[v_idx] = NULL;
	netif_napi_del(&q_vector->napi);

1018
	/* igb_get_stats64() might access the rings on this vector,
1019 1020 1021 1022 1023
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

1024
/**
1025 1026
 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 *  @adapter: board private structure to initialize
1027
 *
1028 1029 1030
 *  This function frees the memory allocated to the q_vectors.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1031 1032 1033
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
1034 1035 1036 1037
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
1038
	adapter->num_q_vectors = 0;
1039 1040 1041

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);
1042 1043 1044
}

/**
1045 1046
 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *  @adapter: board private structure to initialize
1047
 *
1048 1049
 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 *  MSI-X interrupts allocated.
1050 1051 1052 1053 1054 1055
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1056 1057

/**
1058 1059 1060
 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1061
 *
1062 1063
 *  Attempt to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1064
 **/
1065
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1066 1067 1068 1069
{
	int err;
	int numvecs, i;

1070 1071 1072
	if (!msix)
		goto msi_only;

1073
	/* Number of supported queues. */
1074
	adapter->num_rx_queues = adapter->rss_queues;
1075 1076 1077 1078
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1079

1080
	/* start with one vector for every Rx queue */
1081 1082
	numvecs = adapter->num_rx_queues;

1083
	/* if Tx handler is separate add 1 for every Tx queue */
1084 1085
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1086 1087 1088 1089 1090 1091

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1092 1093
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1105
		return;
1106 1107 1108 1109 1110

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1122
		wrfl();
1123 1124 1125 1126
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1127
	adapter->vfs_allocated_count = 0;
1128
	adapter->rss_queues = 1;
1129
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1130
	adapter->num_rx_queues = 1;
1131
	adapter->num_tx_queues = 1;
1132
	adapter->num_q_vectors = 1;
1133
	if (!pci_enable_msi(adapter->pdev))
1134
		adapter->flags |= IGB_FLAG_HAS_MSI;
1135 1136
}

1137 1138 1139 1140 1141 1142 1143
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1144
/**
1145 1146 1147 1148 1149 1150 1151 1152
 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 *  @v_idx: index of vector in adapter struct
 *  @txr_count: total number of Tx rings to allocate
 *  @txr_idx: index of first Tx ring to allocate
 *  @rxr_count: total number of Rx rings to allocate
 *  @rxr_idx: index of first Rx ring to allocate
1153
 *
1154
 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1155
 **/
1156 1157 1158 1159
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1160 1161
{
	struct igb_q_vector *q_vector;
1162 1163
	struct igb_ring *ring;
	int ring_count, size;
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
	q_vector = kzalloc(size, GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	/* intialize ITR */
	if (rxr_count) {
		/* rx or rx/tx vector */
		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
			q_vector->itr_val = adapter->rx_itr_setting;
	} else {
		/* tx only vector */
		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
			q_vector->itr_val = adapter->tx_itr_setting;
	}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1231
	}
1232

1233 1234 1235 1236
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1237

1238 1239
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1240

1241 1242
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1243

1244 1245 1246
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1247

1248 1249
		/*
		 * On i350, i354, i210, and i211, loopback VLAN packets
1250
		 * have the tag byte-swapped.
1251
		 */
1252 1253
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1264 1265
}

1266

1267
/**
1268 1269
 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 *  @adapter: board private structure to initialize
1270
 *
1271 1272
 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 *  return -ENOMEM.
1273
 **/
1274
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1275
{
1276 1277 1278 1279 1280
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1281

1282 1283 1284 1285
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1286

1287 1288 1289 1290 1291 1292
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1293 1294
		}
	}
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1312
	return 0;
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1323 1324 1325
}

/**
1326 1327 1328
 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1329
 *
1330
 *  This function initializes the interrupts and allocates all of the queues.
1331
 **/
1332
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1333 1334 1335 1336
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1337
	igb_set_interrupt_capability(adapter, msix);
1338 1339 1340 1341 1342 1343 1344

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1345
	igb_cache_ring_register(adapter);
1346 1347

	return 0;
1348

1349 1350 1351 1352 1353
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1354
/**
1355 1356
 *  igb_request_irq - initialize interrupts
 *  @adapter: board private structure to initialize
1357
 *
1358 1359
 *  Attempts to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1360 1361 1362 1363
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1364
	struct pci_dev *pdev = adapter->pdev;
1365 1366 1367 1368
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1369
		if (!err)
1370 1371
			goto request_done;
		/* fall back to MSI */
1372 1373
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1374

1375
		igb_clear_interrupt_scheme(adapter);
1376 1377
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
1378
			goto request_done;
1379

1380 1381
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1382
		igb_configure(adapter);
1383
	}
P
PJ Waskiewicz 已提交
1384

1385 1386
	igb_assign_vector(adapter->q_vector[0], 0);

1387
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1388
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1389
				  netdev->name, adapter);
1390 1391
		if (!err)
			goto request_done;
1392

1393 1394
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1395
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1396 1397
	}

1398
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1399
			  netdev->name, adapter);
1400

A
Andy Gospodarek 已提交
1401
	if (err)
1402
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1414
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1415

1416
		for (i = 0; i < adapter->num_q_vectors; i++)
1417
			free_irq(adapter->msix_entries[vector++].vector,
1418
				 adapter->q_vector[i]);
1419 1420
	} else {
		free_irq(adapter->pdev->irq, adapter);
1421 1422 1423 1424
	}
}

/**
1425 1426
 *  igb_irq_disable - Mask off interrupt generation on the NIC
 *  @adapter: board private structure
1427 1428 1429 1430 1431
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1432
	/* we need to be careful when disabling interrupts.  The VFs are also
1433 1434 1435
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1436
	if (adapter->msix_entries) {
1437 1438 1439 1440 1441
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1442
	}
P
PJ Waskiewicz 已提交
1443 1444

	wr32(E1000_IAM, 0);
1445 1446
	wr32(E1000_IMC, ~0);
	wrfl();
1447 1448 1449 1450 1451 1452 1453
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1454 1455 1456
}

/**
1457 1458
 *  igb_irq_enable - Enable default interrupt generation settings
 *  @adapter: board private structure
1459 1460 1461 1462 1463 1464
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1465
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1466 1467 1468 1469
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1470
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1471
		if (adapter->vfs_allocated_count) {
1472
			wr32(E1000_MBVFIMR, 0xFF);
1473 1474 1475
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1476
	} else {
1477 1478 1479 1480
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1481
	}
1482 1483 1484 1485
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1486
	struct e1000_hw *hw = &adapter->hw;
1487 1488
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1500
	    !test_bit(old_vid, adapter->active_vlans)) {
1501 1502
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1503 1504 1505 1506
	}
}

/**
1507 1508
 *  igb_release_hw_control - release control of the h/w to f/w
 *  @adapter: address of board private structure
1509
 *
1510 1511 1512
 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that the
 *  driver is no longer loaded.
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
1526 1527
 *  igb_get_hw_control - get control of the h/w from f/w
 *  @adapter: address of board private structure
1528
 *
1529 1530 1531
 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that
 *  the driver is loaded.
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
1545 1546
 *  igb_configure - configure the hardware for RX and TX
 *  @adapter: private board structure
1547 1548 1549 1550 1551 1552 1553
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1554
	igb_set_rx_mode(netdev);
1555 1556 1557

	igb_restore_vlan(adapter);

1558
	igb_setup_tctl(adapter);
1559
	igb_setup_mrqc(adapter);
1560
	igb_setup_rctl(adapter);
1561 1562

	igb_configure_tx(adapter);
1563
	igb_configure_rx(adapter);
1564 1565 1566

	igb_rx_fifo_flush_82575(&adapter->hw);

1567
	/* call igb_desc_unused which always leaves
1568
	 * at least 1 descriptor unused to make sure
1569 1570
	 * next_to_use != next_to_clean
	 */
1571
	for (i = 0; i < adapter->num_rx_queues; i++) {
1572
		struct igb_ring *ring = adapter->rx_ring[i];
1573
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1574 1575 1576
	}
}

1577
/**
1578 1579
 *  igb_power_up_link - Power up the phy/serdes link
 *  @adapter: address of board private structure
1580 1581 1582
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1583 1584
	igb_reset_phy(&adapter->hw);

1585 1586 1587 1588 1589 1590 1591
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
1592 1593
 *  igb_power_down_link - Power down the phy/serdes link
 *  @adapter: address of board private structure
1594 1595 1596 1597 1598 1599 1600 1601
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1602 1603

/**
1604 1605
 *  igb_up - Open the interface and prepare it to handle traffic
 *  @adapter: board private structure
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1617 1618 1619
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1620
	if (adapter->msix_entries)
1621
		igb_configure_msix(adapter);
1622 1623
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1624 1625 1626 1627 1628

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1629 1630 1631 1632 1633 1634 1635
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1636 1637
	netif_tx_start_all_queues(adapter->netdev);

1638 1639 1640 1641
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1642 1643 1644 1645 1646 1647
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1648
	struct e1000_hw *hw = &adapter->hw;
1649 1650 1651 1652
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
1653 1654
	 * reschedule our watchdog timer
	 */
1655 1656 1657 1658 1659 1660 1661
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1662
	netif_tx_stop_all_queues(netdev);
1663 1664 1665 1666 1667 1668 1669 1670 1671

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1672 1673 1674 1675
	igb_irq_disable(adapter);

	for (i = 0; i < adapter->num_q_vectors; i++) {
		napi_synchronize(&(adapter->q_vector[i]->napi));
1676
		napi_disable(&(adapter->q_vector[i]->napi));
1677
	}
1678 1679 1680 1681 1682 1683


	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1684 1685

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1686 1687 1688
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1689

1690 1691 1692
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1693 1694
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1695 1696
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1697 1698 1699 1700 1701
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1716
	struct pci_dev *pdev = adapter->pdev;
1717
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1718 1719
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1720
	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1721 1722 1723 1724

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1725
	switch (mac->type) {
1726
	case e1000_i350:
1727
	case e1000_i354:
1728 1729 1730 1731
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1732
	case e1000_82576:
1733 1734
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1735 1736
		break;
	case e1000_82575:
1737 1738
	case e1000_i210:
	case e1000_i211:
1739 1740 1741
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1742
	}
1743

A
Alexander Duyck 已提交
1744 1745
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1746 1747 1748 1749 1750 1751 1752 1753
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
1754 1755
		 * expressed in KB.
		 */
1756 1757 1758 1759 1760
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
1761 1762 1763
		/* the Tx fifo also stores 16 bytes of information about the Tx
		 * but don't include ethernet FCS because hardware appends it
		 */
1764
		min_tx_space = (adapter->max_frame_size +
1765
				sizeof(union e1000_adv_tx_desc) -
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
1776 1777
		 * allocation, take space away from current Rx allocation
		 */
1778 1779 1780 1781
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

1782 1783 1784
			/* if short on Rx space, Rx wins and must trump Tx
			 * adjustment
			 */
1785 1786 1787
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1788
		wr32(E1000_PBA, pba);
1789 1790 1791 1792 1793 1794 1795
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
1796 1797
	 * - the full Rx FIFO size minus one full frame
	 */
1798
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1799
			((pba << 10) - 2 * adapter->max_frame_size));
1800

1801
	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1802
	fc->low_water = fc->high_water - 16;
1803 1804
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1805
	fc->current_mode = fc->requested_mode;
1806

1807 1808 1809 1810
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1811
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1812 1813

		/* ping all the active vfs to let them know we are going down */
1814
		igb_ping_all_vfs(adapter);
1815 1816 1817 1818 1819 1820

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1821
	/* Allow time for pending master requests to run */
1822
	hw->mac.ops.reset_hw(hw);
1823 1824
	wr32(E1000_WUC, 0);

1825
	if (hw->mac.ops.init_hw(hw))
1826
		dev_err(&pdev->dev, "Hardware Error\n");
1827

1828
	/* Flow control settings reset on hardware reset, so guarantee flow
1829 1830 1831 1832 1833
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1834
	igb_init_dmac(adapter, pba);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
1847 1848 1849
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1850 1851 1852 1853 1854
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1855 1856 1857
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);

1858
	igb_get_phy_info(hw);
1859 1860
}

1861 1862
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1863
{
1864 1865
	/* Since there is no support for separate Rx/Tx vlan accel
	 * enable/disable make sure Tx flag is always in same state as Rx.
J
Jiri Pirko 已提交
1866
	 */
1867 1868
	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		features |= NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
1869
	else
1870
		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
1871 1872 1873 1874

	return features;
}

1875 1876
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1877
{
1878
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
1879
	struct igb_adapter *adapter = netdev_priv(netdev);
1880

