igb_main.c 195.9 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
60 61
#include "igb.h"

C
Carolyn Wyborny 已提交
62
#define MAJ 3
C
Carolyn Wyborny 已提交
63 64
#define MIN 2
#define BUILD 10
C
Carolyn Wyborny 已提交
65
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66
__stringify(BUILD) "-k"
67 68 69 70
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
71
static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
72 73 74 75 76

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

77
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
78 79 80 81
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
82 83
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
85 86 87
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
88 89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
90 91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
92
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
93
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
95 96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
97
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
98
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
100 101 102 103 104 105 106 107 108 109 110 111 112 113
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
114
static void igb_setup_mrqc(struct igb_adapter *);
115 116
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
A
Anders Berggren 已提交
117
static void igb_init_hw_timer(struct igb_adapter *adapter);
118 119 120 121 122 123 124
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
125 126
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
127
static void igb_set_rx_mode(struct net_device *);
128 129 130
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
131
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
132 133
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
134 135
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
136
static void igb_set_uta(struct igb_adapter *adapter);
137 138 139
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
140
static irqreturn_t igb_msix_ring(int irq, void *);
141
#ifdef CONFIG_IGB_DCA
142
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
143
static void igb_setup_dca(struct igb_adapter *);
144
#endif /* CONFIG_IGB_DCA */
145
static int igb_poll(struct napi_struct *, int);
146
static bool igb_clean_tx_irq(struct igb_q_vector *);
147
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
148 149 150
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
151
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
152 153
static int igb_vlan_rx_add_vid(struct net_device *, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, u16);
154
static void igb_restore_vlan(struct igb_adapter *);
155
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
156 157 158
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
159
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
160
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
161 162 163 164 165 166
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
167
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
168 169

#ifdef CONFIG_PCI_IOV
170 171 172
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
static int igb_find_enabled_vfs(struct igb_adapter *adapter);
static int igb_check_vf_assignment(struct igb_adapter *adapter);
R
RongQing Li 已提交
173
#endif
174 175

#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
176 177 178 179 180 181 182 183 184 185 186 187
static int igb_suspend(struct device *);
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
188 189
#endif
static void igb_shutdown(struct pci_dev *);
190
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
191 192 193 194 195 196 197
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
198 199 200 201
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
202
#ifdef CONFIG_PCI_IOV
203 204 205 206 207 208
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

209 210 211 212 213 214 215 216 217 218 219
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

220
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221 222 223 224 225 226 227

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
228
	.driver.pm = &igb_pm_ops,
229 230 231 232 233 234 235 236 237 238
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
339
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
340 341 342 343
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
344 345
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
362
	u16 i, n;
363 364 365 366 367 368 369

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
370 371 372 373
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
374 375 376 377
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
378
	pr_info(" Register Name   Value\n");
379 380 381 382 383 384 385 386 387 388
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
389
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390
	for (n = 0; n < adapter->num_tx_queues; n++) {
391
		struct igb_tx_buffer *buffer_info;
392
		tx_ring = adapter->tx_ring[n];
393
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
394 395 396 397 398 399
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
			(u64)buffer_info->dma,
			buffer_info->length,
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
421 422 423 424 425 426
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
427 428

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
429
			const char *next_desc;
430
			struct igb_tx_buffer *buffer_info;
431
			tx_desc = IGB_TX_DESC(tx_ring, i);
432
			buffer_info = &tx_ring->tx_buffer_info[i];
433
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
434 435 436 437 438 439 440 441 442 443 444 445
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
446 447 448 449 450 451
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
				(u64)buffer_info->dma,
				buffer_info->length,
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
452
				buffer_info->skb, next_desc);
453 454 455 456 457 458 459 460 461 462 463 464

			if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
					16, 1, phys_to_virt(buffer_info->dma),
					buffer_info->length, true);
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
465
	pr_info("Queue [NTU] [NTC]\n");
466 467
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
468 469
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
501 502 503 504 505 506 507
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
508 509

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
510
			const char *next_desc;
511 512
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
513
			rx_desc = IGB_RX_DESC(rx_ring, i);
514 515
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
516 517 518 519 520 521 522 523

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

524 525
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
J
Jeff Kirsher 已提交
526 527
				pr_info("%s[0x%03X]     %016llX %016llX -------"
					"--------- %p%s\n", "RWB", i,
528 529
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
J
Jeff Kirsher 已提交
530
					buffer_info->skb, next_desc);
531
			} else {
J
Jeff Kirsher 已提交
532 533
				pr_info("%s[0x%03X]     %016llX %016llX %016llX"
					" %p%s\n", "R  ", i,
534 535 536
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
J
Jeff Kirsher 已提交
537
					buffer_info->skb, next_desc);
538 539 540 541 542 543

				if (netif_msg_pktdata(adapter)) {
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS,
						16, 1,
						phys_to_virt(buffer_info->dma),
544 545 546 547 548 549 550 551
						IGB_RX_HDR_LEN, true);
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
					  phys_to_virt(
					    buffer_info->page_dma +
					    buffer_info->page_offset),
					  PAGE_SIZE/2, true);
552 553 554 555 556 557 558 559 560 561
				}
			}
		}
	}

exit:
	return;
}


P
Patrick Ohly 已提交
562 563 564 565 566 567 568 569
/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
570 571
	u64 stamp = 0;
	int shift = 0;
P
Patrick Ohly 已提交
572

573 574 575 576 577
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we never
	 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
	 */
578
	if (hw->mac.type >= e1000_82580) {
579 580 581 582
		stamp = rd32(E1000_SYSTIMR) >> 8;
		shift = IGB_82580_TSYNC_SHIFT;
	}

583 584
	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
P
Patrick Ohly 已提交
585 586 587
	return stamp;
}

588
/**
589
 * igb_get_hw_dev - return device
590 591
 * used by hardware layer to print debugging information
 **/
592
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
593 594
{
	struct igb_adapter *adapter = hw->back;
595
	return adapter->netdev;
596
}
P
Patrick Ohly 已提交
597

598 599 600 601 602 603 604 605 606
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
607
	pr_info("%s - version %s\n",
608 609
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
610
	pr_info("%s\n", igb_copyright);
611

612
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
613 614
	dca_register_notify(&dca_notifier);
#endif
615
	ret = pci_register_driver(&igb_driver);
616 617 618 619 620 621 622 623 624 625 626 627 628
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
629
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
630 631
	dca_unregister_notify(&dca_notifier);
#endif
632 633 634 635 636
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

637 638 639 640 641 642 643 644 645 646
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
647
	int i = 0, j = 0;
648
	u32 rbase_offset = adapter->vfs_allocated_count;
649 650 651 652 653 654 655 656

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
657
		if (adapter->vfs_allocated_count) {
658
			for (; i < adapter->rss_queues; i++)
659 660
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
661
		}
662
	case e1000_82575:
663
	case e1000_82580:
664
	case e1000_i350:
665
	default:
666
		for (; i < adapter->num_rx_queues; i++)
667
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
668
		for (; j < adapter->num_tx_queues; j++)
669
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
670 671 672 673
		break;
	}
}

674 675
static void igb_free_queues(struct igb_adapter *adapter)
{
676
	int i;
677

678 679 680 681 682 683 684 685
	for (i = 0; i < adapter->num_tx_queues; i++) {
		kfree(adapter->tx_ring[i]);
		adapter->tx_ring[i] = NULL;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		kfree(adapter->rx_ring[i]);
		adapter->rx_ring[i] = NULL;
	}
686 687 688 689
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

690 691 692 693 694 695 696 697 698
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
699
	struct igb_ring *ring;
700
	int i;
701
	int orig_node = adapter->node;
702

703
	for (i = 0; i < adapter->num_tx_queues; i++) {
704 705 706 707 708 709 710 711 712 713
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
				    adapter->node);
		if (!ring)
			ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
714 715
		if (!ring)
			goto err;
716
		ring->count = adapter->tx_ring_count;
717
		ring->queue_index = i;
718
		ring->dev = &adapter->pdev->dev;
719
		ring->netdev = adapter->netdev;
720
		ring->numa_node = adapter->node;
721 722
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
723
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
724
		adapter->tx_ring[i] = ring;
725
	}
726 727
	/* Restore the adapter's original node */
	adapter->node = orig_node;
728

729
	for (i = 0; i < adapter->num_rx_queues; i++) {
730 731 732 733 734 735 736 737 738 739
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
				    adapter->node);
		if (!ring)
			ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
740 741
		if (!ring)
			goto err;
742
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
743
		ring->queue_index = i;
744
		ring->dev = &adapter->pdev->dev;
745
		ring->netdev = adapter->netdev;
746
		ring->numa_node = adapter->node;
747 748
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
749
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
750 751 752 753 754

		/* On i350, loopback VLAN packets have the tag byte-swapped. */
		if (adapter->hw.mac.type == e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);

755
		adapter->rx_ring[i] = ring;
756
	}
757 758
	/* Restore the adapter's original node */
	adapter->node = orig_node;
759 760

	igb_cache_ring_register(adapter);
761

762
	return 0;
A
Alexander Duyck 已提交
763

764
err:
765 766
	/* Restore the adapter's original node */
	adapter->node = orig_node;
767
	igb_free_queues(adapter);
768

769
	return -ENOMEM;
A
Alexander Duyck 已提交
770 771
}

A
Alexander Duyck 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

798
#define IGB_N0_QUEUE -1
799
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
800
{
801
	struct igb_adapter *adapter = q_vector->adapter;
802
	struct e1000_hw *hw = &adapter->hw;
803 804
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
805
	u32 msixbm = 0;
806

807 808 809 810
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
811 812 813

	switch (hw->mac.type) {
	case e1000_82575:
814 815 816 817
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
818
		if (rx_queue > IGB_N0_QUEUE)
819
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
820
		if (tx_queue > IGB_N0_QUEUE)
821
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
822 823
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
824
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
825
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
826 827
		break;
	case e1000_82576:
A
Alexander Duyck 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841
		/*
		 * 82576 uses a table that essentially consists of 2 columns
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
842
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
843
		break;
844
	case e1000_82580:
845
	case e1000_i350:
A
Alexander Duyck 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
		/*
		 * On 82580 and newer adapters the scheme is similar to 82576
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
861 862
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
863 864 865 866
	default:
		BUG();
		break;
	}
867 868 869 870 871 872

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
890 891
	switch (hw->mac.type) {
	case e1000_82575:
892 893 894 895 896 897 898 899 900
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
901 902 903 904

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
905
		adapter->eims_other = E1000_EIMS_OTHER;
906

A
Alexander Duyck 已提交
907 908 909
		break;

	case e1000_82576:
910
	case e1000_82580:
911
	case e1000_i350:
912 913 914 915 916 917 918 919
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
920 921
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

922
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
923 924 925 926 927
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
928 929 930

	adapter->eims_enable_mask |= adapter->eims_other;

931 932
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
933

934 935 936 937 938 939 940 941 942 943 944 945
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
946
	struct e1000_hw *hw = &adapter->hw;
947 948
	int i, err = 0, vector = 0;