1881
	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
J
Jiri Pirko 已提交
1882 1883
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

1894 1895 1896
	return 0;
}

S
Stephen Hemminger 已提交
1897
static const struct net_device_ops igb_netdev_ops = {
1898
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1899
	.ndo_stop		= igb_close,
1900
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1901
	.ndo_get_stats64	= igb_get_stats64,
1902
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1903 1904 1905 1906 1907 1908 1909
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1910 1911 1912
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
L
Lior Levy 已提交
1913
	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1914
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1915 1916 1917
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1918 1919
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1920 1921
};

1922 1923 1924 1925 1926 1927 1928
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1929 1930 1931 1932 1933
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
1934
	case e1000_i210:
1935
	case e1000_i211:
1936 1937 1938 1939 1940 1941 1942 1943 1944
		if (!(igb_get_flash_presence_i210(hw))) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%2d.%2d-%d",
				 fw.invm_major, fw.invm_minor,
				 fw.invm_img_type);
			break;
		}
		/* fall through */
1945 1946 1947 1948 1949 1950 1951 1952 1953
	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
1954
		} else if (fw.etrack_id != 0X0000) {
1955
			snprintf(adapter->fw_version,
1956 1957 1958 1959 1960 1961 1962 1963
			    sizeof(adapter->fw_version),
			    "%d.%d, 0x%08x",
			    fw.eep_major, fw.eep_minor, fw.etrack_id);
		} else {
		snprintf(adapter->fw_version,
		    sizeof(adapter->fw_version),
		    "%d.%d.%d",
		    fw.eep_major, fw.eep_minor, fw.eep_build);
1964 1965
		}
		break;
1966 1967 1968 1969
	}
	return;
}

1970 1971
/**
 *  igb_init_i2c - Init I2C interface
C
Carolyn Wyborny 已提交
1972
 *  @adapter: pointer to adapter structure
1973
 **/
C
Carolyn Wyborny 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
	s32 status = E1000_SUCCESS;

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
		return E1000_SUCCESS;

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structue that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

1997
/**
1998 1999 2000
 *  igb_probe - Device Initialization Routine
 *  @pdev: PCI device information struct
 *  @ent: entry in igb_pci_tbl
2001
 *
2002
 *  Returns 0 on success, negative on failure
2003
 *
2004 2005 2006
 *  igb_probe initializes an adapter identified by a pci_dev structure.
 *  The OS initialization, configuring of the adapter private structure,
 *  and a hardware reset occur.
2007
 **/
2008
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2009 2010 2011 2012
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
2013
	u16 eeprom_data = 0;
2014
	s32 ret_val;
2015
	static int global_quad_port_a; /* global quad port a indication */
2016 2017
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
2018
	int err, pci_using_dac;
2019
	u8 part_str[E1000_PBANUM_LENGTH];
2020

2021 2022 2023 2024 2025
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2026
			pci_name(pdev), pdev->vendor, pdev->device);
2027 2028 2029
		return -EINVAL;
	}

2030
	err = pci_enable_device_mem(pdev);
2031 2032 2033 2034
	if (err)
		return err;

	pci_using_dac = 0;
2035
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2036
	if (!err) {
2037
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2038 2039 2040
		if (!err)
			pci_using_dac = 1;
	} else {
2041
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2042
		if (err) {
2043 2044
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
2045
			if (err) {
2046 2047
				dev_err(&pdev->dev,
					"No usable DMA configuration, aborting\n");
2048 2049 2050 2051 2052
				goto err_dma;
			}
		}
	}

2053
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2054 2055
					   IORESOURCE_MEM),
					   igb_driver_name);
2056 2057 2058
	if (err)
		goto err_pci_reg;

2059
	pci_enable_pcie_error_reporting(pdev);
2060

2061
	pci_set_master(pdev);
2062
	pci_save_state(pdev);
2063 2064

	err = -ENOMEM;
2065
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2066
				   IGB_MAX_TX_QUEUES);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
2078
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2079 2080 2081 2082 2083

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
2084 2085
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
2086 2087
		goto err_ioremap;

S
Stephen Hemminger 已提交
2088
	netdev->netdev_ops = &igb_netdev_ops;
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
2111
		goto err_sw_init;
2112

2113
	/* setup the private structure */
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

2133
	/* features is initialized to 0 in allocation, it might have bits
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
2144 2145
			    NETIF_F_HW_VLAN_CTAG_RX |
			    NETIF_F_HW_VLAN_CTAG_TX;
2146 2147 2148

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
2149
	netdev->hw_features |= NETIF_F_RXALL;
2150 2151

	/* set this bit last since it cannot be part of hw_features */
2152
	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2153 2154 2155 2156 2157 2158

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2159

2160 2161
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2162
	if (pci_using_dac) {
2163
		netdev->features |= NETIF_F_HIGHDMA;
2164 2165
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2166

2167 2168
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2169
		netdev->features |= NETIF_F_SCTP_CSUM;
2170
	}
2171

2172 2173
	netdev->priv_flags |= IFF_UNICAST_FLT;

2174
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2175 2176

	/* before reading the NVM, reset the controller to put the device in a
2177 2178
	 * known good starting state
	 */
2179 2180
	hw->mac.ops.reset_hw(hw);

2181 2182
	/* make sure the NVM is good , i211/i210 parts can have special NVM
	 * that doesn't contain a checksum
2183
	 */
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
		if (igb_get_flash_presence_i210(hw)) {
			if (hw->nvm.ops.validate(hw) < 0) {
				dev_err(&pdev->dev,
					"The NVM Checksum Is Not Valid\n");
				err = -EIO;
				goto err_eeprom;
			}
		}
		break;
	default:
2197 2198 2199 2200 2201
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2202
		break;
2203 2204 2205 2206 2207 2208 2209 2210
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

2211
	if (!is_valid_ether_addr(netdev->dev_addr)) {
2212 2213 2214 2215 2216
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2217 2218 2219
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2220
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2221
		    (unsigned long) adapter);
2222
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2223
		    (unsigned long) adapter);
2224 2225 2226 2227

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2228
	/* Initialize link properties that are user-changeable */
2229 2230 2231 2232
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2233 2234
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2235 2236 2237

	igb_validate_mdi_setting(hw);

2238
	/* By default, support wake on port A */
2239
	if (hw->bus.func == 0)
2240 2241 2242 2243
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
2244
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2245 2246
				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				 &eeprom_data);
2247 2248
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2249

2250 2251
	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2252 2253 2254

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
2255 2256
	 * lan on a particular port
	 */
2257 2258
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2259
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2260 2261
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2262 2263
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2264
		/* Wake events only supported on port A for dual fiber
2265 2266
		 * regardless of eeprom setting
		 */
2267
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2268
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2269
		break;
2270
	case E1000_DEV_ID_82576_QUAD_COPPER:
2271
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2272 2273
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
2274
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2275 2276 2277 2278 2279 2280
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2281 2282 2283 2284
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2285 2286 2287
	}

	/* initialize the wol settings based on the eeprom settings */
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2300 2301 2302 2303

	/* reset the hardware with the new settings */
	igb_reset(adapter);

C
Carolyn Wyborny 已提交
2304 2305 2306 2307 2308 2309 2310
	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

2311 2312 2313 2314 2315 2316 2317 2318 2319
	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2320 2321 2322
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2323
#ifdef CONFIG_IGB_DCA
2324
	if (dca_add_requester(&pdev->dev) == 0) {
2325
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2326 2327 2328 2329
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2330
#endif
2331 2332 2333 2334
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;
2335

2336
		/* Read the NVM to determine if this i350 device supports an
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
A
Anders Berggren 已提交
2351
	/* do hw tstamp init after resetting */
2352
	igb_ptp_init(adapter);
A
Anders Berggren 已提交
2353

2354
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	/* print bus type/speed/width info, not applicable to i354 */
	if (hw->mac.type != e1000_i354) {
		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
			 netdev->name,
			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
			   "unknown"),
			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
			  "Width x4" :
			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
			  "Width x2" :
			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
			  "Width x1" : "unknown"), netdev->dev_addr);
	}
2369

2370 2371 2372 2373
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2374 2375 2376
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2377
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2378
		adapter->num_rx_queues, adapter->num_tx_queues);
2379 2380
	switch (hw->mac.type) {
	case e1000_i350:
2381 2382
	case e1000_i210:
	case e1000_i211:
2383 2384
		igb_set_eee_i350(hw);
		break;
2385 2386 2387 2388 2389 2390 2391
	case e1000_i354:
		if (hw->phy.media_type == e1000_media_type_copper) {
			if ((rd32(E1000_CTRL_EXT) &
			    E1000_CTRL_EXT_LINK_MODE_SGMII))
				igb_set_eee_i354(hw);
		}
		break;
2392 2393 2394
	default:
		break;
	}
Y
Yan, Zheng 已提交
2395 2396

	pm_runtime_put_noidle(&pdev->dev);
2397 2398 2399 2400
	return 0;

err_register:
	igb_release_hw_control(adapter);
C
Carolyn Wyborny 已提交
2401
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2402 2403
err_eeprom:
	if (!igb_check_reset_block(hw))
2404
		igb_reset_phy(hw);
2405 2406 2407 2408

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2409
	igb_clear_interrupt_scheme(adapter);
2410 2411 2412 2413
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2414
	pci_release_selected_regions(pdev,
2415
				     pci_select_bars(pdev, IORESOURCE_MEM));
2416 2417 2418 2419 2420 2421
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
#ifdef CONFIG_PCI_IOV
static int  igb_disable_sriov(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
2432
		if (pci_vfs_assigned(pdev)) {
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	int err = 0;
	int i;

2464 2465 2466 2467 2468
	if (!adapter->msix_entries) {
		err = -EPERM;
		goto out;
	}

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
	if (!num_vfs)
		goto out;
	else if (old_vfs && old_vfs == num_vfs)
		goto out;
	else if (old_vfs && old_vfs != num_vfs)
		err = igb_disable_sriov(pdev);

	if (err)
		goto out;

	if (num_vfs > 7) {
		err = -EPERM;
		goto out;
	}

	adapter->vfs_allocated_count = num_vfs;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF Data Storage\n");
		err = -ENOMEM;
		goto out;
	}

	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
	if (err)
		goto err_out;

	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
2520
/**
C
Carolyn Wyborny 已提交
2521 2522
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
2523
 **/
C
Carolyn Wyborny 已提交
2524 2525 2526 2527 2528 2529
static void igb_remove_i2c(struct igb_adapter *adapter)
{
	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

2530
/**
2531 2532
 *  igb_remove - Device Removal Routine
 *  @pdev: PCI device information struct
2533
 *
2534 2535 2536 2537
 *  igb_remove is called by the PCI subsystem to alert the driver
 *  that it should release a PCI device.  The could be caused by a
 *  Hot-Plug event, or because the driver is going to be removed from
 *  memory.
2538
 **/
2539
static void igb_remove(struct pci_dev *pdev)
2540 2541 2542
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2543
	struct e1000_hw *hw = &adapter->hw;
2544

Y
Yan, Zheng 已提交
2545
	pm_runtime_get_noresume(&pdev->dev);
2546 2547 2548
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
C
Carolyn Wyborny 已提交
2549
	igb_remove_i2c(adapter);
2550
	igb_ptp_stop(adapter);
2551
	/* The watchdog timer may be rescheduled, so explicitly
2552 2553
	 * disable watchdog from being rescheduled.
	 */
2554 2555 2556 2557
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2558 2559
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2560

2561
#ifdef CONFIG_IGB_DCA
2562
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2563 2564
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2565
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2566
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2567 2568 2569
	}
#endif

2570
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2571 2572
	 * would have already happened in close and is redundant.
	 */
2573 2574 2575 2576
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2577
	igb_clear_interrupt_scheme(adapter);
2578

2579
#ifdef CONFIG_PCI_IOV
2580
	igb_disable_sriov(pdev);
2581
#endif
2582

2583 2584 2585
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2586
	pci_release_selected_regions(pdev,
2587
				     pci_select_bars(pdev, IORESOURCE_MEM));
2588

2589
	kfree(adapter->shadow_vfta);
2590 2591
	free_netdev(netdev);

2592
	pci_disable_pcie_error_reporting(pdev);
2593

2594 2595 2596
	pci_disable_device(pdev);
}

2597
/**
2598 2599
 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 *  @adapter: board private structure to initialize
2600
 *
2601 2602 2603 2604
 *  This function initializes the vf specific data storage and then attempts to
 *  allocate the VFs.  The reason for ordering it this way is because it is much
 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 *  the memory for the VFs.
2605
 **/
2606
static void igb_probe_vfs(struct igb_adapter *adapter)
2607 2608 2609
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2610
	struct e1000_hw *hw = &adapter->hw;
2611

2612 2613 2614 2615
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2616
	pci_sriov_set_totalvfs(pdev, 7);
A
Alex Williamson 已提交
2617
	igb_enable_sriov(pdev, max_vfs);
2618

2619 2620 2621
#endif /* CONFIG_PCI_IOV */
}

2622
static void igb_init_queue_configuration(struct igb_adapter *adapter)
2623 2624
{
	struct e1000_hw *hw = &adapter->hw;
2625
	u32 max_rss_queues;
2626

2627
	/* Determine the maximum number of RSS queues supported. */
2628
	switch (hw->mac.type) {
2629 2630 2631 2632
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2633
	case e1000_i210:
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
2650
	case e1000_i354:
2651 2652
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2653
		break;
2654 2655 2656 2657 2658 2659 2660
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2661
	case e1000_i211:
2662
		/* Device supports enough interrupts without queue pairing. */
2663
		break;
2664
	case e1000_82576:
2665
		/* If VFs are going to be allocated with RSS queues then we
2666 2667 2668 2669 2670 2671 2672 2673 2674
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
2675
	case e1000_i354:
2676
	case e1000_i210:
2677
	default:
2678
		/* If rss_queues > half of max_rss_queues, pair the queues in
2679 2680 2681 2682
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2683 2684
		break;
	}
2685 2686 2687
}

/**
2688 2689
 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 *  @adapter: board private structure to initialize
2690
 *
2691 2692 2693
 *  igb_sw_init initializes the Adapter private data structure.
 *  Fields are initialized based on PCI device information and
 *  OS network device settings (MTU size).
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
2726
			max_vfs = adapter->vfs_allocated_count = 7;
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	igb_init_queue_configuration(adapter);
2739

2740
	/* Setup and initialize a copy of the hw vlan table array */
2741 2742
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_ATOMIC);
2743

2744
	/* This call may decrease the number of queues */
2745
	if (igb_init_interrupt_scheme(adapter, true)) {
2746 2747 2748 2749
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2750 2751
	igb_probe_vfs(adapter);

2752 2753 2754
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2755
	if (hw->mac.type >= e1000_i350)
2756 2757
		adapter->flags &= ~IGB_FLAG_DMAC;

2758 2759 2760 2761 2762
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
2763 2764
 *  igb_open - Called when a network interface is made active
 *  @netdev: network interface device structure
2765
 *
2766
 *  Returns 0 on success, negative value on failure
2767
 *
2768 2769 2770 2771 2772
 *  The open entry point is called when a network interface is made
 *  active by the system (IFF_UP).  At this point all resources needed
 *  for transmit and receive operations are allocated, the interrupt
 *  handler is registered with the OS, the watchdog timer is started,
 *  and the stack is notified that the interface is ready.
2773
 **/
Y
Yan, Zheng 已提交
2774
static int __igb_open(struct net_device *netdev, bool resuming)
2775 2776 2777
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2778
	struct pci_dev *pdev = adapter->pdev;
2779 2780 2781 2782
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2783 2784
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2785
		return -EBUSY;
Y
Yan, Zheng 已提交
2786 2787 2788 2789
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2790

2791 2792
	netif_carrier_off(netdev);

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2803
	igb_power_up_link(adapter);
2804 2805 2806 2807

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
2808 2809
	 * clean_rx handler before we do so.
	 */
2810 2811 2812 2813 2814 2815
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

2827 2828 2829
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2830 2831
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2832 2833 2834

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2835 2836 2837

	igb_irq_enable(adapter);

2838 2839 2840 2841 2842 2843 2844
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2845 2846
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2847 2848 2849
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2850 2851 2852
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2853 2854 2855

	return 0;

2856 2857
err_set_queues:
	igb_free_irq(adapter);
2858 2859
err_req_irq:
	igb_release_hw_control(adapter);
2860
	igb_power_down_link(adapter);
2861 2862 2863 2864 2865
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2866 2867
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2868 2869 2870 2871

	return err;
}

Y
Yan, Zheng 已提交
2872 2873 2874 2875 2876
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2877
/**
2878 2879
 *  igb_close - Disables a network interface
 *  @netdev: network interface device structure
2880
 *
2881
 *  Returns 0, this is not allowed to fail
2882
 *
2883 2884 2885 2886
 *  The close entry point is called when an interface is de-activated
 *  by the OS.  The hardware is still under the driver's control, but
 *  needs to be disabled.  A global MAC reset is issued to stop the
 *  hardware, and all transmit and receive resources are freed.
2887
 **/
Y
Yan, Zheng 已提交
2888
static int __igb_close(struct net_device *netdev, bool suspending)
2889 2890
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2891
	struct pci_dev *pdev = adapter->pdev;
2892 2893 2894

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2895 2896 2897 2898
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2899 2900 2901 2902 2903
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2904 2905
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2906 2907 2908
	return 0;
}

Y
Yan, Zheng 已提交
2909 2910 2911 2912 2913
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2914
/**
2915 2916
 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2917
 *
2918
 *  Return 0 on success, negative on failure
2919
 **/
2920
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2921
{
2922
	struct device *dev = tx_ring->dev;
2923 2924
	int size;

2925
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2926 2927

	tx_ring->tx_buffer_info = vzalloc(size);
2928
	if (!tx_ring->tx_buffer_info)
2929 2930 2931
		goto err;

	/* round up to nearest 4K */
2932
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2933 2934
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2935 2936
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
2937 2938 2939 2940 2941
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2942

2943 2944 2945
	return 0;

err:
2946
	vfree(tx_ring->tx_buffer_info);
2947 2948
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2949 2950 2951 2952
	return -ENOMEM;
}

/**
2953 2954 2955
 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
2956
 *
2957
 *  Return 0 on success, negative on failure
2958 2959 2960
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2961
	struct pci_dev *pdev = adapter->pdev;
2962 2963 2964
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2965
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2966
		if (err) {
2967
			dev_err(&pdev->dev,
2968 2969
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2970
				igb_free_tx_resources(adapter->tx_ring[i]);
2971 2972 2973 2974 2975 2976 2977 2978
			break;
		}
	}

	return err;
}

/**
2979 2980
 *  igb_setup_tctl - configure the transmit control registers
 *  @adapter: Board private structure
2981
 **/
2982
void igb_setup_tctl(struct igb_adapter *adapter)
2983 2984 2985 2986
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2987 2988
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

3004
/**
3005 3006 3007
 *  igb_configure_tx_ring - Configure transmit ring after Reset
 *  @adapter: board private structure
 *  @ring: tx ring to configure
3008
 *
3009
 *  Configure a transmit ring after a reset.
3010
 **/
3011 3012
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3013 3014
{
	struct e1000_hw *hw = &adapter->hw;
3015
	u32 txdctl = 0;
3016 3017 3018 3019
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
3020
	wr32(E1000_TXDCTL(reg_idx), 0);
3021 3022 3023 3024
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
3025
	     ring->count * sizeof(union e1000_adv_tx_desc));
3026
	wr32(E1000_TDBAL(reg_idx),
3027
	     tdba & 0x00000000ffffffffULL);
3028 3029
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

3030
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3031
	wr32(E1000_TDH(reg_idx), 0);
3032
	writel(0, ring->tail);
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
3043 3044
 *  igb_configure_tx - Configure transmit Unit after Reset
 *  @adapter: board private structure
3045
 *
3046
 *  Configure the Tx unit of the MAC after a reset.
3047 3048 3049 3050 3051 3052
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3053
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3054 3055
}

3056
/**
3057 3058
 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3059
 *
3060
 *  Returns 0 on success, negative on failure
3061
 **/
3062
int igb_setup_rx_resources(struct igb_ring *rx_ring)
3063
{
3064
	struct device *dev = rx_ring->dev;
3065
	int size;
3066

3067
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3068 3069

	rx_ring->rx_buffer_info = vzalloc(size);
3070
	if (!rx_ring->rx_buffer_info)
3071 3072 3073
		goto err;

	/* Round up to nearest 4K */
3074
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3075 3076
	rx_ring->size = ALIGN(rx_ring->size, 4096);

3077 3078
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
3079 3080 3081
	if (!rx_ring->desc)
		goto err;

3082
	rx_ring->next_to_alloc = 0;
3083 3084 3085 3086 3087 3088
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
3089 3090
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3091
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3092 3093 3094 3095
	return -ENOMEM;
}

/**
3096 3097 3098
 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
3099
 *
3100
 *  Return 0 on success, negative on failure
3101 3102 3103
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
3104
	struct pci_dev *pdev = adapter->pdev;
3105 3106 3107
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
3108
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3109
		if (err) {
3110
			dev_err(&pdev->dev,
3111 3112
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3113
				igb_free_rx_resources(adapter->rx_ring[i]);
3114 3115 3116 3117 3118 3119 3120
			break;
		}
	}

	return err;
}

3121
/**
3122 3123
 *  igb_setup_mrqc - configure the multiple receive queue control registers
 *  @adapter: Board private structure
3124 3125 3126 3127 3128
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
3129
	u32 j, num_rx_queues;
3130 3131 3132 3133
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
3134 3135

	/* Fill out hash function seeds */
3136 3137
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
3138

3139
	num_rx_queues = adapter->rss_queues;
3140

3141 3142 3143
	switch (hw->mac.type) {
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
3144
		if (adapter->vfs_allocated_count)
3145
			num_rx_queues = 2;
3146 3147 3148
		break;
	default:
		break;
3149 3150
	}

3151 3152 3153 3154
	if (adapter->rss_indir_tbl_init != num_rx_queues) {
		for (j = 0; j < IGB_RETA_SIZE; j++)
			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
		adapter->rss_indir_tbl_init = num_rx_queues;
3155
	}
3156
	igb_write_rss_indir_tbl(adapter);
3157

3158
	/* Disable raw packet checksumming so that RSS hash is placed in
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
3171

3172 3173 3174
	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
3175 3176 3177 3178 3179
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3180

3181 3182 3183 3184 3185
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

3186 3187
	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
3188 3189
	 * if we are only using one queue
	 */
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
3200
		if (adapter->rss_queues > 1)
3201
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3202
		else
3203
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3204
	} else {
3205 3206
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3207 3208 3209 3210 3211 3212
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

3213
/**
3214 3215
 *  igb_setup_rctl - configure the receive control registers
 *  @adapter: Board private structure
3216
 **/
3217
void igb_setup_rctl(struct igb_adapter *adapter)
3218 3219 3220 3221 3222 3223 3224
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3225
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3226

3227
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3228
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3229

3230
	/* enable stripping of CRC. It's unlikely this will break BMC
3231 3232
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
3233
	 */
3234
	rctl |= E1000_RCTL_SECRC;
3235

3236
	/* disable store bad packets and clear size bits. */
3237
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3238

A
Alexander Duyck 已提交
3239 3240
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
3241

3242 3243
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
3244

3245 3246 3247 3248 3249 3250 3251 3252 3253
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
3254 3255 3256
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
3257 3258
		 * in e1000e_set_rx_mode
		 */
B
Ben Greear 已提交
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3271 3272 3273
	wr32(E1000_RCTL, rctl);
}

3274 3275 3276 3277 3278 3279 3280
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
3281 3282
	 * increase the size to support vlan tags
	 */
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3295
/**
3296 3297
 *  igb_rlpml_set - set maximum receive packet size
 *  @adapter: board private structure
3298
 *
3299
 *  Configure maximum receivable packet size.
3300 3301 3302
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3303
	u32 max_frame_size = adapter->max_frame_size;
3304 3305 3306 3307 3308
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3309
		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3310 3311 3312 3313 3314
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3315
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3316 3317 3318 3319 3320
	}

	wr32(E1000_RLPML, max_frame_size);
}

3321 3322
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3323 3324 3325 3326
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

3327
	/* This register exists only on 82576 and newer so if we are older then
3328 3329 3330 3331 3332 3333
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3334
	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3335
	if (aupe)
3336
		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3337 3338
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3339 3340 3341 3342

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3343
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3344
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3345
	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3346 3347 3348
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
3349
		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3350 3351 3352 3353

	wr32(E1000_VMOLR(vfn), vmolr);
}

3354
/**
3355 3356 3357
 *  igb_configure_rx_ring - Configure a receive ring after Reset
 *  @adapter: board private structure
 *  @ring: receive ring to be configured
3358
 *
3359
 *  Configure the Rx unit of the MAC after a reset.
3360
 **/
3361
void igb_configure_rx_ring(struct igb_adapter *adapter,
3362
			   struct igb_ring *ring)
3363 3364 3365 3366
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3367
	u32 srrctl = 0, rxdctl = 0;
3368 3369