949
	err = request_irq(adapter->msix_entries[vector].vector,
950
	                  igb_msix_other, 0, netdev->name, adapter);
951 952 953 954 955 956 957 958 959
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

960
		if (q_vector->rx.ring && q_vector->tx.ring)
961
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
962 963
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
964
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
965 966
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
967
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
968
				q_vector->rx.ring->queue_index);
969
		else
970 971
			sprintf(q_vector->name, "%s-unused", netdev->name);

972
		err = request_irq(adapter->msix_entries[vector].vector,
973
		                  igb_msix_ring, 0, q_vector->name,
974
		                  q_vector);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
992
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
993
		pci_disable_msi(adapter->pdev);
994
	}
995 996
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
1012 1013
		if (!q_vector)
			continue;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1032 1033 1034 1035 1036 1037 1038

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1039
static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1040 1041 1042 1043
{
	int err;
	int numvecs, i;

1044
	/* Number of supported queues. */
1045
	adapter->num_rx_queues = adapter->rss_queues;
1046 1047 1048 1049
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1050

1051 1052 1053
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1054
	/* if tx handler is separate add 1 for every tx queue */
1055 1056
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1057 1058 1059 1060 1061 1062

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1075
		goto out;
1076 1077 1078 1079 1080

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1092
		wrfl();
1093 1094 1095 1096
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1097
	adapter->vfs_allocated_count = 0;
1098
	adapter->rss_queues = 1;
1099
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1100
	adapter->num_rx_queues = 1;
1101
	adapter->num_tx_queues = 1;
1102
	adapter->num_q_vectors = 1;
1103
	if (!pci_enable_msi(adapter->pdev))
1104
		adapter->flags |= IGB_FLAG_HAS_MSI;
1105
out:
1106 1107 1108 1109
	/* Notify the stack of the (possibly) reduced queue counts. */
	netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
	return netif_set_real_num_rx_queues(adapter->netdev,
					    adapter->num_rx_queues);
1110 1111
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;
1124
	int orig_node = adapter->node;
1125 1126

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
		if ((adapter->num_q_vectors == (adapter->num_rx_queues +
						adapter->num_tx_queues)) &&
		    (adapter->num_rx_queues == v_idx))
			adapter->node = orig_node;
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
					adapter->node);
		if (!q_vector)
			q_vector = kzalloc(sizeof(struct igb_q_vector),
					   GFP_KERNEL);
1142 1143 1144 1145 1146 1147 1148 1149
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
1150 1151 1152
	/* Restore the adapter's original node */
	adapter->node = orig_node;

1153 1154 1155
	return 0;

err_out:
1156 1157
	/* Restore the adapter's original node */
	adapter->node = orig_node;
1158
	igb_free_q_vectors(adapter);
1159 1160 1161 1162 1163 1164
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1165
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1166

1167 1168 1169
	q_vector->rx.ring = adapter->rx_ring[ring_idx];
	q_vector->rx.ring->q_vector = q_vector;
	q_vector->rx.count++;
1170 1171 1172
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1173 1174 1175 1176 1177
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1178
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1179

1180 1181 1182
	q_vector->tx.ring = adapter->tx_ring[ring_idx];
	q_vector->tx.ring->q_vector = q_vector;
	q_vector->tx.count++;
1183
	q_vector->itr_val = adapter->tx_itr_setting;
1184
	q_vector->tx.work_limit = adapter->tx_work_limit;
1185 1186
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1231 1232 1233
	err = igb_set_interrupt_capability(adapter);
	if (err)
		return err;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1264 1265 1266 1267 1268 1269 1270 1271 1272
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1273
	struct pci_dev *pdev = adapter->pdev;
1274 1275 1276 1277
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1278
		if (!err)
1279 1280
			goto request_done;
		/* fall back to MSI */
1281
		igb_clear_interrupt_scheme(adapter);
1282
		if (!pci_enable_msi(pdev))
1283
			adapter->flags |= IGB_FLAG_HAS_MSI;
1284 1285
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1286
		adapter->num_tx_queues = 1;
1287
		adapter->num_rx_queues = 1;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1304
	}
P
PJ Waskiewicz 已提交
1305

1306 1307
	igb_assign_vector(adapter->q_vector[0], 0);

1308
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1309
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1310
				  netdev->name, adapter);
1311 1312
		if (!err)
			goto request_done;
1313

1314 1315
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1316
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1317 1318
	}

1319
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1320
			  netdev->name, adapter);
1321

A
Andy Gospodarek 已提交
1322
	if (err)
1323
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1335
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1336

1337
		for (i = 0; i < adapter->num_q_vectors; i++)
1338
			free_irq(adapter->msix_entries[vector++].vector,
1339
				 adapter->q_vector[i]);
1340 1341
	} else {
		free_irq(adapter->pdev->irq, adapter);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1353 1354 1355 1356 1357
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1358
	if (adapter->msix_entries) {
1359 1360 1361 1362 1363
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1364
	}
P
PJ Waskiewicz 已提交
1365 1366

	wr32(E1000_IAM, 0);
1367 1368
	wr32(E1000_IMC, ~0);
	wrfl();
1369 1370 1371 1372 1373 1374 1375
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1387
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1388 1389 1390 1391
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1392
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1393
		if (adapter->vfs_allocated_count) {
1394
			wr32(E1000_MBVFIMR, 0xFF);
1395 1396 1397
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1398
	} else {
1399 1400 1401 1402
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1403
	}
1404 1405 1406 1407
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1408
	struct e1000_hw *hw = &adapter->hw;
1409 1410
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1422
	    !test_bit(old_vid, adapter->active_vlans)) {
1423 1424
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1478
	igb_set_rx_mode(netdev);
1479 1480 1481

	igb_restore_vlan(adapter);

1482
	igb_setup_tctl(adapter);
1483
	igb_setup_mrqc(adapter);
1484
	igb_setup_rctl(adapter);
1485 1486

	igb_configure_tx(adapter);
1487
	igb_configure_rx(adapter);
1488 1489 1490

	igb_rx_fifo_flush_82575(&adapter->hw);

1491
	/* call igb_desc_unused which always leaves
1492 1493 1494
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1495
		struct igb_ring *ring = adapter->rx_ring[i];
1496
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1497 1498 1499
	}
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
1510
	igb_reset_phy(&adapter->hw);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1539 1540 1541
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1542
	if (adapter->msix_entries)
1543
		igb_configure_msix(adapter);
1544 1545
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1546 1547 1548 1549 1550

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1551 1552 1553 1554 1555 1556 1557
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1558 1559
	netif_tx_start_all_queues(adapter->netdev);

1560 1561 1562 1563
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1564 1565 1566 1567 1568 1569
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1570
	struct e1000_hw *hw = &adapter->hw;
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1583
	netif_tx_stop_all_queues(netdev);
1584 1585 1586 1587 1588 1589 1590 1591 1592

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1593 1594
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_disable(&(adapter->q_vector[i]->napi));
1595 1596 1597 1598 1599 1600 1601

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1602 1603

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1604 1605 1606
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1607

1608 1609 1610
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1611 1612
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1613 1614
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1615 1616 1617 1618 1619
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1634
	struct pci_dev *pdev = adapter->pdev;
1635
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1636 1637
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1638 1639 1640 1641 1642 1643
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1644
	switch (mac->type) {
1645
	case e1000_i350:
1646 1647 1648 1649
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1650
	case e1000_82576:
1651 1652
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1653 1654 1655 1656 1657
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1658
	}
1659

A
Alexander Duyck 已提交
1660 1661
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1679
				sizeof(union e1000_adv_tx_desc) -
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1700
		wr32(E1000_PBA, pba);
1701 1702 1703 1704 1705 1706 1707 1708 1709
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1710
			((pba << 10) - 2 * adapter->max_frame_size));
1711

1712 1713
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1714 1715
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1716
	fc->current_mode = fc->requested_mode;
1717

1718 1719 1720 1721
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1722
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1723 1724

		/* ping all the active vfs to let them know we are going down */
1725
		igb_ping_all_vfs(adapter);
1726 1727 1728 1729 1730 1731

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1732
	/* Allow time for pending master requests to run */
1733
	hw->mac.ops.reset_hw(hw);
1734 1735
	wr32(E1000_WUC, 0);

1736
	if (hw->mac.ops.init_hw(hw))
1737
		dev_err(&pdev->dev, "Hardware Error\n");
1738

1739
	igb_init_dmac(adapter, pba);
1740 1741 1742
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1743 1744 1745 1746 1747
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1748
	igb_get_phy_info(hw);
1749 1750
}

1751 1752
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
{
	/*
	 * Since there is no support for separate rx/tx vlan accel
	 * enable/disable make sure tx flag is always in same state as rx.
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1766 1767
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1768
{
1769
	netdev_features_t changed = netdev->features ^ features;
1770

J
Jiri Pirko 已提交
1771 1772 1773
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

1774 1775 1776
	return 0;
}

S
Stephen Hemminger 已提交
1777
static const struct net_device_ops igb_netdev_ops = {
1778
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1779
	.ndo_stop		= igb_close,
1780
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1781
	.ndo_get_stats64	= igb_get_stats64,
1782
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1783 1784 1785 1786 1787 1788 1789
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1790 1791 1792 1793
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1794 1795 1796
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1797 1798
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1799 1800
};

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1818
	u16 eeprom_data = 0;
1819
	s32 ret_val;
1820
	static int global_quad_port_a; /* global quad port a indication */
1821 1822
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1823
	int err, pci_using_dac;
1824
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1825
	u8 part_str[E1000_PBANUM_LENGTH];
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
		     pci_name(pdev), pdev->vendor, pdev->device);
		return -EINVAL;
	}

1836
	err = pci_enable_device_mem(pdev);
1837 1838 1839 1840
	if (err)
		return err;

	pci_using_dac = 0;
1841
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1842
	if (!err) {
1843
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1844 1845 1846
		if (!err)
			pci_using_dac = 1;
	} else {
1847
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1848
		if (err) {
1849
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1850 1851 1852 1853 1854 1855 1856 1857
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1858 1859 1860
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1861 1862 1863
	if (err)
		goto err_pci_reg;

1864
	pci_enable_pcie_error_reporting(pdev);
1865

1866
	pci_set_master(pdev);
1867
	pci_save_state(pdev);
1868 1869

	err = -ENOMEM;
1870
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1871
				   IGB_MAX_TX_QUEUES);
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1889 1890
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1891 1892
		goto err_ioremap;

S
Stephen Hemminger 已提交
1893
	netdev->netdev_ops = &igb_netdev_ops;
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1916
		goto err_sw_init;
1917

1918
	/* setup the private structure */
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	/*
	 * features is initialized to 0 in allocation, it might have bits
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;

	/* set this bit last since it cannot be part of hw_features */
	netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
1964

1965
	if (pci_using_dac) {
1966
		netdev->features |= NETIF_F_HIGHDMA;
1967 1968
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
1969

1970 1971
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
1972
		netdev->features |= NETIF_F_SCTP_CSUM;
1973
	}
1974

1975 1976
	netdev->priv_flags |= IFF_UNICAST_FLT;

1977
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1978 1979 1980 1981 1982 1983

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
1984
	if (hw->nvm.ops.validate(hw) < 0) {
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2003
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2004
	            (unsigned long) adapter);
2005
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2006
	            (unsigned long) adapter);
2007 2008 2009 2010

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2011
	/* Initialize link properties that are user-changeable */
2012 2013 2014 2015
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2016 2017
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2018 2019 2020 2021 2022 2023 2024

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

2025
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
2026
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2027
	else if (hw->mac.type >= e1000_82580)
2028 2029 2030
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
2031 2032
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2045 2046
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2047 2048 2049 2050 2051
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
2052
	case E1000_DEV_ID_82576_QUAD_COPPER:
2053
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2054 2055 2056 2057 2058 2059 2060 2061 2062
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2063 2064 2065 2066
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
2067
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2081 2082 2083
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2084
#ifdef CONFIG_IGB_DCA
2085
	if (dca_add_requester(&pdev->dev) == 0) {
2086
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2087 2088 2089 2090
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2091
#endif
A
Anders Berggren 已提交
2092 2093 2094
	/* do hw tstamp init after resetting */
	igb_init_hw_timer(adapter);

2095 2096
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2097
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2098
		 netdev->name,
2099
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2100
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2101
		                                            "unknown"),
2102 2103 2104 2105
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2106
		 netdev->dev_addr);
2107

2108 2109 2110 2111
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2112 2113 2114
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2115
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2116
		adapter->num_rx_queues, adapter->num_tx_queues);
2117 2118 2119 2120 2121 2122 2123
	switch (hw->mac.type) {
	case e1000_i350:
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
Y
Yan, Zheng 已提交
2124 2125

	pm_runtime_put_noidle(&pdev->dev);
2126 2127 2128 2129 2130 2131
	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
2132
		igb_reset_phy(hw);
2133 2134 2135 2136

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2137
	igb_clear_interrupt_scheme(adapter);
2138 2139 2140 2141
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2142 2143
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2163
	struct e1000_hw *hw = &adapter->hw;
2164

Y
Yan, Zheng 已提交
2165 2166
	pm_runtime_get_noresume(&pdev->dev);

2167 2168 2169 2170
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2171 2172 2173 2174
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2175 2176
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2177

2178
#ifdef CONFIG_IGB_DCA
2179
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2180 2181
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2182
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2183
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2184 2185 2186
	}
#endif

2187 2188 2189 2190 2191 2192
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2193
	igb_clear_interrupt_scheme(adapter);
2194

2195 2196 2197 2198
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
2199 2200 2201 2202 2203 2204
		if (!igb_check_vf_assignment(adapter)) {
			pci_disable_sriov(pdev);
			msleep(500);
		} else {
			dev_info(&pdev->dev, "VF(s) assigned to guests!\n");
		}
2205 2206 2207 2208

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2209
		wrfl();
2210 2211 2212 2213
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
2214

2215 2216 2217
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2218 2219
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2220

2221
	kfree(adapter->shadow_vfta);
2222 2223
	free_netdev(netdev);

2224
	pci_disable_pcie_error_reporting(pdev);
2225

2226 2227 2228
	pci_disable_device(pdev);
}

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2242 2243
	int old_vfs = igb_find_enabled_vfs(adapter);
	int i;
2244

2245 2246 2247 2248
	if (old_vfs) {
		dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
			 "max_vfs setting of %d\n", old_vfs, max_vfs);
		adapter->vfs_allocated_count = old_vfs;
2249 2250
	}

2251 2252 2253 2254 2255 2256 2257
	if (!adapter->vfs_allocated_count)
		return;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);
	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
2258
		adapter->vfs_allocated_count = 0;
2259 2260 2261
		dev_err(&pdev->dev, "Unable to allocate memory for VF "
			"Data Storage\n");
		goto out;
2262
	}
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281

	if (!old_vfs) {
		if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
			goto err_out;
	}
	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;
err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return;
2282 2283 2284
#endif /* CONFIG_PCI_IOV */
}

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
/**
 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
 * @adapter: board private structure to initialize
 *
 * igb_init_hw_timer initializes the function pointer and values for the hw
 * timer found in hardware.
 **/
static void igb_init_hw_timer(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
2297
	case e1000_i350:
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	case e1000_82580:
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/*
		 * The 82580 timesync updates the system timer every 8ns by 8ns
		 * and the value cannot be shifted.  Instead we need to shift
		 * the registers to generate a 64bit timer value.  As a result
		 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
		 * 24 in order to generate a larger value for synchronization.
		 */
		adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
		/* disable system timer temporarily by setting bit 31 */
		wr32(E1000_TSAUXC, 0x80000000);
		wrfl();

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIMR, 0x00000000);
		wr32(E1000_SYSTIML, 0x80000000);
		wr32(E1000_SYSTIMH, 0x000000FF);
		wrfl();

		/* enable system timer by clearing bit 31 */
		wr32(E1000_TSAUXC, 0x0);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	case e1000_82576:
		/*
		 * Initialize hardware timer: we keep it running just in case
		 * that some program needs it later on.
		 */
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/**
		 * Scale the NIC clock cycle by a large factor so that
		 * relatively small clock corrections can be added or
L
Lucas De Marchi 已提交
2352
		 * subtracted at each clock tick. The drawbacks of a large
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
		 * factor are a) that the clock register overflows more quickly
		 * (not such a big deal) and b) that the increment per tick has
		 * to fit into 24 bits.  As a result we need to use a shift of
		 * 19 so we can fit a value of 16 into the TIMINCA register.
		 */
		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
		wr32(E1000_TIMINCA,
		                (1 << E1000_TIMINCA_16NS_SHIFT) |
		                (16 << IGB_82576_TSYNC_SHIFT));

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIML, 0x00000000);
		wr32(E1000_SYSTIMH, 0xFF800000);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
	case e1000_82575:
		/* 82575 does not support timesync */
	default:
		break;
	}

}

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

2407
	/* set default ring sizes */
2408 2409
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2410 2411

	/* set default ITR values */
2412 2413 2414
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

2415 2416 2417
	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

2418 2419
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
2420 2421
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

2422 2423
	adapter->node = -1;

E
Eric Dumazet 已提交
2424
	spin_lock_init(&adapter->stats64_lock);
2425
#ifdef CONFIG_PCI_IOV
2426 2427 2428
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
2429 2430 2431 2432 2433 2434
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
2435 2436 2437 2438
		break;
	default:
		break;
	}
2439
#endif /* CONFIG_PCI_IOV */
2440
	adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2441 2442 2443
	/* i350 cannot do RSS and SR-IOV at the same time */
	if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
		adapter->rss_queues = 1;
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

	/*
	 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
	 * then we should combine the queues into a queue pair in order to
	 * conserve interrupts due to limited supply
	 */
	if ((adapter->rss_queues > 4) ||
	    ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
		adapter->flags |= IGB_FLAG_QUEUE_PAIRS;

2454 2455 2456 2457 2458
	/* Setup and initialize a copy of the hw vlan table array */
	adapter->shadow_vfta = kzalloc(sizeof(u32) *
				E1000_VLAN_FILTER_TBL_SIZE,
				GFP_ATOMIC);

2459
	/* This call may decrease the number of queues */
2460
	if (igb_init_interrupt_scheme(adapter)) {
2461 2462 2463 2464
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2465 2466
	igb_probe_vfs(adapter);

2467 2468 2469
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2470 2471 2472
	if (hw->mac.type == e1000_i350)
		adapter->flags &= ~IGB_FLAG_DMAC;

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
Y
Yan, Zheng 已提交
2489
static int __igb_open(struct net_device *netdev, bool resuming)
2490 2491 2492
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2493
	struct pci_dev *pdev = adapter->pdev;
2494 2495 2496 2497
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2498 2499
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2500
		return -EBUSY;
Y
Yan, Zheng 已提交
2501 2502 2503 2504
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2505

2506 2507
	netif_carrier_off(netdev);

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2518
	igb_power_up_link(adapter);
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2533 2534
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2535 2536 2537

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2538 2539 2540

	igb_irq_enable(adapter);

2541 2542 2543 2544 2545 2546 2547
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2548 2549
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2550 2551 2552
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2553 2554 2555
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2556 2557 2558 2559 2560

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
2561
	igb_power_down_link(adapter);
2562 2563 2564 2565 2566
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2567 2568
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2569 2570 2571 2572

	return err;
}

Y
Yan, Zheng 已提交
2573 2574 2575 2576 2577
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
Y
Yan, Zheng 已提交
2589
static int __igb_close(struct net_device *netdev, bool suspending)
2590 2591
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2592
	struct pci_dev *pdev = adapter->pdev;
2593 2594 2595

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2596 2597 2598 2599
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2600 2601 2602 2603 2604
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2605 2606
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2607 2608 2609
	return 0;
}

Y
Yan, Zheng 已提交
2610 2611 2612 2613 2614
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2615 2616 2617 2618 2619 2620
/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2621
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2622
{
2623
	struct device *dev = tx_ring->dev;
2624
	int orig_node = dev_to_node(dev);
2625 2626
	int size;

2627
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2628 2629 2630
	tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
	if (!tx_ring->tx_buffer_info)
		tx_ring->tx_buffer_info = vzalloc(size);
2631
	if (!tx_ring->tx_buffer_info)
2632 2633 2634
		goto err;

	/* round up to nearest 4K */
2635
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2636 2637
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2638
	set_dev_node(dev, tx_ring->numa_node);
2639 2640 2641 2642
	tx_ring->desc = dma_alloc_coherent(dev,
					   tx_ring->size,
					   &tx_ring->dma,
					   GFP_KERNEL);
2643 2644 2645 2646 2647 2648
	set_dev_node(dev, orig_node);
	if (!tx_ring->desc)
		tx_ring->desc = dma_alloc_coherent(dev,
						   tx_ring->size,
						   &tx_ring->dma,
						   GFP_KERNEL);
2649 2650 2651 2652 2653 2654

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2655

2656 2657 2658
	return 0;

err:
2659
	vfree(tx_ring->tx_buffer_info);
2660
	dev_err(dev,
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2674
	struct pci_dev *pdev = adapter->pdev;
2675 2676 2677
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2678
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2679
		if (err) {
2680
			dev_err(&pdev->dev,
2681 2682
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2683
				igb_free_tx_resources(adapter->tx_ring[i]);
2684 2685 2686 2687 2688 2689 2690 2691
			break;
		}
	}

	return err;
}

/**
2692 2693
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2694
 **/
2695
void igb_setup_tctl(struct igb_adapter *adapter)
2696 2697 2698 2699
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2700 2701
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2717 2718 2719 2720 2721 2722 2723
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2724 2725
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2726 2727
{
	struct e1000_hw *hw = &adapter->hw;
2728
	u32 txdctl = 0;
2729 2730 2731 2732
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2733
	wr32(E1000_TXDCTL(reg_idx), 0);
2734 2735 2736 2737 2738 2739 2740 2741 2742
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2743
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2744
	wr32(E1000_TDH(reg_idx), 0);
2745
	writel(0, ring->tail);
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2766
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2767 2768
}