	/* disable the queue */
3370
	wr32(E1000_RXDCTL(reg_idx), 0);
3371 3372 3373 3374 3375 3376

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
3377
	     ring->count * sizeof(union e1000_adv_rx_desc));
3378 3379

	/* initialize head and tail */
3380
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3381
	wr32(E1000_RDH(reg_idx), 0);
3382
	writel(0, ring->tail);
3383

3384
	/* set descriptor configuration */
3385
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3386
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3387
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3388
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3389
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3390 3391 3392
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3393 3394 3395

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3396
	/* set filtering for VMDQ pools */
3397
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3398

3399 3400 3401
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3402 3403 3404

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3405 3406 3407
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3408
/**
3409 3410
 *  igb_configure_rx - Configure receive Unit after Reset
 *  @adapter: board private structure
3411
 *
3412
 *  Configure the Rx unit of the MAC after a reset.
3413 3414 3415
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3416
	int i;
3417

3418 3419 3420
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3421 3422
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3423
			 adapter->vfs_allocated_count);
3424

3425
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3426 3427
	 * the Base and Length of the Rx Descriptor Ring
	 */
3428 3429
	for (i = 0; i < adapter->num_rx_queues; i++)
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3430 3431 3432
}

/**
3433 3434
 *  igb_free_tx_resources - Free Tx Resources per Queue
 *  @tx_ring: Tx descriptor ring for a specific queue
3435
 *
3436
 *  Free all transmit software resources
3437
 **/
3438
void igb_free_tx_resources(struct igb_ring *tx_ring)
3439
{
3440
	igb_clean_tx_ring(tx_ring);
3441

3442 3443
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3444

3445 3446 3447 3448
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3449 3450
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3451 3452 3453 3454 3455

	tx_ring->desc = NULL;
}

/**
3456 3457
 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 *  @adapter: board private structure
3458
 *
3459
 *  Free all transmit software resources
3460 3461 3462 3463 3464 3465
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3466
		igb_free_tx_resources(adapter->tx_ring[i]);
3467 3468
}

3469 3470 3471 3472 3473
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3474
		if (dma_unmap_len(tx_buffer, len))
3475
			dma_unmap_single(ring->dev,
3476 3477
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3478
					 DMA_TO_DEVICE);
3479
	} else if (dma_unmap_len(tx_buffer, len)) {
3480
		dma_unmap_page(ring->dev,
3481 3482
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3483 3484 3485 3486
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3487
	dma_unmap_len_set(tx_buffer, len, 0);
3488
	/* buffer_info must be completely set up in the transmit path */
3489 3490 3491
}

/**
3492 3493
 *  igb_clean_tx_ring - Free Tx Buffers
 *  @tx_ring: ring to be cleaned
3494
 **/
3495
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3496
{
3497
	struct igb_tx_buffer *buffer_info;
3498
	unsigned long size;
3499
	u16 i;
3500

3501
	if (!tx_ring->tx_buffer_info)
3502 3503 3504 3505
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3506
		buffer_info = &tx_ring->tx_buffer_info[i];
3507
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3508 3509
	}

3510 3511
	netdev_tx_reset_queue(txring_txq(tx_ring));

3512 3513
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3514 3515 3516 3517 3518 3519 3520 3521 3522

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
3523 3524
 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 *  @adapter: board private structure
3525 3526 3527 3528 3529 3530
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3531
		igb_clean_tx_ring(adapter->tx_ring[i]);
3532 3533 3534
}

/**
3535 3536
 *  igb_free_rx_resources - Free Rx Resources
 *  @rx_ring: ring to clean the resources from
3537
 *
3538
 *  Free all receive software resources
3539
 **/
3540
void igb_free_rx_resources(struct igb_ring *rx_ring)
3541
{
3542
	igb_clean_rx_ring(rx_ring);
3543

3544 3545
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3546

3547 3548 3549 3550
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3551 3552
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3553 3554 3555 3556 3557

	rx_ring->desc = NULL;
}

/**
3558 3559
 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 *  @adapter: board private structure
3560
 *
3561
 *  Free all receive software resources
3562 3563 3564 3565 3566 3567
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3568
		igb_free_rx_resources(adapter->rx_ring[i]);
3569 3570 3571
}

/**
3572 3573
 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 *  @rx_ring: ring to free buffers from
3574
 **/
3575
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3576 3577
{
	unsigned long size;
3578
	u16 i;
3579

3580 3581 3582 3583
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3584
	if (!rx_ring->rx_buffer_info)
3585
		return;
3586

3587 3588
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3589
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3590

3591 3592 3593 3594 3595 3596 3597 3598 3599
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3600
		buffer_info->page = NULL;
3601 3602
	}

3603 3604
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3605 3606 3607 3608

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3609
	rx_ring->next_to_alloc = 0;
3610 3611 3612 3613 3614
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
3615 3616
 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 *  @adapter: board private structure
3617 3618 3619 3620 3621 3622
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3623
		igb_clean_rx_ring(adapter->rx_ring[i]);
3624 3625 3626
}

/**
3627 3628 3629
 *  igb_set_mac - Change the Ethernet Address of the NIC
 *  @netdev: network interface device structure
 *  @p: pointer to an address structure
3630
 *
3631
 *  Returns 0 on success, negative on failure
3632 3633 3634 3635
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3636
	struct e1000_hw *hw = &adapter->hw;
3637 3638 3639 3640 3641 3642
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3643
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3644

3645 3646
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3647
			 adapter->vfs_allocated_count);
3648

3649 3650 3651 3652
	return 0;
}

/**
3653 3654
 *  igb_write_mc_addr_list - write multicast addresses to MTA
 *  @netdev: network interface device structure
3655
 *
3656 3657 3658 3659
 *  Writes multicast address list to the MTA hash table.
 *  Returns: -ENOMEM on failure
 *           0 on no addresses written
 *           X on writing X addresses to MTA
3660
 **/
3661
static int igb_write_mc_addr_list(struct net_device *netdev)
3662 3663 3664
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3665
	struct netdev_hw_addr *ha;
3666
	u8  *mta_list;
3667 3668
	int i;

3669
	if (netdev_mc_empty(netdev)) {
3670 3671 3672 3673 3674
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3675

3676
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3677 3678
	if (!mta_list)
		return -ENOMEM;
3679

3680
	/* The shared function expects a packed array of only addresses. */
3681
	i = 0;
3682 3683
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3684 3685 3686 3687

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3688
	return netdev_mc_count(netdev);
3689 3690 3691
}

/**
3692 3693
 *  igb_write_uc_addr_list - write unicast addresses to RAR table
 *  @netdev: network interface device structure
3694
 *
3695 3696 3697 3698
 *  Writes unicast address list to the RAR table.
 *  Returns: -ENOMEM on failure/insufficient address space
 *           0 on no addresses written
 *           X on writing X addresses to the RAR table
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3709
	if (netdev_uc_count(netdev) > rar_entries)
3710
		return -ENOMEM;
3711

3712
	if (!netdev_uc_empty(netdev) && rar_entries) {
3713
		struct netdev_hw_addr *ha;
3714 3715

		netdev_for_each_uc_addr(ha, netdev) {
3716 3717
			if (!rar_entries)
				break;
3718
			igb_rar_set_qsel(adapter, ha->addr,
3719 3720
					 rar_entries--,
					 vfn);
3721
			count++;
3722 3723 3724 3725 3726 3727 3728 3729 3730
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3731 3732 3733 3734
	return count;
}

/**
3735 3736
 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 *  @netdev: network interface device structure
3737
 *
3738 3739 3740 3741
 *  The set_rx_mode entry point is called whenever the unicast or multicast
 *  address lists or the network interface flags are updated.  This routine is
 *  responsible for configuring the hardware for proper unicast, multicast,
 *  promiscuous mode, and all-multi behavior.
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
3758
		/* retain VLAN HW filtering if in VT mode */
3759
		if (adapter->vfs_allocated_count)
3760
			rctl |= E1000_RCTL_VFE;
3761 3762 3763 3764 3765 3766 3767
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
3768
			/* Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3769
			 * then we should just turn on promiscuous mode so
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
3780
		/* Write addresses to available RAR registers, if there is not
3781
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3782
		 * unicast promiscuous mode
3783 3784 3785 3786 3787 3788 3789
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3790
	}
3791
	wr32(E1000_RCTL, rctl);
3792

3793
	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3794 3795 3796 3797
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
3798
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3799
		return;
3800

3801
	vmolr |= rd32(E1000_VMOLR(vfn)) &
3802
		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3803
	wr32(E1000_VMOLR(vfn), vmolr);
3804
	igb_restore_vf_multicasts(adapter);
3805 3806
}

G
Greg Rose 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3846
/* Need to wait a few seconds after link up to get diagnostic information from
3847 3848
 * the phy
 */
3849 3850 3851
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3852
	igb_get_phy_info(&adapter->hw);
3853 3854
}

A
Alexander Duyck 已提交
3855
/**
3856 3857
 *  igb_has_link - check shared code for link and determine up/down
 *  @adapter: pointer to driver private info
A
Alexander Duyck 已提交
3858
 **/
3859
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
3871 3872
		if (!hw->mac.get_link_status)
			return true;
A
Alexander Duyck 已提交
3873
	case e1000_media_type_internal_serdes:
3874 3875
		hw->mac.ops.check_for_link(hw);
		link_active = !hw->mac.get_link_status;
A
Alexander Duyck 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3885 3886 3887 3888 3889
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

3890
	/* check for thermal sensor event on i350 copper only */
3891 3892 3893 3894 3895
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
3896
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3897 3898 3899 3900 3901 3902
			ret = !!(thstat & event);
	}

	return ret;
}

3903
/**
3904 3905
 *  igb_watchdog - Timer Call-back
 *  @data: pointer to adapter cast into an unsigned long
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3917 3918
						   struct igb_adapter,
						   watchdog_task);
3919
	struct e1000_hw *hw = &adapter->hw;
3920
	struct e1000_phy_info *phy = &hw->phy;
3921
	struct net_device *netdev = adapter->netdev;
3922
	u32 link;
3923
	int i;
3924

A
Alexander Duyck 已提交
3925
	link = igb_has_link(adapter);
3926
	if (link) {
Y
Yan, Zheng 已提交
3927 3928 3929
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3930 3931
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3932
			hw->mac.ops.get_speed_and_duplex(hw,
3933 3934
							 &adapter->link_speed,
							 &adapter->link_duplex);
3935 3936

			ctrl = rd32(E1000_CTRL);
3937
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3938 3939
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3940 3941 3942
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3943 3944 3945 3946 3947
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3948

3949 3950 3951 3952 3953
			/* check if SmartSpeed worked */
			igb_check_downshift(hw);
			if (phy->speed_downgraded)
				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");

3954
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3955 3956 3957 3958 3959
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3960
			}
3961

3962
			/* adjust timeout factor according to speed/duplex */
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3975
			igb_ping_all_vfs(adapter);
3976
			igb_check_vf_rate_limit(adapter);
3977

3978
			/* link state has changed, schedule phy info update */
3979 3980 3981 3982 3983 3984 3985 3986
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3987 3988

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3989 3990 3991 3992
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
3993
			}
3994

3995 3996 3997
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3998
			netif_carrier_off(netdev);
3999

4000 4001
			igb_ping_all_vfs(adapter);

4002
			/* link state has changed, schedule phy info update */
4003 4004 4005
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
4006 4007 4008

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
4009 4010 4011
		}
	}

E
Eric Dumazet 已提交
4012 4013 4014
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
4015

4016
	for (i = 0; i < adapter->num_tx_queues; i++) {
4017
		struct igb_ring *tx_ring = adapter->tx_ring[i];
4018
		if (!netif_carrier_ok(netdev)) {
4019 4020 4021
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
4022 4023
			 * (Do the reset outside of interrupt context).
			 */
4024 4025 4026 4027 4028 4029
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
4030 4031
		}

4032
		/* Force detection of hung controller every watchdog period */
4033
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4034
	}
4035

4036
	/* Cause software interrupt to ensure Rx ring is cleaned */
4037
	if (adapter->msix_entries) {
4038
		u32 eics = 0;
4039 4040
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
4041 4042 4043 4044
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
4045

G
Greg Rose 已提交
4046
	igb_spoof_check(adapter);
4047
	igb_ptp_rx_hang(adapter);
G
Greg Rose 已提交
4048