2769 2770 2771 2772 2773 2774
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2775
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2776
{
2777
	struct device *dev = rx_ring->dev;
2778
	int orig_node = dev_to_node(dev);
2779 2780
	int size, desc_len;

2781
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2782 2783 2784
	rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
	if (!rx_ring->rx_buffer_info)
		rx_ring->rx_buffer_info = vzalloc(size);
2785
	if (!rx_ring->rx_buffer_info)
2786 2787 2788 2789 2790 2791 2792 2793
		goto err;

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

2794
	set_dev_node(dev, rx_ring->numa_node);
2795 2796 2797 2798
	rx_ring->desc = dma_alloc_coherent(dev,
					   rx_ring->size,
					   &rx_ring->dma,
					   GFP_KERNEL);
2799 2800 2801 2802 2803 2804
	set_dev_node(dev, orig_node);
	if (!rx_ring->desc)
		rx_ring->desc = dma_alloc_coherent(dev,
						   rx_ring->size,
						   &rx_ring->dma,
						   GFP_KERNEL);
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
2815 2816
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
2817 2818
	dev_err(dev, "Unable to allocate memory for the receive descriptor"
		" ring\n");
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2831
	struct pci_dev *pdev = adapter->pdev;
2832 2833 2834
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2835
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2836
		if (err) {
2837
			dev_err(&pdev->dev,
2838 2839
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2840
				igb_free_rx_resources(adapter->rx_ring[i]);
2841 2842 2843 2844 2845 2846 2847
			break;
		}
	}

	return err;
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

2876
	num_rx_queues = adapter->rss_queues;
2877 2878 2879 2880

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
2881
		case e1000_i350:
2882 2883 2884 2885
		case e1000_82580:
			num_rx_queues = 1;
			shift = 0;
			break;
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2937
		if (adapter->rss_queues > 1)
2938 2939 2940 2941 2942 2943 2944 2945
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	/*
	 * Generate RSS hash based on TCP port numbers and/or
	 * IPv4/v6 src and dst addresses since UDP cannot be
	 * hashed reliably due to IP fragmentation
	 */
	mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2956 2957 2958 2959

	wr32(E1000_MRQC, mrqc);
}

2960 2961 2962 2963
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2964
void igb_setup_rctl(struct igb_adapter *adapter)
2965 2966 2967 2968 2969 2970 2971
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2972
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2973

2974
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2975
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2976

2977 2978 2979 2980
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2981
	 */
2982
	rctl |= E1000_RCTL_SECRC;
2983

2984
	/* disable store bad packets and clear size bits. */
2985
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2986

A
Alexander Duyck 已提交
2987 2988
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2989

2990 2991
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2992

2993 2994 2995 2996 2997 2998 2999 3000 3001
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

3002 3003 3004
	wr32(E1000_RCTL, rctl);
}

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3025 3026 3027 3028 3029 3030 3031 3032
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3033
	u32 max_frame_size = adapter->max_frame_size;
3034 3035 3036 3037 3038
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3039 3040 3041 3042 3043 3044 3045
		/*
		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3046
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3047 3048 3049 3050 3051
	}

	wr32(E1000_RLPML, max_frame_size);
}

3052 3053
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3066 3067 3068 3069 3070
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3071 3072 3073 3074

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3075
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

3087 3088 3089 3090 3091 3092 3093
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
3094 3095
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3096 3097 3098 3099
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3100
	u32 srrctl = 0, rxdctl = 0;
3101 3102

	/* disable the queue */
3103
	wr32(E1000_RXDCTL(reg_idx), 0);
3104 3105 3106 3107 3108 3109 3110 3111 3112

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
3113
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3114
	wr32(E1000_RDH(reg_idx), 0);
3115
	writel(0, ring->tail);
3116

3117
	/* set descriptor configuration */
3118
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3119
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3120
	srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3121
#else
3122
	srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3123
#endif
3124
	srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3125
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3126
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3127 3128 3129
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3130 3131 3132

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3133
	/* set filtering for VMDQ pools */
3134
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3135

3136 3137 3138
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3139 3140 3141

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3142 3143 3144
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3145 3146 3147 3148 3149 3150 3151 3152
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3153
	int i;
3154

3155 3156 3157
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3158 3159 3160 3161
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

3162 3163 3164
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
3165
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3166 3167 3168 3169 3170 3171 3172 3173
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3174
void igb_free_tx_resources(struct igb_ring *tx_ring)
3175
{
3176
	igb_clean_tx_ring(tx_ring);
3177

3178 3179
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3180

3181 3182 3183 3184
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3185 3186
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3202
		igb_free_tx_resources(adapter->tx_ring[i]);
3203 3204
}

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
		if (tx_buffer->dma)
			dma_unmap_single(ring->dev,
					 tx_buffer->dma,
					 tx_buffer->length,
					 DMA_TO_DEVICE);
	} else if (tx_buffer->dma) {
		dma_unmap_page(ring->dev,
			       tx_buffer->dma,
			       tx_buffer->length,
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	tx_buffer->dma = 0;
	/* buffer_info must be completely set up in the transmit path */
3225 3226 3227 3228 3229 3230
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3231
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3232
{
3233
	struct igb_tx_buffer *buffer_info;
3234
	unsigned long size;
3235
	u16 i;
3236

3237
	if (!tx_ring->tx_buffer_info)
3238 3239 3240 3241
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3242
		buffer_info = &tx_ring->tx_buffer_info[i];
3243
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3244
	}
3245
	netdev_tx_reset_queue(txring_txq(tx_ring));
3246

3247 3248
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3266
		igb_clean_tx_ring(adapter->tx_ring[i]);
3267 3268 3269 3270 3271 3272 3273 3274
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3275
void igb_free_rx_resources(struct igb_ring *rx_ring)
3276
{
3277
	igb_clean_rx_ring(rx_ring);
3278

3279 3280
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3281

3282 3283 3284 3285
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3286 3287
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3303
		igb_free_rx_resources(adapter->rx_ring[i]);
3304 3305 3306 3307 3308 3309
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3310
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3311 3312
{
	unsigned long size;
3313
	u16 i;
3314

3315
	if (!rx_ring->rx_buffer_info)
3316
		return;
3317

3318 3319
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3320
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3321
		if (buffer_info->dma) {
3322
			dma_unmap_single(rx_ring->dev,
3323
			                 buffer_info->dma,
3324
					 IGB_RX_HDR_LEN,
3325
					 DMA_FROM_DEVICE);
3326 3327 3328 3329 3330 3331 3332
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
3333
		if (buffer_info->page_dma) {
3334
			dma_unmap_page(rx_ring->dev,
3335
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
3336
				       PAGE_SIZE / 2,
3337
				       DMA_FROM_DEVICE);
A
Alexander Duyck 已提交
3338 3339
			buffer_info->page_dma = 0;
		}
3340 3341 3342
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
3343
			buffer_info->page_offset = 0;
3344 3345 3346
		}
	}

3347 3348
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3366
		igb_clean_rx_ring(adapter->rx_ring[i]);
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3379
	struct e1000_hw *hw = &adapter->hw;
3380 3381 3382 3383 3384 3385
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3386
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3387

3388 3389 3390
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3391

3392 3393 3394 3395
	return 0;
}

/**
3396
 * igb_write_mc_addr_list - write multicast addresses to MTA
3397 3398
 * @netdev: network interface device structure
 *
3399 3400 3401 3402
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3403
 **/
3404
static int igb_write_mc_addr_list(struct net_device *netdev)
3405 3406 3407
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3408
	struct netdev_hw_addr *ha;
3409
	u8  *mta_list;
3410 3411
	int i;

3412
	if (netdev_mc_empty(netdev)) {
3413 3414 3415 3416 3417
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3418

3419
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3420 3421
	if (!mta_list)
		return -ENOMEM;
3422

3423
	/* The shared function expects a packed array of only addresses. */
3424
	i = 0;
3425 3426
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3427 3428 3429 3430

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3431
	return netdev_mc_count(netdev);
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3452
	if (netdev_uc_count(netdev) > rar_entries)
3453
		return -ENOMEM;
3454

3455
	if (!netdev_uc_empty(netdev) && rar_entries) {
3456
		struct netdev_hw_addr *ha;
3457 3458

		netdev_for_each_uc_addr(ha, netdev) {
3459 3460
			if (!rar_entries)
				break;
3461 3462
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3463 3464
			                 vfn);
			count++;
3465 3466 3467 3468 3469 3470 3471 3472 3473
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3510
			 * then we should just turn on promiscuous mode so
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3524
		 * unicast promiscuous mode
3525 3526 3527 3528 3529 3530 3531
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3532
	}
3533
	wr32(E1000_RCTL, rctl);
3534

3535 3536 3537 3538 3539 3540 3541
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
3542
		return;
3543

3544 3545 3546
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3547
	igb_restore_vf_multicasts(adapter);
3548 3549
}

G
Greg Rose 已提交
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3589 3590 3591 3592 3593
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3594
	igb_get_phy_info(&adapter->hw);
3595 3596
}

A
Alexander Duyck 已提交
3597 3598 3599 3600
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3601
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

	/* check for thermal sensor event on i350, copper only */
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
			ret = !!(thstat & event);
		}
	}

	return ret;
}

3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3666 3667
	                                           struct igb_adapter,
                                                   watchdog_task);
3668 3669
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3670
	u32 link;
3671
	int i;
3672

A
Alexander Duyck 已提交
3673
	link = igb_has_link(adapter);
3674
	if (link) {
Y
Yan, Zheng 已提交
3675 3676 3677
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3678 3679
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3680 3681 3682
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3683 3684

			ctrl = rd32(E1000_CTRL);
3685
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3686 3687
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3688 3689 3690
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3691 3692 3693 3694 3695
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3696

3697
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3698 3699 3700 3701 3702
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3703
			}
3704

3705
			/* adjust timeout factor according to speed/duplex */
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3718
			igb_ping_all_vfs(adapter);
3719
			igb_check_vf_rate_limit(adapter);
3720

3721
			/* link state has changed, schedule phy info update */
3722 3723 3724 3725 3726 3727 3728 3729
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3730 3731

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3732 3733 3734 3735
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
3736
			}
3737

3738 3739 3740
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3741
			netif_carrier_off(netdev);
3742

3743 3744
			igb_ping_all_vfs(adapter);

3745
			/* link state has changed, schedule phy info update */
3746 3747 3748
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
3749 3750 3751

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
3752 3753 3754
		}
	}

E
Eric Dumazet 已提交
3755 3756 3757
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3758

3759
	for (i = 0; i < adapter->num_tx_queues; i++) {
3760
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3761
		if (!netif_carrier_ok(netdev)) {
3762 3763 3764 3765
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3766 3767 3768 3769 3770 3771
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3772 3773
		}

3774
		/* Force detection of hung controller every watchdog period */
3775
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3776
	}
3777

3778
	/* Cause software interrupt to ensure rx ring is cleaned */
3779
	if (adapter->msix_entries) {
3780
		u32 eics = 0;
3781 3782
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
3783 3784 3785 3786
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3787

G
Greg Rose 已提交
3788 3789
	igb_spoof_check(adapter);

3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3803 3804 3805 3806 3807 3808
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
3809
 *      receive rings.  The divisors and thresholds used by this function
3810 3811 3812 3813 3814 3815 3816
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3817
 * @q_vector: pointer to q_vector
3818
 **/
3819
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3820
{
3821
	int new_val = q_vector->itr_val;
3822
	int avg_wire_size = 0;
3823
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
3824
	unsigned int packets;
3825

3826 3827 3828 3829
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3830
		new_val = IGB_4K_ITR;
3831
		goto set_itr_val;
3832
	}
3833

3834 3835 3836
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
3837

3838 3839 3840 3841
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
3842 3843 3844 3845

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3846

3847 3848 3849 3850 3851
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3852

3853 3854 3855 3856 3857
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3858

3859 3860 3861 3862 3863
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
3864

3865
set_itr_val:
3866 3867 3868
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3869
	}
3870
clear_counts:
3871 3872 3873 3874
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
3890 3891
 * @q_vector: pointer to q_vector
 * @ring_container: ring info to update the itr for
3892
 **/
3893 3894
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
3895
{
3896 3897 3898
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
3899

3900
	/* no packets, exit with status unchanged */
3901
	if (packets == 0)
3902
		return;
3903

3904
	switch (itrval) {
3905 3906 3907
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
3908
			itrval = bulk_latency;
3909
		else if ((packets < 5) && (bytes > 512))
3910
			itrval = low_latency;
3911 3912 3913 3914 3915
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
3916
				itrval = bulk_latency;
3917
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
3918
				itrval = bulk_latency;
3919
			} else if ((packets > 35)) {
3920
				itrval = lowest_latency;
3921 3922
			}
		} else if (bytes/packets > 2000) {
3923
			itrval = bulk_latency;
3924
		} else if (packets <= 2 && bytes < 512) {
3925
			itrval = lowest_latency;
3926 3927 3928 3929 3930
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
3931
				itrval = low_latency;
3932
		} else if (bytes < 1500) {
3933
			itrval = low_latency;
3934 3935 3936 3937
		}
		break;
	}

3938 3939 3940 3941 3942 3943
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
3944 3945
}

3946
static void igb_set_itr(struct igb_q_vector *q_vector)
3947
{
3948
	struct igb_adapter *adapter = q_vector->adapter;
3949
	u32 new_itr = q_vector->itr_val;
3950
	u8 current_itr = 0;
3951 3952 3953 3954

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
3955
		new_itr = IGB_4K_ITR;
3956 3957 3958
		goto set_itr_now;
	}

3959 3960
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
3961

3962
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3963

3964
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3965 3966 3967
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3968 3969
		current_itr = low_latency;

3970 3971 3972
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3973
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3974 3975
		break;
	case low_latency:
3976
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3977 3978
		break;
	case bulk_latency:
3979
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3980 3981 3982 3983 3984 3985
		break;
	default:
		break;
	}

set_itr_now:
3986
	if (new_itr != q_vector->itr_val) {
3987 3988 3989
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3990 3991 3992
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
3993
				 new_itr) :
3994 3995 3996 3997 3998 3999 4000
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4001 4002
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4003 4004 4005
	}
}

4006 4007
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4021
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4022 4023 4024 4025 4026 4027 4028 4029
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4030 4031 4032
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4033
{
4034
	struct sk_buff *skb = first->skb;
4035 4036 4037 4038 4039
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

	if (!skb_is_gso(skb))
		return 0;
4040 4041

	if (skb_header_cloned(skb)) {
4042
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4043 4044 4045 4046
		if (err)
			return err;
	}

4047 4048
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4049

4050
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4051 4052 4053 4054 4055 4056 4057
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4058
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4059 4060 4061
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4062
	} else if (skb_is_gso_v6(skb)) {
4063 4064 4065 4066
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4067 4068
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4069 4070
	}

4071
	/* compute header lengths */
4072 4073
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4074

4075 4076 4077 4078
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4079
	/* MSS L4LEN IDX */
4080 4081
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4082

4083 4084 4085
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4086
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4087

4088
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4089

4090
	return 1;
4091 4092
}

4093
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4094
{
4095
	struct sk_buff *skb = first->skb;
4096 4097 4098
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4099

4100
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4101 4102
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4103 4104
	} else {
		u8 l4_hdr = 0;
4105
		switch (first->protocol) {
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but proto=%x!\n",
4119
				 first->protocol);
4120
			}
4121 4122
			break;
		}
4123

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but l4 proto=%x!\n",
				 l4_hdr);
4144
			}
4145
			break;
4146
		}
4147 4148 4149

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4150
	}
4151

4152
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4153
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4154

4155
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4156 4157
}

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
static __le32 igb_tx_cmd_type(u32 tx_flags)
{
	/* set type for advanced descriptor with frame checksum insertion */
	__le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
				      E1000_ADVTXD_DCMD_IFCS |
				      E1000_ADVTXD_DCMD_DEXT);

	/* set HW vlan bit if vlan is present */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);

	/* set timestamp bit if present */
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);

	/* set segmentation bits for TSO */
	if (tx_flags & IGB_TX_FLAGS_TSO)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);

	return cmd_type;
}

4180 4181 4182
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4183 4184 4185 4186 4187
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

	/* 82575 requires a unique index per ring if any offload is enabled */
	if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4188
	    test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
	if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert IPv4 checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
	}

4200
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4201 4202
}

4203 4204 4205 4206 4207
/*
 * The largest size we can write to the descriptor is 65535.  In order to
 * maintain a power of two alignment we have to limit ourselves to 32K.
 */
#define IGB_MAX_TXD_PWR	15
4208
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4209

4210 4211
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4212
		       const u8 hdr_len)
4213
{
4214
	struct sk_buff *skb = first->skb;
4215 4216 4217 4218 4219 4220 4221 4222
	struct igb_tx_buffer *tx_buffer_info;
	union e1000_adv_tx_desc *tx_desc;
	dma_addr_t dma;
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	unsigned int paylen = skb->len - hdr_len;
	__le32 cmd_type;
4223
	u32 tx_flags = first->tx_flags;
4224 4225 4226 4227
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4228
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4229 4230 4231 4232
	cmd_type = igb_tx_cmd_type(tx_flags);

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
	if (dma_mapping_error(tx_ring->dev, dma))
4233
		goto dma_error;
4234

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
	/* record length, and DMA address */
	first->length = size;
	first->dma = dma;
	tx_desc->read.buffer_addr = cpu_to_le64(dma);

	for (;;) {
		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
				cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.olinfo_status = 0;
			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4261

4262
		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4263

4264
		i++;
4265 4266 4267
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4268
			i = 0;
4269
		}
4270

E
Eric Dumazet 已提交
4271
		size = skb_frag_size(frag);
4272 4273 4274 4275 4276
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
				   size, DMA_TO_DEVICE);
		if (dma_mapping_error(tx_ring->dev, dma))
4277 4278
			goto dma_error;

4279 4280 4281 4282 4283 4284 4285 4286
		tx_buffer_info = &tx_ring->tx_buffer_info[i];
		tx_buffer_info->length = size;
		tx_buffer_info->dma = dma;

		tx_desc->read.olinfo_status = 0;
		tx_desc->read.buffer_addr = cpu_to_le64(dma);

		frag++;
4287 4288
	}

4289 4290
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4291 4292 4293
	/* write last descriptor with RS and EOP bits */
	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
	tx_desc->read.cmd_type_len = cmd_type;
4294 4295 4296 4297

	/* set the timestamp */
	first->time_stamp = jiffies;

4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
	/*
	 * Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4308
	/* set next_to_watch value indicating a packet is present */
4309
	first->next_to_watch = tx_desc;
4310

4311 4312 4313
	i++;
	if (i == tx_ring->count)
		i = 0;
4314

4315
	tx_ring->next_to_use = i;
4316

4317
	writel(i, tx_ring->tail);
4318

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
		tx_buffer_info = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
		if (tx_buffer_info == first)
			break;
4334 4335
		if (i == 0)
			i = tx_ring->count;
4336 4337 4338
		i--;
	}

4339 4340 4341
	tx_ring->next_to_use = i;
}

4342
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4343
{
4344 4345
	struct net_device *netdev = tx_ring->netdev;

4346 4347
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4348 4349 4350 4351 4352 4353 4354
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4355
	if (igb_desc_unused(tx_ring) < size)
4356 4357 4358
		return -EBUSY;

	/* A reprieve! */
4359
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4360 4361 4362 4363 4364

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4365 4366 4367
	return 0;
}

4368
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4369
{
4370
	if (igb_desc_unused(tx_ring) >= size)
4371
		return 0;
4372
	return __igb_maybe_stop_tx(tx_ring, size);
4373 4374
}

4375 4376
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4377
{
4378
	struct igb_tx_buffer *first;
4379
	int tso;
N
Nick Nunley 已提交
4380
	u32 tx_flags = 0;
4381
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4382
	u8 hdr_len = 0;
4383 4384 4385 4386 4387 4388

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4389
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4390 4391 4392
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4393

4394 4395 4396 4397 4398 4399
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4400 4401
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4402 4403
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
4404

4405
	if (vlan_tx_tag_present(skb)) {
4406 4407 4408 4409
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4410 4411 4412
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4413

4414 4415
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4416
		goto out_drop;
4417 4418
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4419

4420
	igb_tx_map(tx_ring, first, hdr_len);
4421 4422

	/* Make sure there is space in the ring for the next send. */
4423
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4424

4425
	return NETDEV_TX_OK;
4426 4427

out_drop:
4428 4429
	igb_unmap_and_free_tx_resource(tx_ring, first);

4430
	return NETDEV_TX_OK;
4431 4432
}

4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4444 4445
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4446 4447
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4459 4460 4461 4462 4463 4464 4465 4466 4467
	/*
	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
	if (skb->len < 17) {
		if (skb_padto(skb, 17))
			return NETDEV_TX_OK;
		skb->len = 17;
	}
4468

4469
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4483

4484
	if (hw->mac.type >= e1000_82580)
4485 4486
		hw->dev_spec._82575.global_device_reset = true;

4487
	schedule_work(&adapter->reset_task);
4488 4489
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4490 4491 4492 4493 4494 4495 4496
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4497 4498
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4499 4500 4501 4502
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4503
 * igb_get_stats64 - Get System Network Statistics
4504
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4505
 * @stats: rtnl_link_stats64 pointer
4506 4507
 *
 **/
E
Eric Dumazet 已提交
4508 4509
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4510
{
E
Eric Dumazet 已提交
4511 4512 4513 4514 4515 4516 4517 4518
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4531
	struct pci_dev *pdev = adapter->pdev;
4532
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4533

4534
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4535
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4536 4537 4538
		return -EINVAL;
	}

4539
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4540
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4541
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4542 4543 4544 4545 4546
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4547