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

4062
/**
4063 4064
 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 *  @q_vector: pointer to q_vector
4065
 *
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
 *  Stores a new ITR value based on strictly on packet size.  This
 *  algorithm is less sophisticated than that used in igb_update_itr,
 *  due to the difficulty of synchronizing statistics across multiple
 *  receive rings.  The divisors and thresholds used by this function
 *  were determined based on theoretical maximum wire speed and testing
 *  data, in order to minimize response time while increasing bulk
 *  throughput.
 *  This functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  This function is called only when operating in a multiqueue
 *         receive environment.
4077
 **/
4078
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4079
{
4080
	int new_val = q_vector->itr_val;
4081
	int avg_wire_size = 0;
4082
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
4083
	unsigned int packets;
4084

4085 4086 4087 4088
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
4089
		new_val = IGB_4K_ITR;
4090
		goto set_itr_val;
4091
	}
4092

4093 4094 4095
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
4096

4097 4098 4099 4100
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
4101 4102 4103 4104

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
4105

4106 4107 4108 4109 4110
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
4111

4112 4113 4114 4115 4116
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
4117

4118 4119 4120 4121 4122
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
4123

4124
set_itr_val:
4125 4126 4127
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
4128
	}
4129
clear_counts:
4130 4131 4132 4133
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
4134 4135 4136
}

/**
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
 *  igb_update_itr - update the dynamic ITR value based on statistics
 *  @q_vector: pointer to q_vector
 *  @ring_container: ring info to update the itr for
 *
 *  Stores a new ITR value based on packets and byte
 *  counts during the last interrupt.  The advantage of per interrupt
 *  computation is faster updates and more accurate ITR for the current
 *  traffic pattern.  Constants in this function were computed
 *  based on theoretical maximum wire speed and thresholds were set based
 *  on testing data as well as attempting to minimize response time
 *  while increasing bulk throughput.
 *  this functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  These calculations are only valid when operating in a single-
 *         queue environment.
4152
 **/
4153 4154
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
4155
{
4156 4157 4158
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
4159

4160
	/* no packets, exit with status unchanged */
4161
	if (packets == 0)
4162
		return;
4163

4164
	switch (itrval) {
4165 4166 4167
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
4168
			itrval = bulk_latency;
4169
		else if ((packets < 5) && (bytes > 512))
4170
			itrval = low_latency;
4171 4172 4173 4174 4175
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
4176
				itrval = bulk_latency;
4177
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4178
				itrval = bulk_latency;
4179
			} else if ((packets > 35)) {
4180
				itrval = lowest_latency;
4181 4182
			}
		} else if (bytes/packets > 2000) {
4183
			itrval = bulk_latency;
4184
		} else if (packets <= 2 && bytes < 512) {
4185
			itrval = lowest_latency;
4186 4187 4188 4189 4190
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
4191
				itrval = low_latency;
4192
		} else if (bytes < 1500) {
4193
			itrval = low_latency;
4194 4195 4196 4197
		}
		break;
	}

4198 4199 4200 4201 4202 4203
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
4204 4205
}

4206
static void igb_set_itr(struct igb_q_vector *q_vector)
4207
{
4208
	struct igb_adapter *adapter = q_vector->adapter;
4209
	u32 new_itr = q_vector->itr_val;
4210
	u8 current_itr = 0;
4211 4212 4213 4214

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
4215
		new_itr = IGB_4K_ITR;
4216 4217 4218
		goto set_itr_now;
	}

4219 4220
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
4221

4222
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4223

4224
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4225 4226 4227
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4228 4229
		current_itr = low_latency;

4230 4231 4232
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
4233
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4234 4235
		break;
	case low_latency:
4236
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4237 4238
		break;
	case bulk_latency:
4239
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4240 4241 4242 4243 4244 4245
		break;
	default:
		break;
	}

set_itr_now:
4246
	if (new_itr != q_vector->itr_val) {
4247 4248
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
4249 4250
		 * increasing
		 */
4251
		new_itr = new_itr > q_vector->itr_val ?
4252 4253 4254
			  max((new_itr * q_vector->itr_val) /
			  (new_itr + (q_vector->itr_val >> 2)),
			  new_itr) : new_itr;
4255 4256 4257 4258 4259 4260
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4261 4262
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4263 4264 4265
	}
}

4266 4267
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4281
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4282 4283 4284 4285 4286 4287 4288 4289
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4290 4291 4292
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4293
{
4294
	struct sk_buff *skb = first->skb;
4295 4296 4297
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

4298 4299 4300
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

4301 4302
	if (!skb_is_gso(skb))
		return 0;
4303 4304

	if (skb_header_cloned(skb)) {
4305
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4306 4307 4308 4309
		if (err)
			return err;
	}

4310 4311
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4312

4313
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4314 4315 4316 4317 4318 4319 4320
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4321
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4322 4323 4324
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4325
	} else if (skb_is_gso_v6(skb)) {
4326 4327 4328 4329
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4330 4331
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4332 4333
	}

4334
	/* compute header lengths */
4335 4336
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4337

4338 4339 4340 4341
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4342
	/* MSS L4LEN IDX */
4343 4344
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4345

4346 4347 4348
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4349
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4350

4351
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4352

4353
	return 1;
4354 4355
}

4356
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4357
{
4358
	struct sk_buff *skb = first->skb;
4359 4360 4361
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4362

4363
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4364 4365
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4366 4367
	} else {
		u8 l4_hdr = 0;
4368
		switch (first->protocol) {
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4381 4382
					 "partial checksum but proto=%x!\n",
					 first->protocol);
4383
			}
4384 4385
			break;
		}
4386

4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4405 4406
					 "partial checksum but l4 proto=%x!\n",
					 l4_hdr);
4407
			}
4408
			break;
4409
		}
4410 4411 4412

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4413
	}
4414

4415
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4416
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4417

4418
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4419 4420
}

4421 4422 4423 4424 4425 4426
#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4427 4428
{
	/* set type for advanced descriptor with frame checksum insertion */
4429 4430 4431
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;
4432 4433

	/* set HW vlan bit if vlan is present */
4434 4435 4436 4437 4438 4439
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));
4440 4441

	/* set timestamp bit if present */
4442 4443
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));
4444

4445 4446
	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4447 4448 4449 4450

	return cmd_type;
}

4451 4452 4453
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4454 4455 4456
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

4457 4458
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4459 4460 4461
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
4462 4463 4464
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));
4465

4466 4467 4468 4469
	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));
4470

4471
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4472 4473
}

4474 4475
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4476
		       const u8 hdr_len)
4477
{
4478
	struct sk_buff *skb = first->skb;
4479
	struct igb_tx_buffer *tx_buffer;
4480
	union e1000_adv_tx_desc *tx_desc;
4481
	struct skb_frag_struct *frag;
4482
	dma_addr_t dma;
4483
	unsigned int data_len, size;
4484
	u32 tx_flags = first->tx_flags;
4485
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4486 4487 4488 4489
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4490 4491 4492 4493
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;
4494 4495

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4496

4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4508 4509 4510

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
4511
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4512 4513 4514 4515 4516 4517 4518

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
4519
			tx_desc->read.olinfo_status = 0;
4520 4521 4522 4523 4524 4525 4526 4527 4528

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4529

4530
		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4531

4532
		i++;
4533 4534 4535
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4536
			i = 0;
4537
		}
4538
		tx_desc->read.olinfo_status = 0;
4539

E
Eric Dumazet 已提交
4540
		size = skb_frag_size(frag);
4541 4542 4543
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4544
				       size, DMA_TO_DEVICE);
4545

4546
		tx_buffer = &tx_ring->tx_buffer_info[i];
4547 4548
	}

4549
	/* write last descriptor with RS and EOP bits */
4550 4551
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4552

4553 4554
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4555 4556 4557
	/* set the timestamp */
	first->time_stamp = jiffies;

4558
	/* Force memory writes to complete before letting h/w know there
4559 4560 4561 4562 4563 4564 4565 4566
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4567
	/* set next_to_watch value indicating a packet is present */
4568
	first->next_to_watch = tx_desc;
4569

4570 4571 4572
	i++;
	if (i == tx_ring->count)
		i = 0;
4573

4574
	tx_ring->next_to_use = i;
4575

4576
	writel(i, tx_ring->tail);
4577

4578
	/* we need this if more than one processor can write to our tail
4579 4580
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4581 4582 4583 4584 4585 4586 4587 4588 4589
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4590 4591 4592
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4593
			break;
4594 4595
		if (i == 0)
			i = tx_ring->count;
4596 4597 4598
		i--;
	}

4599 4600 4601
	tx_ring->next_to_use = i;
}

4602
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4603
{
4604 4605
	struct net_device *netdev = tx_ring->netdev;

4606 4607
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4608 4609
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
4610 4611
	 * but since that doesn't exist yet, just open code it.
	 */
4612 4613 4614
	smp_mb();

	/* We need to check again in a case another CPU has just
4615 4616
	 * made room available.
	 */
4617
	if (igb_desc_unused(tx_ring) < size)
4618 4619 4620
		return -EBUSY;

	/* A reprieve! */
4621
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4622 4623 4624 4625 4626

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4627 4628 4629
	return 0;
}

4630
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4631
{
4632
	if (igb_desc_unused(tx_ring) >= size)
4633
		return 0;
4634
	return __igb_maybe_stop_tx(tx_ring, size);
4635 4636
}

4637 4638
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4639
{
4640
	struct igb_tx_buffer *first;
4641
	int tso;
N
Nick Nunley 已提交
4642
	u32 tx_flags = 0;
4643
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4644
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4645
	u8 hdr_len = 0;
4646

4647 4648
	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4649 4650
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for context descriptor,
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
	 * otherwise try next time
	 */
	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
		unsigned short f;
		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
	} else {
		count += skb_shinfo(skb)->nr_frags;
	}

	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4662 4663 4664
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4665

4666 4667 4668 4669 4670 4671
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4672 4673
	skb_tx_timestamp(skb);

4674 4675
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4676

4677 4678 4679 4680 4681 4682 4683 4684 4685
		if (!(adapter->ptp_tx_skb)) {
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
			tx_flags |= IGB_TX_FLAGS_TSTAMP;

			adapter->ptp_tx_skb = skb_get(skb);
			adapter->ptp_tx_start = jiffies;
			if (adapter->hw.mac.type == e1000_82576)
				schedule_work(&adapter->ptp_tx_work);
		}
4686
	}
4687

4688
	if (vlan_tx_tag_present(skb)) {
4689 4690 4691 4692
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4693 4694 4695
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4696

4697 4698
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4699
		goto out_drop;
4700 4701
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4702

4703
	igb_tx_map(tx_ring, first, hdr_len);
4704 4705

	/* Make sure there is space in the ring for the next send. */
4706
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4707

4708
	return NETDEV_TX_OK;
4709 4710

out_drop:
4711 4712
	igb_unmap_and_free_tx_resource(tx_ring, first);

4713
	return NETDEV_TX_OK;
4714 4715
}

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4727 4728
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4729 4730
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4742
	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4743 4744
	 * in order to meet this minimum size requirement.
	 */
4745 4746
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
4747 4748
			return NETDEV_TX_OK;
		skb->len = 17;
4749
		skb_set_tail_pointer(skb, 17);
4750
	}
4751

4752
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4753 4754 4755
}

/**
4756 4757
 *  igb_tx_timeout - Respond to a Tx Hang
 *  @netdev: network interface device structure
4758 4759 4760 4761 4762 4763 4764 4765
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4766

4767
	if (hw->mac.type >= e1000_82580)
4768 4769
		hw->dev_spec._82575.global_device_reset = true;

4770
	schedule_work(&adapter->reset_task);
4771 4772
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4773 4774 4775 4776 4777 4778 4779
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4780 4781
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4782 4783 4784 4785
	igb_reinit_locked(adapter);
}

/**
4786 4787 4788
 *  igb_get_stats64 - Get System Network Statistics
 *  @netdev: network interface device structure
 *  @stats: rtnl_link_stats64 pointer
4789
 **/
E
Eric Dumazet 已提交
4790
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4791
						struct rtnl_link_stats64 *stats)
4792
{
E
Eric Dumazet 已提交
4793 4794 4795 4796 4797 4798 4799 4800
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4801 4802 4803
}

/**
4804 4805 4806
 *  igb_change_mtu - Change the Maximum Transfer Unit
 *  @netdev: network interface device structure
 *  @new_mtu: new value for maximum frame size
4807
 *
4808
 *  Returns 0 on success, negative on failure
4809 4810 4811 4812
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4813
	struct pci_dev *pdev = adapter->pdev;
4814
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4815

4816
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4817
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4818 4819 4820
		return -EINVAL;
	}