4548 4549
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4550

4551 4552
	if (netif_running(netdev))
		igb_down(adapter);
4553

4554
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4573 4574
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4575 4576 4577
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4578
	u32 reg, mpc;
4579
	u16 phy_tmp;
4580 4581
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4582 4583
	unsigned int start;
	u64 _bytes, _packets;
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4596 4597 4598 4599
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4600
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4601

4602
		ring->rx_stats.drops += rqdpc_tmp;
4603
		net_stats->rx_fifo_errors += rqdpc_tmp;
E
Eric Dumazet 已提交
4604 4605 4606 4607 4608 4609 4610 4611

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4612 4613
	}

4614 4615
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4616 4617 4618 4619

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4620
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4621 4622 4623 4624 4625 4626 4627
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4628
	}
4629 4630
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4631 4632

	/* read stats registers */
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4650 4651 4652
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4667
	adapter->stats.rnbc += rd32(E1000_RNBC);
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4685 4686
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4687 4688

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4689 4690 4691 4692 4693 4694 4695
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
		adapter->stats.tncrs += rd32(E1000_TNCRS);
	}

4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4710 4711
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4712 4713 4714 4715

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4716
	 * our own version based on RUC and ROC */
4717
	net_stats->rx_errors = adapter->stats.rxerrc +
4718 4719 4720
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4721 4722 4723 4724 4725
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4726 4727

	/* Tx Errors */
4728 4729 4730 4731 4732
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4733 4734 4735 4736 4737 4738

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4739
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4740 4741 4742 4743 4744 4745 4746 4747 4748
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4749 4750 4751 4752 4753 4754 4755 4756 4757

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
4758 4759 4760 4761
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4762
	struct igb_adapter *adapter = data;
4763
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4764 4765
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4766

4767 4768 4769
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4770
	if (icr & E1000_ICR_DOUTSYNC) {
4771 4772
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
4773 4774 4775 4776
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
4777
	}
4778

4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

P
PJ Waskiewicz 已提交
4790
	wr32(E1000_EIMS, adapter->eims_other);
4791 4792 4793 4794

	return IRQ_HANDLED;
}

4795
static void igb_write_itr(struct igb_q_vector *q_vector)
4796
{
4797
	struct igb_adapter *adapter = q_vector->adapter;
4798
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4799

4800 4801
	if (!q_vector->set_itr)
		return;
4802

4803 4804
	if (!itr_val)
		itr_val = 0x4;
4805

4806 4807
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4808
	else
4809
		itr_val |= E1000_EITR_CNT_IGNR;
4810

4811 4812
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4813 4814
}

4815
static irqreturn_t igb_msix_ring(int irq, void *data)
4816
{
4817
	struct igb_q_vector *q_vector = data;
4818

4819 4820
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4821

4822
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4823

4824
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4825 4826
}

4827
#ifdef CONFIG_IGB_DCA
4828
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4829
{
4830
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4831 4832 4833
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4834 4835 4836
	if (q_vector->cpu == cpu)
		goto out_no_update;

4837 4838
	if (q_vector->tx.ring) {
		int q = q_vector->tx.ring->reg_idx;
4839 4840 4841 4842
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4843
		} else {
4844 4845 4846 4847 4848 4849 4850
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
4851 4852
	if (q_vector->rx.ring) {
		int q = q_vector->rx.ring->reg_idx;
4853 4854
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4855
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4856
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4857 4858 4859 4860
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4861
		}
J
Jeb Cramer 已提交
4862 4863 4864 4865 4866
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4867 4868
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4869 4870 4871 4872 4873
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4874
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4875 4876
	int i;

4877
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4878 4879
		return;

4880 4881 4882
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4883
	for (i = 0; i < adapter->num_q_vectors; i++) {
4884 4885
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4886 4887 4888 4889 4890 4891 4892
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4893
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4894 4895 4896 4897 4898 4899
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4900
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4901 4902
			break;
		if (dca_add_requester(dev) == 0) {
4903
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4904
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4905 4906 4907 4908 4909
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4910
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4911
			/* without this a class_device is left
4912
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4913
			dca_remove_requester(dev);
4914
			dev_info(&pdev->dev, "DCA disabled\n");
4915
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4916
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4917 4918 4919
		}
		break;
	}
4920

J
Jeb Cramer 已提交
4921
	return 0;
4922 4923
}

J
Jeb Cramer 已提交
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4934
#endif /* CONFIG_IGB_DCA */
4935

4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pvfdev;
	unsigned int device_id;
	u16 thisvf_devfn;

	random_ether_addr(mac_addr);
	igb_set_vf_mac(adapter, vf, mac_addr);

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		device_id = IGB_82576_VF_DEV_ID;
		/* VF Stride for 82576 is 2 */
		thisvf_devfn = (pdev->devfn + 0x80 + (vf << 1)) |
			(pdev->devfn & 1);
		break;
	case e1000_i350:
		device_id = IGB_I350_VF_DEV_ID;
		/* VF Stride for I350 is 4 */
		thisvf_devfn = (pdev->devfn + 0x80 + (vf << 2)) |
				(pdev->devfn & 3);
		break;
	default:
		device_id = 0;
		thisvf_devfn = 0;
		break;
	}

	pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
	while (pvfdev) {
		if (pvfdev->devfn == thisvf_devfn)
			break;
		pvfdev = pci_get_device(hw->vendor_id,
					device_id, pvfdev);
	}

	if (pvfdev)
		adapter->vf_data[vf].vfdev = pvfdev;
	else
		dev_err(&pdev->dev,
			"Couldn't find pci dev ptr for VF %4.4x\n",
			thisvf_devfn);
	return pvfdev != NULL;
}

static int igb_find_enabled_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
	struct pci_dev *pvfdev;
	u16 vf_devfn = 0;
	u16 vf_stride;
	unsigned int device_id;
	int vfs_found = 0;

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		device_id = IGB_82576_VF_DEV_ID;
		/* VF Stride for 82576 is 2 */
		vf_stride = 2;
		break;
	case e1000_i350:
		device_id = IGB_I350_VF_DEV_ID;
		/* VF Stride for I350 is 4 */
		vf_stride = 4;
		break;
	default:
		device_id = 0;
		vf_stride = 0;
		break;
	}

	vf_devfn = pdev->devfn + 0x80;
	pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
	while (pvfdev) {
		if (pvfdev->devfn == vf_devfn)
			vfs_found++;
		vf_devfn += vf_stride;
		pvfdev = pci_get_device(hw->vendor_id,
					device_id, pvfdev);
	}

	return vfs_found;
}

static int igb_check_vf_assignment(struct igb_adapter *adapter)
{
	int i;
	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (adapter->vf_data[i].vfdev) {
			if (adapter->vf_data[i].vfdev->dev_flags &
			    PCI_DEV_FLAGS_ASSIGNED)
				return true;
		}
	}
	return false;
}

#endif
5039 5040 5041 5042 5043 5044 5045 5046
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5047
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5048 5049 5050 5051 5052
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5053 5054 5055 5056 5057 5058
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5059
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5060 5061 5062 5063 5064
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5065
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

5093 5094 5095 5096 5097 5098 5099 5100
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5101
	/* salt away the number of multicast addresses assigned
5102 5103 5104 5105 5106
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5107 5108 5109 5110 5111
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5112
	for (i = 0; i < n; i++)
5113
		vf_data->vf_mc_hashes[i] = hash_list[i];
5114 5115

	/* Flush and reset the mta with the new values */
5116
	igb_set_rx_mode(adapter->netdev);
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5128 5129 5130
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5131
		vf_data = &adapter->vf_data[i];
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5170 5171

	adapter->vf_data[vf].vlans_enabled = 0;
5172 5173 5174 5175 5176 5177 5178
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5179 5180 5181 5182 5183
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5213 5214
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5215 5216
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5217 5218
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5219
			wr32(E1000_VLVF(i), reg);
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5235
			adapter->vf_data[vf].vlans_enabled++;
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5262 5263
		}
	}
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5323
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5324
{
G
Greg Rose 已提交
5325 5326
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5327
	adapter->vf_data[vf].last_nack = jiffies;
5328 5329

	/* reset offloads to defaults */
5330
	igb_set_vmolr(adapter, vf, true);
5331 5332 5333

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5334 5335 5336 5337 5338 5339
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5340 5341 5342 5343 5344

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5345
	igb_set_rx_mode(adapter->netdev);
5346 5347
}

5348 5349 5350 5351 5352
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
5353 5354
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
		random_ether_addr(vf_mac);
5355 5356 5357 5358 5359 5360

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5361 5362 5363
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5364
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5365 5366 5367 5368
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5369
	igb_vf_reset(adapter, vf);
5370 5371

	/* set vf mac address */
5372
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5373 5374 5375 5376 5377 5378 5379

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5380
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5381 5382 5383 5384 5385 5386 5387 5388 5389

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5390 5391 5392 5393
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5394 5395
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5396

5397 5398
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5399

5400
	return err;
5401 5402 5403 5404 5405
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5406
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5407 5408 5409
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5410 5411
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5412
		igb_write_mbx(hw, &msg, 1, vf);
5413
		vf_data->last_nack = jiffies;
5414 5415 5416
	}
}

5417
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5418
{
5419 5420
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5421
	struct e1000_hw *hw = &adapter->hw;
5422
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5423 5424
	s32 retval;

5425
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5426

5427 5428
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5429
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5430 5431 5432 5433 5434
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5435 5436 5437

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5438
		return;
5439 5440 5441 5442 5443 5444 5445 5446

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5447
		return;
5448 5449
	}

5450
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5451 5452 5453 5454
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5455 5456 5457 5458
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5459 5460 5461 5462 5463 5464 5465 5466
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5467
		break;
5468 5469 5470
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5471 5472 5473 5474 5475 5476 5477
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5478 5479 5480 5481 5482 5483
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5484 5485
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5486 5487
		break;
	default:
5488
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5489 5490 5491 5492
		retval = -1;
		break;
	}

5493 5494
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5495 5496 5497 5498 5499 5500 5501
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5502
}
5503

5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5522 5523
}

5524 5525 5526 5527 5528 5529 5530
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5531 5532
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5551 5552 5553 5554 5555 5556 5557
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5558 5559
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5560 5561 5562 5563
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5564
	igb_write_itr(q_vector);
5565

5566 5567 5568
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5569
	if (icr & E1000_ICR_DOUTSYNC) {
5570 5571 5572 5573
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5574 5575 5576 5577 5578 5579
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5580
	napi_schedule(&q_vector->napi);
5581 5582 5583 5584 5585

	return IRQ_HANDLED;
}

/**
5586
 * igb_intr - Legacy Interrupt Handler
5587 5588 5589 5590 5591
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5592 5593
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5604 5605
	igb_write_itr(q_vector);

5606 5607 5608
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5609
	if (icr & E1000_ICR_DOUTSYNC) {
5610 5611 5612 5613
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5614 5615 5616 5617 5618 5619 5620
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5621
	napi_schedule(&q_vector->napi);
5622 5623 5624 5625

	return IRQ_HANDLED;
}

5626
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5627
{
5628
	struct igb_adapter *adapter = q_vector->adapter;
5629
	struct e1000_hw *hw = &adapter->hw;
5630