4821
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4822
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4823
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4824 4825 4826
		return -EINVAL;
	}

4827 4828 4829 4830
	/* adjust max frame to be at least the size of a standard frame */
	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;

4831 4832
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4833

4834 4835
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4836

4837 4838
	if (netif_running(netdev))
		igb_down(adapter);
4839

4840
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
4855 4856
 *  igb_update_stats - Update the board statistics counters
 *  @adapter: board private structure
4857
 **/
E
Eric Dumazet 已提交
4858 4859
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4860 4861 4862
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4863
	u32 reg, mpc;
4864
	u16 phy_tmp;
4865 4866
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4867 4868
	unsigned int start;
	u64 _bytes, _packets;
4869 4870 4871

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

4872
	/* Prevent stats update while adapter is being reset, or if the pci
4873 4874 4875 4876 4877 4878 4879
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4880 4881
	bytes = 0;
	packets = 0;
4882 4883

	rcu_read_lock();
4884
	for (i = 0; i < adapter->num_rx_queues; i++) {
4885
		u32 rqdpc = rd32(E1000_RQDPC(i));
4886
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4887

4888 4889 4890 4891
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
4892 4893 4894 4895 4896 4897 4898 4899

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4900 4901
	}

4902 4903
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4904 4905 4906 4907

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4908
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4909 4910 4911 4912 4913 4914 4915
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4916
	}
4917 4918
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4919
	rcu_read_unlock();
4920 4921

	/* read stats registers */
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4939 4940 4941
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4956
	adapter->stats.rnbc += rd32(E1000_RNBC);
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4974 4975
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4976 4977

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4978 4979 4980 4981
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4982 4983 4984 4985 4986

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
4987 4988
	}

4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
5003 5004
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
5005 5006 5007 5008

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
5009 5010
	 * our own version based on RUC and ROC
	 */
5011
	net_stats->rx_errors = adapter->stats.rxerrc +
5012 5013 5014
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
5015 5016 5017 5018 5019
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
5020 5021

	/* Tx Errors */
5022 5023 5024 5025 5026
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5027 5028 5029 5030 5031 5032

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
5033
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5034 5035 5036 5037 5038 5039 5040 5041 5042
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5043 5044 5045 5046 5047 5048 5049 5050 5051

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
5052 5053 5054 5055
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
5056
	struct igb_adapter *adapter = data;
5057
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
5058 5059
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
5060

5061 5062 5063
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5064
	if (icr & E1000_ICR_DOUTSYNC) {
5065 5066
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
5067 5068
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
5069 5070
		 * see if it is really a spoof event.
		 */
G
Greg Rose 已提交
5071
		igb_check_wvbr(adapter);
5072
	}
5073

5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

P
PJ Waskiewicz 已提交
5096
	wr32(E1000_EIMS, adapter->eims_other);
5097 5098 5099 5100

	return IRQ_HANDLED;
}

5101
static void igb_write_itr(struct igb_q_vector *q_vector)
5102
{
5103
	struct igb_adapter *adapter = q_vector->adapter;
5104
	u32 itr_val = q_vector->itr_val & 0x7FFC;
5105

5106 5107
	if (!q_vector->set_itr)
		return;
5108

5109 5110
	if (!itr_val)
		itr_val = 0x4;
5111

5112 5113
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
5114
	else
5115
		itr_val |= E1000_EITR_CNT_IGNR;
5116

5117 5118
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
5119 5120
}

5121
static irqreturn_t igb_msix_ring(int irq, void *data)
5122
{
5123
	struct igb_q_vector *q_vector = data;
5124

5125 5126
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
5127

5128
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
5129

5130
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
5131 5132
}

5133
#ifdef CONFIG_IGB_DCA
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

5144
	/* We can enable relaxed ordering for reads, but not writes when
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

5165
	/* We can enable relaxed ordering for reads, but not writes when
5166 5167 5168 5169 5170 5171 5172 5173 5174
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

5175
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
5176
{
5177
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
5178 5179
	int cpu = get_cpu();

5180 5181 5182
	if (q_vector->cpu == cpu)
		goto out_no_update;

5183 5184 5185 5186 5187 5188
	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

5189 5190
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
5191 5192 5193 5194 5195
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
5196
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
5197 5198
	int i;

5199
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
5200 5201
		return;

5202 5203 5204
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

5205
	for (i = 0; i < adapter->num_q_vectors; i++) {
5206 5207
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
5208 5209 5210 5211 5212 5213 5214
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
5215
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
5216 5217 5218 5219 5220 5221
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
5222
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
5223 5224
			break;
		if (dca_add_requester(dev) == 0) {
5225
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5226
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
5227 5228 5229 5230 5231
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
5232
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
5233
			/* without this a class_device is left
5234 5235
			 * hanging around in the sysfs model
			 */
J
Jeb Cramer 已提交
5236
			dca_remove_requester(dev);
5237
			dev_info(&pdev->dev, "DCA disabled\n");
5238
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
5239
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
5240 5241 5242
		}
		break;
	}
5243

J
Jeb Cramer 已提交
5244
	return 0;
5245 5246
}

J
Jeb Cramer 已提交
5247
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5248
			  void *p)
J
Jeb Cramer 已提交
5249 5250 5251 5252
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5253
					 __igb_notify_dca);
J
Jeb Cramer 已提交
5254 5255 5256

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
5257
#endif /* CONFIG_IGB_DCA */
5258

5259 5260 5261 5262 5263
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

5264
	eth_zero_addr(mac_addr);
5265 5266
	igb_set_vf_mac(adapter, vf, mac_addr);

L
Lior Levy 已提交
5267 5268 5269
	/* By default spoof check is enabled for all VFs */
	adapter->vf_data[vf].spoofchk_enabled = true;

5270
	return 0;
5271 5272 5273
}

#endif
5274 5275 5276 5277 5278 5279 5280 5281
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5282
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5283 5284 5285 5286 5287
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5288 5289 5290 5291 5292 5293
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5294
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5295
			    IGB_VF_FLAG_MULTI_PROMISC);
5296 5297 5298 5299
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5300
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5301 5302
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
5303
		/* if we have hashes and we are clearing a multicast promisc
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;
}

5326 5327 5328 5329 5330 5331 5332 5333
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5334
	/* salt away the number of multicast addresses assigned
5335 5336 5337 5338 5339
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5340 5341 5342 5343 5344
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5345
	for (i = 0; i < n; i++)
5346
		vf_data->vf_mc_hashes[i] = hash_list[i];
5347 5348

	/* Flush and reset the mta with the new values */
5349
	igb_set_rx_mode(adapter->netdev);
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5361 5362 5363
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5364
		vf_data = &adapter->vf_data[i];
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5403 5404

	adapter->vf_data[vf].vlans_enabled = 0;
5405 5406 5407 5408 5409 5410 5411
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5412 5413 5414 5415 5416
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5446 5447
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5448 5449
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5450 5451
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5452
			wr32(E1000_VLVF(i), reg);
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5468
			adapter->vf_data[vf].vlans_enabled++;
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5495 5496
		}
	}
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
5530
				 "The VF VLAN has been set, but the PF device is not up.\n");
5531
			dev_warn(&adapter->pdev->dev,
5532
				 "Bring the PF device up before attempting to use the VF device.\n");
5533 5534 5535
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5536
			     false, vf);
5537 5538 5539 5540
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
5541
	}
5542
out:
5543
	return err;
5544 5545
}

5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;
	u32 reg;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (i >= E1000_VLVF_ARRAY_SIZE)
		i = -1;

	return i;
}

5566 5567
static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
5568
	struct e1000_hw *hw = &adapter->hw;
5569 5570
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5571
	int err = 0;
5572

5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
	/* If in promiscuous mode we need to make sure the PF also has
	 * the VLAN filter set.
	 */
	if (add && (adapter->netdev->flags & IFF_PROMISC))
		err = igb_vlvf_set(adapter, vid, add,
				   adapter->vfs_allocated_count);
	if (err)
		goto out;

	err = igb_vlvf_set(adapter, vid, add, vf);

	if (err)
		goto out;

	/* Go through all the checks to see if the VLAN filter should
	 * be wiped completely.
	 */
	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
		u32 vlvf, bits;

		int regndx = igb_find_vlvf_entry(adapter, vid);
		if (regndx < 0)
			goto out;
		/* See if any other pools are set for this VLAN filter
		 * entry other than the PF.
		 */
		vlvf = bits = rd32(E1000_VLVF(regndx));
		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
			      adapter->vfs_allocated_count);
		/* If the filter was removed then ensure PF pool bit
		 * is cleared if the PF only added itself to the pool
		 * because the PF is in promiscuous mode.
		 */
		if ((vlvf & VLAN_VID_MASK) == vid &&
		    !test_bit(vid, adapter->active_vlans) &&
		    !bits)
			igb_vlvf_set(adapter, vid, add,
				     adapter->vfs_allocated_count);
	}

out:
	return err;
5615 5616
}

5617
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5618
{
G
Greg Rose 已提交
5619 5620
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5621
	adapter->vf_data[vf].last_nack = jiffies;
5622 5623

	/* reset offloads to defaults */
5624
	igb_set_vmolr(adapter, vf, true);
5625 5626 5627

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5628 5629 5630 5631 5632 5633
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5634 5635 5636 5637 5638

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5639
	igb_set_rx_mode(adapter->netdev);
5640 5641
}

5642 5643 5644 5645
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

5646
	/* clear mac address as we were hotplug removed/added */
5647
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5648
		eth_zero_addr(vf_mac);
5649 5650 5651 5652 5653 5654

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5655 5656 5657
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5658
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5659 5660 5661 5662
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5663
	igb_vf_reset(adapter, vf);
5664 5665

	/* set vf mac address */
5666
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5667 5668 5669 5670 5671 5672 5673

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5674
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5675 5676 5677 5678 5679 5680 5681 5682 5683

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
5684
	/* The VF MAC Address is stored in a packed array of bytes
G
Greg Rose 已提交
5685 5686
	 * starting at the second 32 bit word of the msg array
	 */
5687 5688
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5689

5690 5691
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5692

5693
	return err;
5694 5695 5696 5697 5698
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5699
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5700 5701 5702
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5703 5704
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5705
		igb_write_mbx(hw, &msg, 1, vf);
5706
		vf_data->last_nack = jiffies;
5707 5708 5709
	}
}

5710
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5711
{
5712 5713
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5714
	struct e1000_hw *hw = &adapter->hw;
5715
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5716 5717
	s32 retval;

5718
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5719

5720 5721
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5722
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5723 5724 5725 5726 5727
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5728 5729 5730

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5731
		return;
5732

5733
	/* until the vf completes a reset it should not be
5734 5735 5736 5737
	 * allowed to start any configuration.
	 */
	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5738
		return;
5739 5740
	}

5741
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5742 5743 5744 5745
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5746 5747 5748 5749
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5750 5751 5752 5753 5754
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
5755 5756
				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
				 vf);
5757
		break;
5758 5759 5760
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5761 5762 5763 5764 5765 5766 5767
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5768 5769 5770
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
5771 5772
				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
				 vf);
5773 5774
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5775 5776
		break;
	default:
5777
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5778 5779 5780 5781
		retval = -1;
		break;
	}

5782 5783
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5784 5785 5786 5787 5788 5789 5790
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5791
}
5792

5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5811 5812
}

5813 5814 5815 5816 5817 5818 5819
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5820 5821
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5840
/**
5841 5842 5843
 *  igb_intr_msi - Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5844 5845 5846
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5847 5848
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5849 5850 5851 5852
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5853
	igb_write_itr(q_vector);
5854

5855 5856 5857
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5858
	if (icr & E1000_ICR_DOUTSYNC) {
5859 5860 5861 5862
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5863 5864 5865 5866 5867 5868
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5880
	napi_schedule(&q_vector->napi);
5881 5882 5883 5884 5885

	return IRQ_HANDLED;
}

/**
5886 5887 5888
 *  igb_intr - Legacy Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5889 5890 5891
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5892 5893
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5894 5895
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5896 5897
	 * need for the IMC write
	 */
5898 5899 5900
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5901 5902
	 * not set, then the adapter didn't send an interrupt
	 */
5903 5904 5905
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5906 5907
	igb_write_itr(q_vector);

5908 5909 5910
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5911
	if (icr & E1000_ICR_DOUTSYNC) {
5912 5913 5914 5915
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5916 5917 5918 5919 5920 5921 5922
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5934
	napi_schedule(&q_vector->napi);
5935 5936 5937 5938

	return IRQ_HANDLED;
}

5939
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5940
{
5941
	struct igb_adapter *adapter = q_vector->adapter;
5942
	struct e1000_hw *hw = &adapter->hw;
5943