5631 5632 5633 5634
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5635
		else
5636
			igb_update_ring_itr(q_vector);
5637 5638
	}

5639 5640
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5641
			wr32(E1000_EIMS, q_vector->eims_value);
5642 5643 5644
		else
			igb_irq_enable(adapter);
	}
5645 5646
}

5647 5648 5649 5650 5651 5652
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5653
{
5654 5655 5656
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
5657
	bool clean_complete = true;
5658

5659
#ifdef CONFIG_IGB_DCA
5660 5661
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5662
#endif
5663
	if (q_vector->tx.ring)
5664
		clean_complete = igb_clean_tx_irq(q_vector);
5665

5666
	if (q_vector->rx.ring)
5667
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5668

5669 5670 5671
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5672

5673
	/* If not enough Rx work done, exit the polling mode */
5674 5675
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5676

5677
	return 0;
5678
}
A
Al Viro 已提交
5679

5680
/**
5681
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5682
 * @adapter: board private structure
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
 * @shhwtstamps: timestamp structure to update
 * @regval: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions
 */
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
                                   struct skb_shared_hwtstamps *shhwtstamps,
                                   u64 regval)
{
	u64 ns;

5695 5696 5697 5698
	/*
	 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
	 * 24 to match clock shift we setup earlier.
	 */
5699
	if (adapter->hw.mac.type >= e1000_82580)
5700 5701
		regval <<= IGB_82580_TSYNC_SHIFT;

5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
	ns = timecounter_cyc2time(&adapter->clock, regval);
	timecompare_update(&adapter->compare, ns);
	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
}

/**
 * igb_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: pointer to q_vector containing needed info
5712
 * @buffer: pointer to igb_tx_buffer structure
5713 5714 5715 5716 5717
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
5718 5719
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
			    struct igb_tx_buffer *buffer_info)
5720
{
5721
	struct igb_adapter *adapter = q_vector->adapter;
5722
	struct e1000_hw *hw = &adapter->hw;
5723 5724
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
5725

5726
	/* if skb does not support hw timestamp or TX stamp not valid exit */
5727
	if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
5728 5729 5730 5731 5732 5733 5734
	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
		return;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5735
	skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5736 5737
}

5738 5739
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5740
 * @q_vector: pointer to q_vector containing needed info
5741 5742
 * returns true if ring is completely cleaned
 **/
5743
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5744
{
5745
	struct igb_adapter *adapter = q_vector->adapter;
5746
	struct igb_ring *tx_ring = q_vector->tx.ring;
5747
	struct igb_tx_buffer *tx_buffer;
5748
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
5749
	unsigned int total_bytes = 0, total_packets = 0;
5750
	unsigned int budget = q_vector->tx.work_limit;
5751
	unsigned int i = tx_ring->next_to_clean;
5752

5753 5754
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5755

5756
	tx_buffer = &tx_ring->tx_buffer_info[i];
5757
	tx_desc = IGB_TX_DESC(tx_ring, i);
5758
	i -= tx_ring->count;
5759

5760
	for (; budget; budget--) {
5761
		eop_desc = tx_buffer->next_to_watch;
5762

5763 5764 5765 5766 5767 5768
		/* prevent any other reads prior to eop_desc */
		rmb();

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5769 5770 5771 5772 5773

		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5774 5775
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5776

5777 5778 5779
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5780

5781 5782 5783 5784 5785 5786
		/* retrieve hardware timestamp */
		igb_tx_hwtstamp(q_vector, tx_buffer);

		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
		tx_buffer->skb = NULL;
5787

5788 5789 5790 5791 5792 5793 5794 5795 5796
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 tx_buffer->dma,
				 tx_buffer->length,
				 DMA_TO_DEVICE);

		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buffer->dma = 0;
5797

5798 5799
			tx_buffer++;
			tx_desc++;
5800
			i++;
5801 5802
			if (unlikely(!i)) {
				i -= tx_ring->count;
5803
				tx_buffer = tx_ring->tx_buffer_info;
5804 5805
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827

			/* unmap any remaining paged data */
			if (tx_buffer->dma) {
				dma_unmap_page(tx_ring->dev,
					       tx_buffer->dma,
					       tx_buffer->length,
					       DMA_TO_DEVICE);
			}
		}

		/* clear last DMA location */
		tx_buffer->dma = 0;

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
A
Alexander Duyck 已提交
5828 5829
	}

5830 5831
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
5832
	i += tx_ring->count;
5833
	tx_ring->next_to_clean = i;
5834 5835 5836 5837
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
5838 5839
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
5840

5841
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5842
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
5843

5844
		eop_desc = tx_buffer->next_to_watch;
5845 5846 5847

		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
5848
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5849 5850
		if (eop_desc &&
		    time_after(jiffies, tx_buffer->time_stamp +
5851 5852
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5853 5854

			/* detected Tx unit hang */
5855
			dev_err(tx_ring->dev,
5856
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5857
				"  Tx Queue             <%d>\n"
5858 5859 5860 5861 5862 5863
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
5864
				"  next_to_watch        <%p>\n"
5865 5866
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5867
				tx_ring->queue_index,
5868
				rd32(E1000_TDH(tx_ring->reg_idx)),
5869
				readl(tx_ring->tail),
5870 5871
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5872 5873
				tx_buffer->time_stamp,
				eop_desc,
5874
				jiffies,
A
Alexander Duyck 已提交
5875
				eop_desc->wb.status);
5876 5877 5878 5879 5880
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
5881 5882
		}
	}
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903

	if (unlikely(total_packets &&
		     netif_carrier_ok(tx_ring->netdev) &&
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
5904 5905
}

5906
static inline void igb_rx_checksum(struct igb_ring *ring,
5907 5908
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
5909
{
5910
	skb_checksum_none_assert(skb);
5911

5912
	/* Ignore Checksum bit is set */
5913
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
5914 5915 5916 5917
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
5918
		return;
5919

5920
	/* TCP/UDP checksum error bit is set */
5921 5922 5923
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
5924 5925 5926 5927 5928
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
5929 5930
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
5931
			u64_stats_update_begin(&ring->rx_syncp);
5932
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
5933 5934
			u64_stats_update_end(&ring->rx_syncp);
		}
5935 5936 5937 5938
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
5939 5940
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
5941 5942
		skb->ip_summed = CHECKSUM_UNNECESSARY;

5943 5944
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
5945 5946
}

5947 5948 5949 5950 5951 5952 5953 5954
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

5955 5956 5957
static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
5958 5959 5960 5961 5962
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

5963 5964 5965 5966
	if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
				       E1000_RXDADV_STAT_TS))
		return;

5967 5968 5969 5970 5971 5972 5973 5974
	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
5975
	 * If nothing went wrong, then it should have a shared tx_flags that we
5976 5977
	 * can turn into a skb_shared_hwtstamps.
	 */
5978
	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
N
Nick Nunley 已提交
5979 5980 5981 5982 5983 5984 5985
		u32 *stamp = (u32 *)skb->data;
		regval = le32_to_cpu(*(stamp + 2));
		regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
		skb_pull(skb, IGB_TS_HDR_LEN);
	} else {
		if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
			return;
5986

N
Nick Nunley 已提交
5987 5988 5989
		regval = rd32(E1000_RXSTMPL);
		regval |= (u64)rd32(E1000_RXSTMPH) << 32;
	}
5990 5991 5992

	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009

static void igb_rx_vlan(struct igb_ring *ring,
			union e1000_adv_rx_desc *rx_desc,
			struct sk_buff *skb)
{
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, vid);
	}
}

6010
static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
6011 6012 6013 6014 6015 6016 6017
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
6018 6019
	if (hlen > IGB_RX_HDR_LEN)
		hlen = IGB_RX_HDR_LEN;
6020 6021 6022
	return hlen;
}

6023
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
6024
{
6025
	struct igb_ring *rx_ring = q_vector->rx.ring;
6026 6027
	union e1000_adv_rx_desc *rx_desc;
	const int current_node = numa_node_id();
6028
	unsigned int total_bytes = 0, total_packets = 0;
6029 6030
	u16 cleaned_count = igb_desc_unused(rx_ring);
	u16 i = rx_ring->next_to_clean;
6031

6032
	rx_desc = IGB_RX_DESC(rx_ring, i);
6033

6034
	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
6035
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
6036 6037
		struct sk_buff *skb = buffer_info->skb;
		union e1000_adv_rx_desc *next_rxd;
6038

6039
		buffer_info->skb = NULL;
6040
		prefetch(skb->data);
6041 6042 6043 6044

		i++;
		if (i == rx_ring->count)
			i = 0;
6045

6046
		next_rxd = IGB_RX_DESC(rx_ring, i);
6047
		prefetch(next_rxd);
6048

6049 6050 6051 6052 6053 6054
		/*
		 * This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();
6055

6056 6057 6058
		if (!skb_is_nonlinear(skb)) {
			__skb_put(skb, igb_get_hlen(rx_desc));
			dma_unmap_single(rx_ring->dev, buffer_info->dma,
6059
					 IGB_RX_HDR_LEN,
6060
					 DMA_FROM_DEVICE);
J
Jesse Brandeburg 已提交
6061
			buffer_info->dma = 0;
6062 6063
		}

6064 6065
		if (rx_desc->wb.upper.length) {
			u16 length = le16_to_cpu(rx_desc->wb.upper.length);
6066

K
Koki Sanagi 已提交
6067
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
6068 6069 6070 6071
						buffer_info->page,
						buffer_info->page_offset,
						length);

6072 6073
			skb->len += length;
			skb->data_len += length;
6074
			skb->truesize += PAGE_SIZE / 2;
6075

6076 6077
			if ((page_count(buffer_info->page) != 1) ||
			    (page_to_nid(buffer_info->page) != current_node))
6078 6079 6080
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
6081

6082 6083 6084
			dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
			buffer_info->page_dma = 0;
6085 6086
		}

6087
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
6088 6089
			struct igb_rx_buffer *next_buffer;
			next_buffer = &rx_ring->rx_buffer_info[i];
6090 6091 6092 6093
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
6094 6095
			goto next_desc;
		}
6096

6097 6098
		if (igb_test_staterr(rx_desc,
				     E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
6099
			dev_kfree_skb_any(skb);
6100 6101 6102
			goto next_desc;
		}

6103
		igb_rx_hwtstamp(q_vector, rx_desc, skb);
6104
		igb_rx_hash(rx_ring, rx_desc, skb);
6105
		igb_rx_checksum(rx_ring, rx_desc, skb);
6106
		igb_rx_vlan(rx_ring, rx_desc, skb);
6107 6108 6109 6110 6111 6112

		total_bytes += skb->len;
		total_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

J
Jiri Pirko 已提交
6113
		napi_gro_receive(&q_vector->napi, skb);
6114

6115
		budget--;
6116
next_desc:
6117 6118 6119 6120
		if (!budget)
			break;

		cleaned_count++;
6121 6122
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6123
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6124 6125 6126 6127 6128 6129
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
	}
6130