5944 5945 5946 5947
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5948
		else
5949
			igb_update_ring_itr(q_vector);
5950 5951
	}

5952 5953
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5954
			wr32(E1000_EIMS, q_vector->eims_value);
5955 5956 5957
		else
			igb_irq_enable(adapter);
	}
5958 5959
}

5960
/**
5961 5962 5963
 *  igb_poll - NAPI Rx polling callback
 *  @napi: napi polling structure
 *  @budget: count of how many packets we should handle
5964 5965
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5966
{
5967
	struct igb_q_vector *q_vector = container_of(napi,
5968 5969
						     struct igb_q_vector,
						     napi);
5970
	bool clean_complete = true;
5971

5972
#ifdef CONFIG_IGB_DCA
5973 5974
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5975
#endif
5976
	if (q_vector->tx.ring)
5977
		clean_complete = igb_clean_tx_irq(q_vector);
5978

5979
	if (q_vector->rx.ring)
5980
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5981

5982 5983 5984
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5985

5986
	/* If not enough Rx work done, exit the polling mode */
5987 5988
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5989

5990
	return 0;
5991
}
A
Al Viro 已提交
5992

5993
/**
5994 5995
 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 *  @q_vector: pointer to q_vector containing needed info
5996
 *
5997
 *  returns true if ring is completely cleaned
5998
 **/
5999
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6000
{
6001
	struct igb_adapter *adapter = q_vector->adapter;
6002
	struct igb_ring *tx_ring = q_vector->tx.ring;
6003
	struct igb_tx_buffer *tx_buffer;
6004
	union e1000_adv_tx_desc *tx_desc;
6005
	unsigned int total_bytes = 0, total_packets = 0;
6006
	unsigned int budget = q_vector->tx.work_limit;
6007
	unsigned int i = tx_ring->next_to_clean;
6008

6009 6010
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
6011

6012
	tx_buffer = &tx_ring->tx_buffer_info[i];
6013
	tx_desc = IGB_TX_DESC(tx_ring, i);
6014
	i -= tx_ring->count;
6015

6016 6017
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6018 6019 6020 6021

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
6022

6023
		/* prevent any other reads prior to eop_desc */
6024
		read_barrier_depends();
6025

6026 6027 6028 6029
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

6030 6031
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
6032

6033 6034 6035
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
6036

6037 6038
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
6039

6040 6041
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
6042 6043
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
6044 6045
				 DMA_TO_DEVICE);

6046 6047 6048 6049
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

6050 6051
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
6052 6053
			tx_buffer++;
			tx_desc++;
6054
			i++;
6055 6056
			if (unlikely(!i)) {
				i -= tx_ring->count;
6057
				tx_buffer = tx_ring->tx_buffer_info;
6058 6059
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
6060 6061

			/* unmap any remaining paged data */
6062
			if (dma_unmap_len(tx_buffer, len)) {
6063
				dma_unmap_page(tx_ring->dev,
6064 6065
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
6066
					       DMA_TO_DEVICE);
6067
				dma_unmap_len_set(tx_buffer, len, 0);
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
6080 6081 6082 6083 6084 6085 6086

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
6087

6088 6089
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
6090
	i += tx_ring->count;
6091
	tx_ring->next_to_clean = i;
6092 6093 6094 6095
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
6096 6097
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
6098

6099
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6100
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
6101

6102
		/* Detect a transmit hang in hardware, this serializes the
6103 6104
		 * check with the clearing of time_stamp and movement of i
		 */
6105
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6106
		if (tx_buffer->next_to_watch &&
6107
		    time_after(jiffies, tx_buffer->time_stamp +
6108 6109
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6110 6111

			/* detected Tx unit hang */
6112
			dev_err(tx_ring->dev,
6113
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
6114
				"  Tx Queue             <%d>\n"
6115 6116 6117 6118 6119 6120
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
6121
				"  next_to_watch        <%p>\n"
6122 6123
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
6124
				tx_ring->queue_index,
6125
				rd32(E1000_TDH(tx_ring->reg_idx)),
6126
				readl(tx_ring->tail),
6127 6128
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
6129
				tx_buffer->time_stamp,
6130
				tx_buffer->next_to_watch,
6131
				jiffies,
6132
				tx_buffer->next_to_watch->wb.status);
6133 6134 6135 6136 6137
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
6138 6139
		}
	}
6140

6141
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6142
	if (unlikely(total_packets &&
6143 6144
	    netif_carrier_ok(tx_ring->netdev) &&
	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
6162 6163
}

6164
/**
6165 6166 6167
 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 *  @rx_ring: rx descriptor ring to store buffers on
 *  @old_buff: donor buffer to have page reused
6168
 *
6169
 *  Synchronizes page for reuse by the adapter
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
6189
					 IGB_RX_BUFSZ,
6190 6191 6192
					 DMA_FROM_DEVICE);
}

6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
				  struct page *page,
				  unsigned int truesize)
{
	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;

	/* since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif

	return true;
}

6228
/**
6229 6230 6231 6232 6233
 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 *  @rx_ring: rx descriptor ring to transact packets on
 *  @rx_buffer: buffer containing page to add
 *  @rx_desc: descriptor containing length of buffer written by hardware
 *  @skb: sk_buff to place the data into
6234
 *
6235 6236 6237 6238
 *  This function will add the data contained in rx_buffer->page to the skb.
 *  This is done either through a direct copy if the data in the buffer is
 *  less than the skb header size, otherwise it will just attach the page as
 *  a frag to the skb.
6239
 *
6240 6241
 *  The function will then update the page offset if necessary and return
 *  true if the buffer can be reused by the adapter.
6242 6243 6244 6245 6246 6247 6248 6249
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6250 6251 6252 6253 6254
#if (PAGE_SIZE < 8192)
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6277
			rx_buffer->page_offset, size, truesize);
6278

6279 6280
	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
}
6281

6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

6312
		/* we will be copying header into skb->data in
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6323
				      IGB_RX_BUFSZ,
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6342
static inline void igb_rx_checksum(struct igb_ring *ring,
6343 6344
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6345
{
6346
	skb_checksum_none_assert(skb);
6347

6348
	/* Ignore Checksum bit is set */
6349
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6350 6351 6352 6353
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6354
		return;
6355

6356
	/* TCP/UDP checksum error bit is set */
6357 6358 6359
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6360
		/* work around errata with sctp packets where the TCPE aka
6361 6362 6363
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6364 6365
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6366
			u64_stats_update_begin(&ring->rx_syncp);
6367
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6368 6369
			u64_stats_update_end(&ring->rx_syncp);
		}
6370 6371 6372 6373
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6374 6375
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6376 6377
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6378 6379
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6380 6381
}

6382 6383 6384 6385 6386 6387 6388 6389
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

6390
/**
6391 6392 6393 6394
 *  igb_is_non_eop - process handling of non-EOP buffers
 *  @rx_ring: Rx ring being processed
 *  @rx_desc: Rx descriptor for current buffer
 *  @skb: current socket buffer containing buffer in progress
6395
 *
6396 6397 6398 6399
 *  This function updates next to clean.  If the buffer is an EOP buffer
 *  this function exits returning false, otherwise it will place the
 *  sk_buff in the next buffer to be chained and return true indicating
 *  that this is in fact a non-EOP buffer.
6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6418
/**
6419 6420 6421
 *  igb_get_headlen - determine size of header for LRO/GRO
 *  @data: pointer to the start of the headers
 *  @max_len: total length of section to find headers in
6422
 *
6423 6424 6425 6426 6427
 *  This function is meant to determine the length of headers that will
 *  be recognized by hardware for LRO, and GRO offloads.  The main
 *  motivation of doing this is to only perform one pull for IPv4 TCP
 *  packets so that we can do basic things like calculating the gso_size
 *  based on the average data per packet.
6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

6477
		/* record next protocol if header is present */
6478
		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6479
			nexthdr = hdr.ipv4->protocol;
6480 6481 6482 6483 6484 6485
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
6486
		hlen = sizeof(struct ipv6hdr);
6487 6488 6489 6490
	} else {
		return hdr.network - data;
	}

6491 6492 6493
	/* relocate pointer to start of L4 header */
	hdr.network += hlen;

6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

6514
	/* If everything has gone correctly hdr.network should be the
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
6526 6527 6528 6529
 *  igb_pull_tail - igb specific version of skb_pull_tail
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being adjusted
6530
 *
6531 6532 6533 6534 6535 6536
 *  This function is an igb specific version of __pskb_pull_tail.  The
 *  main difference between this version and the original function is that
 *  this function can make several assumptions about the state of things
 *  that allow for significant optimizations versus the standard function.
 *  As a result we can do things like drop a frag and maintain an accurate
 *  truesize for the skb.
6537 6538 6539 6540
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6541
{
6542 6543 6544 6545
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

6546
	/* it is valid to use page_address instead of kmap since we are
6547 6548
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6549
	 */
6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
	va = skb_frag_address(frag);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

6566
	/* we need the header to contain the greater of either ETH_HLEN or
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
6582 6583 6584 6585
 *  igb_cleanup_headers - Correct corrupted or empty headers
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being fixed
6586
 *
6587 6588
 *  Address the case where we are pulling data in on pages only
 *  and as such no data is present in the skb header.
6589
 *
6590 6591
 *  In addition if skb is not at least 60 bytes we need to pad it so that
 *  it is large enough to qualify as a valid Ethernet frame.
6592
 *
6593
 *  Returns true if an error was encountered and skb was freed.
6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{
	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6622 6623
}

6624
/**
6625 6626 6627 6628
 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being populated
6629
 *
6630 6631 6632
 *  This function checks the ring, descriptor, and packet information in
 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 *  other fields within the skb.
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

6644
	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6645

6646
	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6647 6648 6649 6650 6651 6652 6653 6654
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

6655
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6656 6657 6658 6659 6660 6661 6662
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6663
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6664
{
6665
	struct igb_ring *rx_ring = q_vector->rx.ring;
6666
	struct sk_buff *skb = rx_ring->skb;
6667
	unsigned int total_bytes = 0, total_packets = 0;
6668
	u16 cleaned_count = igb_desc_unused(rx_ring);
6669

6670 6671
	do {
		union e1000_adv_rx_desc *rx_desc;
6672

6673 6674 6675 6676 6677
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6678

6679
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6680

6681 6682
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6683

6684 6685 6686 6687 6688 6689
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();

6690
		/* retrieve a buffer from the ring */
6691
		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6692

6693 6694 6695
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6696

6697
		cleaned_count++;
6698

6699 6700 6701
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6702 6703 6704 6705 6706

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6707 6708
		}

6709
		/* probably a little skewed due to removing CRC */
6710 6711
		total_bytes += skb->len;

6712 6713
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6714

J
Jiri Pirko 已提交
6715
		napi_gro_receive(&q_vector->napi, skb);
6716

6717 6718 6719
		/* reset skb pointer */
		skb = NULL;

6720 6721 6722
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
6723

6724 6725 6726
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
6727
	u64_stats_update_begin(&rx_ring->rx_syncp);
6728 6729
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6730
	u64_stats_update_end(&rx_ring->rx_syncp);
6731 6732
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6733 6734

	if (cleaned_count)
6735
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6736

6737
	return (total_packets < budget);
6738 6739
}

6740
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6741
				  struct igb_rx_buffer *bi)
6742 6743
{
	struct page *page = bi->page;
6744
	dma_addr_t dma;
6745

6746 6747
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
6748 6749
		return true;

6750 6751 6752 6753 6754
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
6755 6756
	}

6757 6758
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6759

6760
	/* if mapping failed free memory back to system since
6761 6762
	 * there isn't much point in holding memory we can't use
	 */
6763
	if (dma_mapping_error(rx_ring->dev, dma)) {
6764 6765
		__free_page(page);

6766 6767 6768 6769
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

6770
	bi->dma = dma;
6771 6772
	bi->page = page;
	bi->page_offset = 0;
6773

6774 6775 6776
	return true;
}

6777
/**
6778 6779
 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
 *  @adapter: address of board private structure
6780
 **/
6781
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6782 6783
{
	union e1000_adv_rx_desc *rx_desc;
6784
	struct igb_rx_buffer *bi;
6785
	u16 i = rx_ring->next_to_use;
6786

6787 6788 6789 6790
	/* nothing to do */
	if (!cleaned_count)
		return;

6791
	rx_desc = IGB_RX_DESC(rx_ring, i);
6792
	bi = &rx_ring->rx_buffer_info[i];
6793
	i -= rx_ring->count;
6794