6131
	rx_ring->next_to_clean = i;
E
Eric Dumazet 已提交
6132
	u64_stats_update_begin(&rx_ring->rx_syncp);
6133 6134
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6135
	u64_stats_update_end(&rx_ring->rx_syncp);
6136 6137
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6138 6139

	if (cleaned_count)
6140
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6141

6142
	return !!budget;
6143 6144
}

6145
static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
6146
				 struct igb_rx_buffer *bi)
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
{
	struct sk_buff *skb = bi->skb;
	dma_addr_t dma = bi->dma;

	if (dma)
		return true;

	if (likely(!skb)) {
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		bi->skb = skb;
		if (!skb) {
			rx_ring->rx_stats.alloc_failed++;
			return false;
		}

		/* initialize skb for ring */
		skb_record_rx_queue(skb, rx_ring->queue_index);
	}

	dma = dma_map_single(rx_ring->dev, skb->data,
			     IGB_RX_HDR_LEN, DMA_FROM_DEVICE);

	if (dma_mapping_error(rx_ring->dev, dma)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->dma = dma;
	return true;
}

static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6180
				  struct igb_rx_buffer *bi)
6181 6182 6183 6184 6185 6186 6187 6188 6189
{
	struct page *page = bi->page;
	dma_addr_t page_dma = bi->page_dma;
	unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);

	if (page_dma)
		return true;

	if (!page) {
6190
		page = alloc_page(GFP_ATOMIC | __GFP_COLD);
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
		bi->page = page;
		if (unlikely(!page)) {
			rx_ring->rx_stats.alloc_failed++;
			return false;
		}
	}

	page_dma = dma_map_page(rx_ring->dev, page,
				page_offset, PAGE_SIZE / 2,
				DMA_FROM_DEVICE);

	if (dma_mapping_error(rx_ring->dev, page_dma)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->page_dma = page_dma;
	bi->page_offset = page_offset;
	return true;
}

6212
/**
6213
 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6214 6215
 * @adapter: address of board private structure
 **/
6216
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6217 6218
{
	union e1000_adv_rx_desc *rx_desc;
6219
	struct igb_rx_buffer *bi;
6220
	u16 i = rx_ring->next_to_use;
6221

6222
	rx_desc = IGB_RX_DESC(rx_ring, i);
6223
	bi = &rx_ring->rx_buffer_info[i];
6224
	i -= rx_ring->count;
6225 6226

	while (cleaned_count--) {
6227 6228
		if (!igb_alloc_mapped_skb(rx_ring, bi))
			break;
6229

6230 6231 6232
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info. */
		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
6233

6234 6235 6236 6237
		if (!igb_alloc_mapped_page(rx_ring, bi))
			break;

		rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
6238

6239 6240
		rx_desc++;
		bi++;
6241
		i++;
6242
		if (unlikely(!i)) {
6243
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6244
			bi = rx_ring->rx_buffer_info;
6245 6246 6247 6248 6249
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6250 6251
	}

6252 6253
	i += rx_ring->count;

6254 6255 6256 6257 6258 6259 6260 6261
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
6262
		writel(i, rx_ring->tail);
6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6285 6286
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6287 6288 6289 6290 6291 6292 6293 6294 6295
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

6296 6297 6298 6299 6300 6301
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
6314 6315 6316 6317
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
6318 6319
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6320
	struct hwtstamp_config config;
6321 6322
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6323
	u32 tsync_rx_cfg = 0;
6324 6325
	bool is_l4 = false;
	bool is_l2 = false;
6326
	u32 regval;
6327 6328 6329 6330 6331 6332 6333 6334

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

6335 6336
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
6337
		tsync_tx_ctl = 0;
6338 6339 6340 6341 6342 6343 6344 6345
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
6346
		tsync_rx_ctl = 0;
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
6357
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6358 6359 6360
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6361
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6362
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6363
		is_l4 = true;
6364 6365
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6366
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6367
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6368
		is_l4 = true;
6369 6370 6371
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6372
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6373
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6374 6375
		is_l2 = true;
		is_l4 = true;
6376 6377 6378 6379
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6380
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6381
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6382 6383
		is_l2 = true;
		is_l4 = true;
6384 6385 6386 6387 6388
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6389
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6390
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6391
		is_l2 = true;
6392
		is_l4 = true;
6393 6394 6395 6396 6397
		break;
	default:
		return -ERANGE;
	}

6398 6399 6400 6401 6402 6403
	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

N
Nick Nunley 已提交
6404 6405 6406 6407 6408
	/*
	 * Per-packet timestamping only works if all packets are
	 * timestamped, so enable timestamping in all packets as
	 * long as one rx filter was configured.
	 */
6409
	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
N
Nick Nunley 已提交
6410 6411 6412 6413
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
	}

6414 6415
	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
6416 6417
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
6418 6419
	wr32(E1000_TSYNCTXCTL, regval);

6420
	/* enable/disable RX */
6421
	regval = rd32(E1000_TSYNCRXCTL);
6422 6423
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
6424 6425
	wr32(E1000_TSYNCRXCTL, regval);

6426 6427
	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6428

6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		                 E1000_ETQF_1588 | /* enable timestamping */
		                 ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
6459 6460 6461 6462 6463 6464 6465
	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
6466

6467 6468
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
6469 6470
}

6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6484 6485
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6486 6487 6488 6489 6490
	default:
		return -EOPNOTSUPP;
	}
}

6491 6492 6493 6494 6495
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

6496
	cap_offset = adapter->pdev->pcie_cap;
6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

6510
	cap_offset = adapter->pdev->pcie_cap;
6511 6512 6513 6514 6515 6516 6517 6518
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

6519
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6520 6521 6522 6523
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6524
	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6525

6526
	if (enable) {
6527 6528 6529 6530 6531
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6532
		/* Disable CFI check */
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6543
	igb_rlpml_set(adapter);
6544 6545
}

6546
static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6547 6548 6549
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6550
	int pf_id = adapter->vfs_allocated_count;
6551

6552 6553
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6554

6555 6556
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6557 6558

	set_bit(vid, adapter->active_vlans);
6559 6560

	return 0;
6561 6562
}

6563
static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6564 6565 6566
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6567
	int pf_id = adapter->vfs_allocated_count;
6568
	s32 err;
6569

6570 6571
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6572

6573 6574
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6575
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6576 6577

	clear_bit(vid, adapter->active_vlans);
6578 6579

	return 0;
6580 6581 6582 6583
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6584
	u16 vid;
6585

6586 6587
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6588 6589
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
6590 6591
}

6592
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6593
{
6594
	struct pci_dev *pdev = adapter->pdev;
6595 6596 6597 6598
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6599 6600 6601 6602 6603
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6604 6605
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6606 6607 6608
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL)
		goto err_inval;
6609

6610
	switch (spd + dplx) {
6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6629
		goto err_inval;
6630 6631
	}
	return 0;
6632 6633 6634 6635

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
6636 6637
}

Y
Yan, Zheng 已提交
6638 6639
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
6640 6641 6642 6643
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6644
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
6645
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6646 6647 6648 6649 6650 6651
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6652
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
6653
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
6654

6655
	igb_clear_interrupt_scheme(adapter);
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6669
		igb_set_rx_mode(netdev);
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6687
		igb_disable_pcie_master(hw);
6688 6689 6690 6691 6692 6693 6694 6695

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6696 6697
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6698 6699 6700
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
6712
static int igb_suspend(struct device *dev)
6713 6714 6715
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
6716
	struct pci_dev *pdev = to_pci_dev(dev);
6717

Y
Yan, Zheng 已提交
6718
	retval = __igb_shutdown(pdev, &wake, 0);
6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

Y
Yan, Zheng 已提交
6732
static int igb_resume(struct device *dev)
6733
{
Y
Yan, Zheng 已提交
6734
	struct pci_dev *pdev = to_pci_dev(dev);
6735 6736 6737 6738 6739 6740 6741
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
6742
	pci_save_state(pdev);
T
Taku Izumi 已提交
6743

6744
	err = pci_enable_device_mem(pdev);
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

Y
Yan, Zheng 已提交
6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
	if (!rtnl_is_locked()) {
		/*
		 * shut up ASSERT_RTNL() warning in
		 * netif_set_real_num_tx/rx_queues.
		 */
		rtnl_lock();
		err = igb_init_interrupt_scheme(adapter);
		rtnl_unlock();
	} else {
		err = igb_init_interrupt_scheme(adapter);
	}
	if (err) {
A
Alexander Duyck 已提交
6767 6768
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
6769 6770 6771
	}

	igb_reset(adapter);
6772 6773 6774 6775 6776

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

6777 6778
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
6779 6780
	if (netdev->flags & IFF_UP) {
		err = __igb_open(netdev, true);
A
Alexander Duyck 已提交
6781 6782 6783
		if (err)
			return err;
	}
6784 6785

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6818 6819 6820

	return 0;
}
Y
Yan, Zheng 已提交
6821 6822 6823 6824 6825 6826

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
6827 6828 6829 6830
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
6831 6832
	bool wake;

Y
Yan, Zheng 已提交
6833
	__igb_shutdown(pdev, &wake, 0);
6834 6835 6836 6837 6838

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
6850
	struct e1000_hw *hw = &adapter->hw;
6851
	struct igb_q_vector *q_vector;
6852 6853
	int i;

6854
	for (i = 0; i < adapter->num_q_vectors; i++) {
6855 6856 6857 6858 6859
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
6860
		napi_schedule(&q_vector->napi);
6861
	}
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

6881 6882 6883
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6904
	pci_ers_result_t result;
T
Taku Izumi 已提交
6905
	int err;
6906

6907
	if (pci_enable_device_mem(pdev)) {
6908 6909
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
6910 6911 6912 6913
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
6914
		pci_save_state(pdev);
6915

6916 6917
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
6918

6919 6920 6921 6922
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
6923

6924 6925 6926 6927 6928 6929
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
6930 6931

	return result;
6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

6988 6989 6990 6991
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
6992 6993 6994
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6995

6996
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6997

6998
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6999 7000 7001 7002

	return 0;
}

7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

7086 7087
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7106 7107 7108 7109 7110 7111 7112 7113 7114 7115
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7116
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7117 7118 7119 7120 7121
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

7122 7123 7124
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7125
	u32 reg;
7126

7127 7128 7129 7130
	switch (hw->mac.type) {
	case e1000_82575:
	default:
		/* replication is not supported for 82575 */
7131
		return;
7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7142 7143
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7144 7145
		break;
	}
7146

7147 7148 7149
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7150 7151
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
7152 7153 7154 7155
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7156 7157
}

7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

			/*
7172 7173 7174
			 * DMA Coalescing high water mark needs to be greater
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7175
			 */
7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

			/*
			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
			wr32(E1000_DMACR, reg);

			/*
			 * no lower threshold to disable
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

			/*
			 * free space in tx packet buffer to wake from
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

			/*
			 * make low power state decision controlled
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

7236
/* igb_main.c */