6795
	do {
6796
		if (!igb_alloc_mapped_page(rx_ring, bi))
6797
			break;
6798

6799
		/* Refresh the desc even if buffer_addrs didn't change
6800 6801
		 * because each write-back erases this info.
		 */
6802
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6803

6804 6805
		rx_desc++;
		bi++;
6806
		i++;
6807
		if (unlikely(!i)) {
6808
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6809
			bi = rx_ring->rx_buffer_info;
6810 6811 6812 6813 6814
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6815 6816 6817

		cleaned_count--;
	} while (cleaned_count);
6818

6819 6820
	i += rx_ring->count;

6821
	if (rx_ring->next_to_use != i) {
6822
		/* record the next descriptor to use */
6823 6824
		rx_ring->next_to_use = i;

6825 6826 6827
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

6828
		/* Force memory writes to complete before letting h/w
6829 6830
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
6831 6832
		 * such as IA-64).
		 */
6833
		wmb();
6834
		writel(i, rx_ring->tail);
6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6857 6858
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6881
	case SIOCSHWTSTAMP:
6882
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6883 6884 6885 6886 6887
	default:
		return -EOPNOTSUPP;
	}
}

6888 6889 6890 6891
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6892
	if (pcie_capability_read_word(adapter->pdev, reg, value))
6893 6894 6895 6896 6897 6898 6899 6900 6901
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6902
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6903 6904 6905 6906 6907
		return -E1000_ERR_CONFIG;

	return 0;
}

6908
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6909 6910 6911 6912
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6913
	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6914

6915
	if (enable) {
6916 6917 6918 6919 6920
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6921
		/* Disable CFI check */
6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6932
	igb_rlpml_set(adapter);
6933 6934
}

6935 6936
static int igb_vlan_rx_add_vid(struct net_device *netdev,
			       __be16 proto, u16 vid)
6937 6938 6939
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6940
	int pf_id = adapter->vfs_allocated_count;
6941

6942 6943
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6944

6945 6946
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6947 6948

	set_bit(vid, adapter->active_vlans);
6949 6950

	return 0;
6951 6952
}

6953 6954
static int igb_vlan_rx_kill_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
6955 6956 6957
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6958
	int pf_id = adapter->vfs_allocated_count;
6959
	s32 err;
6960

6961 6962
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6963

6964 6965
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6966
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6967 6968

	clear_bit(vid, adapter->active_vlans);
6969 6970

	return 0;
6971 6972 6973 6974
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6975
	u16 vid;
6976

6977 6978
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6979
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6980
		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6981 6982
}

6983
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6984
{
6985
	struct pci_dev *pdev = adapter->pdev;
6986 6987 6988 6989
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6990
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6991 6992
	 * for the switch() below to work
	 */
6993 6994 6995
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
	/* Fiber NIC's only allow 1000 gbps Full duplex
	 * and 100Mbps Full duplex for 100baseFx sfp
	 */
	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
		switch (spd + dplx) {
		case SPEED_10 + DUPLEX_HALF:
		case SPEED_10 + DUPLEX_FULL:
		case SPEED_100 + DUPLEX_HALF:
			goto err_inval;
		default:
			break;
		}
	}
7009

7010
	switch (spd + dplx) {
7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
7029
		goto err_inval;
7030
	}
7031 7032 7033 7034

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

7035
	return 0;
7036 7037 7038 7039

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
7040 7041
}

Y
Yan, Zheng 已提交
7042 7043
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
7044 7045 7046 7047
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
7048
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
7049
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7050 7051 7052 7053 7054 7055
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
7056
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
7057
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
7058

7059
	igb_clear_interrupt_scheme(adapter);
7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
7073
		igb_set_rx_mode(netdev);
7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
7091
		igb_disable_pcie_master(hw);
7092 7093 7094 7095 7096 7097 7098 7099

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

7100 7101
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
7102 7103 7104
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
7105 7106

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7107 7108
	 * would have already happened in close and is redundant.
	 */
7109 7110 7111 7112 7113 7114 7115 7116
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
7117
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
7118
static int igb_suspend(struct device *dev)
7119 7120 7121
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
7122
	struct pci_dev *pdev = to_pci_dev(dev);
7123

Y
Yan, Zheng 已提交
7124
	retval = __igb_shutdown(pdev, &wake, 0);
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
7137
#endif /* CONFIG_PM_SLEEP */
7138

Y
Yan, Zheng 已提交
7139
static int igb_resume(struct device *dev)
7140
{
Y
Yan, Zheng 已提交
7141
	struct pci_dev *pdev = to_pci_dev(dev);
7142 7143 7144 7145 7146 7147 7148
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
7149
	pci_save_state(pdev);
T
Taku Izumi 已提交
7150

7151
	err = pci_enable_device_mem(pdev);
7152 7153 7154 7155 7156 7157 7158 7159 7160 7161
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

7162
	if (igb_init_interrupt_scheme(adapter, true)) {
A
Alexander Duyck 已提交
7163 7164
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
7165 7166 7167
	}

	igb_reset(adapter);
7168 7169

	/* let the f/w know that the h/w is now under the control of the
7170 7171
	 * driver.
	 */
7172 7173
	igb_get_hw_control(adapter);

7174 7175
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
7176
	if (netdev->flags & IFF_UP) {
7177
		rtnl_lock();
Y
Yan, Zheng 已提交
7178
		err = __igb_open(netdev, true);
7179
		rtnl_unlock();
A
Alexander Duyck 已提交
7180 7181 7182
		if (err)
			return err;
	}
7183 7184

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7217 7218 7219

	return 0;
}
Y
Yan, Zheng 已提交
7220 7221 7222 7223 7224 7225

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
7226 7227 7228 7229
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
7230 7231
	bool wake;

Y
Yan, Zheng 已提交
7232
	__igb_shutdown(pdev, &wake, 0);
7233 7234 7235 7236 7237

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7238 7239
}

7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

7306
#ifdef CONFIG_NET_POLL_CONTROLLER
7307
/* Polling 'interrupt' - used by things like netconsole to send skbs
7308 7309 7310 7311 7312 7313
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
7314
	struct e1000_hw *hw = &adapter->hw;
7315
	struct igb_q_vector *q_vector;
7316 7317
	int i;

7318
	for (i = 0; i < adapter->num_q_vectors; i++) {
7319 7320 7321 7322 7323
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
7324
		napi_schedule(&q_vector->napi);
7325
	}
7326 7327 7328 7329
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
7330 7331 7332
 *  igb_io_error_detected - called when PCI error is detected
 *  @pdev: Pointer to PCI device
 *  @state: The current pci connection state
7333
 *
7334 7335 7336
 *  This function is called after a PCI bus error affecting
 *  this device has been detected.
 **/
7337 7338 7339 7340 7341 7342 7343 7344
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

7345 7346 7347
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

7348 7349 7350 7351 7352 7353 7354 7355 7356
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
7357 7358
 *  igb_io_slot_reset - called after the pci bus has been reset.
 *  @pdev: Pointer to PCI device
7359
 *
7360 7361 7362
 *  Restart the card from scratch, as if from a cold-boot. Implementation
 *  resembles the first-half of the igb_resume routine.
 **/
7363 7364 7365 7366 7367
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7368
	pci_ers_result_t result;
T
Taku Izumi 已提交
7369
	int err;
7370

7371
	if (pci_enable_device_mem(pdev)) {
7372 7373
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
7374 7375 7376 7377
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
7378
		pci_save_state(pdev);
7379

7380 7381
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
7382

7383 7384 7385 7386
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
7387

7388 7389
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
7390 7391 7392
		dev_err(&pdev->dev,
			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
			err);
7393 7394
		/* non-fatal, continue */
	}
7395 7396

	return result;
7397 7398 7399
}

/**
7400 7401
 *  igb_io_resume - called when traffic can start flowing again.
 *  @pdev: Pointer to PCI device
7402
 *
7403 7404 7405
 *  This callback is called when the error recovery driver tells us that
 *  its OK to resume normal operation. Implementation resembles the
 *  second-half of the igb_resume routine.
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
7422 7423
	 * driver.
	 */
7424 7425 7426
	igb_get_hw_control(adapter);
}

7427
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7428
			     u8 qsel)
7429 7430 7431 7432 7433 7434 7435 7436
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7437
		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7454
static int igb_set_vf_mac(struct igb_adapter *adapter,
7455
			  int vf, unsigned char *mac_addr)
7456 7457
{
	struct e1000_hw *hw = &adapter->hw;
7458
	/* VF MAC addresses start at end of receive addresses and moves
7459 7460
	 * towards the first, as a result a collision should not be possible
	 */
7461
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7462

7463
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7464

7465
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7466 7467 7468 7469

	return 0;
}

7470 7471 7472 7473 7474 7475 7476
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7477 7478
	dev_info(&adapter->pdev->dev,
		 "Reload the VF driver to make this change effective.");
7479
	if (test_bit(__IGB_DOWN, &adapter->state)) {
7480 7481 7482 7483
		dev_warn(&adapter->pdev->dev,
			 "The VF MAC address has been set, but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev,
			 "Bring the PF device up before attempting to use the VF device.\n");
7484 7485 7486 7487
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
7510 7511
		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
			 tx_rate;
7512 7513

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7514 7515
		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
			      E1000_RTTBCNRC_RF_INT_MASK);
7516 7517 7518 7519 7520 7521
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7522
	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
L
Lior Levy 已提交
7523 7524 7525
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
7544
			 "Link speed has been changed. VF Transmit rate is disabled\n");
7545 7546 7547 7548 7549 7550 7551
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
7552 7553
				      adapter->vf_data[i].tx_rate,
				      actual_link_speed);
7554 7555 7556
	}
}

7557 7558
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7577 7578
}

L
Lior Levy 已提交
7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 reg_val, reg_offset;

	if (!adapter->vfs_allocated_count)
		return -EOPNOTSUPP;

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;

	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
	reg_val = rd32(reg_offset);
	if (setting)
		reg_val |= ((1 << vf) |
			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	else
		reg_val &= ~((1 << vf) |
			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	wr32(reg_offset, reg_val);

	adapter->vf_data[vf].spoofchk_enabled = setting;
	return E1000_SUCCESS;
}

7606 7607 7608 7609 7610 7611 7612 7613
static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7614
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7615 7616
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
L
Lior Levy 已提交
7617
	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7618 7619 7620
	return 0;
}

7621 7622 7623
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7624
	u32 reg;
7625

7626 7627
	switch (hw->mac.type) {
	case e1000_82575:
7628 7629
	case e1000_i210:
	case e1000_i211:
7630
	case e1000_i354:
7631 7632
	default:
		/* replication is not supported for 82575 */
7633
		return;
7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7644 7645
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7646 7647
		break;
	}
7648

7649 7650 7651
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7652
		igb_vmdq_set_anti_spoofing_pf(hw, true,
7653
					      adapter->vfs_allocated_count);
7654 7655 7656 7657
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7658 7659
}

7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

7673
			/* DMA Coalescing high water mark needs to be greater
7674 7675
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7676
			 */
7677 7678 7679 7680 7681 7682 7683 7684 7685
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

7686
			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7687 7688 7689 7690 7691
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7692 7693 7694 7695 7696 7697 7698 7699 7700 7701
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7702 7703

			/* Disable BMC-to-OS Watchdog Enable */
7704 7705 7706
			if (hw->mac.type != e1000_i354)
				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;

7707 7708
			wr32(E1000_DMACR, reg);

7709
			/* no lower threshold to disable
7710 7711 7712 7713 7714 7715 7716 7717
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

7718
			/* free space in tx packet buffer to wake from
7719 7720 7721 7722 7723
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

7724
			/* make low power state decision controlled
7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

7738 7739
/**
 *  igb_read_i2c_byte - Reads 8 bit word over I2C
C
Carolyn Wyborny 已提交
7740 7741 7742 7743 7744 7745 7746
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
7747
 **/
C
Carolyn Wyborny 已提交
7748
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7749
		      u8 dev_addr, u8 *data)
C
Carolyn Wyborny 已提交
7750 7751
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7752
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
	    != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
		return E1000_SUCCESS;
	}
}

7776 7777
/**
 *  igb_write_i2c_byte - Writes 8 bit word over I2C
C
Carolyn Wyborny 已提交
7778 7779 7780 7781 7782 7783 7784
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
7785
 **/
C
Carolyn Wyborny 已提交
7786
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7787
		       u8 dev_addr, u8 data)
C
Carolyn Wyborny 已提交
7788 7789
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7790
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
		return E1000_SUCCESS;

}
7808
/* igb_main.c */