igb_main.c 193.5 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
56
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
57 58
#include <linux/dca.h>
#endif
59 60
#include "igb.h"

C
Carolyn Wyborny 已提交
61
#define MAJ 3
C
Carolyn Wyborny 已提交
62 63
#define MIN 2
#define BUILD 10
C
Carolyn Wyborny 已提交
64
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
65
__stringify(BUILD) "-k"
66 67 68 69
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
70
static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
71 72 73 74 75

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

76
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
77 78 79 80
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
81 82
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
83
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
84 85 86
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
89 90
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
92
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
93
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
94 95
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
97
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
98
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
99 100 101 102 103 104 105 106 107 108 109 110 111 112
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
113
static void igb_setup_mrqc(struct igb_adapter *);
114 115
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
A
Anders Berggren 已提交
116
static void igb_init_hw_timer(struct igb_adapter *adapter);
117 118 119 120 121 122 123
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
124 125
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
126
static void igb_set_rx_mode(struct net_device *);
127 128 129
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
130
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
131 132
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
133 134
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
135
static void igb_set_uta(struct igb_adapter *adapter);
136 137 138
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
139
static irqreturn_t igb_msix_ring(int irq, void *);
140
#ifdef CONFIG_IGB_DCA
141
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
142
static void igb_setup_dca(struct igb_adapter *);
143
#endif /* CONFIG_IGB_DCA */
144
static int igb_poll(struct napi_struct *, int);
145
static bool igb_clean_tx_irq(struct igb_q_vector *);
146
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
147 148 149
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
150
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
151 152
static int igb_vlan_rx_add_vid(struct net_device *, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, u16);
153
static void igb_restore_vlan(struct igb_adapter *);
154
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
155 156 157
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
158
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
159
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
160 161 162 163 164 165
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
166
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
167 168

#ifdef CONFIG_PCI_IOV
169 170 171
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
static int igb_find_enabled_vfs(struct igb_adapter *adapter);
static int igb_check_vf_assignment(struct igb_adapter *adapter);
R
RongQing Li 已提交
172
#endif
173 174

#ifdef CONFIG_PM
175
static int igb_suspend(struct pci_dev *, pm_message_t);
176 177 178
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
179
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
180 181 182 183 184 185 186
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
187 188 189 190
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
191
#ifdef CONFIG_PCI_IOV
192 193 194 195 196 197
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

198 199 200 201 202 203 204 205 206 207 208
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

209
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
210 211 212 213 214 215 216

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
L
Lucas De Marchi 已提交
217
	/* Power Management Hooks */
218 219 220 221 222 223 224 225 226 227 228 229
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
330
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
331 332 333 334
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
335 336
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
353
	u16 i, n;
354 355 356 357 358 359 360

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
361 362 363 364
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
365 366 367 368
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
369
	pr_info(" Register Name   Value\n");
370 371 372 373 374 375 376 377 378 379
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
380
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
381
	for (n = 0; n < adapter->num_tx_queues; n++) {
382
		struct igb_tx_buffer *buffer_info;
383
		tx_ring = adapter->tx_ring[n];
384
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
385 386 387 388 389 390
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
			(u64)buffer_info->dma,
			buffer_info->length,
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
412 413 414 415 416 417
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
418 419

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
420
			const char *next_desc;
421
			struct igb_tx_buffer *buffer_info;
422
			tx_desc = IGB_TX_DESC(tx_ring, i);
423
			buffer_info = &tx_ring->tx_buffer_info[i];
424
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
425 426 427 428 429 430 431 432 433 434 435 436
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
437 438 439 440 441 442
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
				(u64)buffer_info->dma,
				buffer_info->length,
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
443
				buffer_info->skb, next_desc);
444 445 446 447 448 449 450 451 452 453 454 455

			if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
					16, 1, phys_to_virt(buffer_info->dma),
					buffer_info->length, true);
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
456
	pr_info("Queue [NTU] [NTC]\n");
457 458
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
459 460
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
492 493 494 495 496 497 498
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
499 500

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
501
			const char *next_desc;
502 503
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
504
			rx_desc = IGB_RX_DESC(rx_ring, i);
505 506
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
507 508 509 510 511 512 513 514

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

515 516
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
J
Jeff Kirsher 已提交
517 518
				pr_info("%s[0x%03X]     %016llX %016llX -------"
					"--------- %p%s\n", "RWB", i,
519 520
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
J
Jeff Kirsher 已提交
521
					buffer_info->skb, next_desc);
522
			} else {
J
Jeff Kirsher 已提交
523 524
				pr_info("%s[0x%03X]     %016llX %016llX %016llX"
					" %p%s\n", "R  ", i,
525 526 527
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
J
Jeff Kirsher 已提交
528
					buffer_info->skb, next_desc);
529 530 531 532 533 534

				if (netif_msg_pktdata(adapter)) {
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS,
						16, 1,
						phys_to_virt(buffer_info->dma),
535 536 537 538 539 540 541 542
						IGB_RX_HDR_LEN, true);
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
					  phys_to_virt(
					    buffer_info->page_dma +
					    buffer_info->page_offset),
					  PAGE_SIZE/2, true);
543 544 545 546 547 548 549 550 551 552
				}
			}
		}
	}

exit:
	return;
}


P
Patrick Ohly 已提交
553 554 555 556 557 558 559 560
/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
561 562
	u64 stamp = 0;
	int shift = 0;
P
Patrick Ohly 已提交
563

564 565 566 567 568
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we never
	 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
	 */
569
	if (hw->mac.type >= e1000_82580) {
570 571 572 573
		stamp = rd32(E1000_SYSTIMR) >> 8;
		shift = IGB_82580_TSYNC_SHIFT;
	}

574 575
	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
P
Patrick Ohly 已提交
576 577 578
	return stamp;
}

579
/**
580
 * igb_get_hw_dev - return device
581 582
 * used by hardware layer to print debugging information
 **/
583
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
584 585
{
	struct igb_adapter *adapter = hw->back;
586
	return adapter->netdev;
587
}
P
Patrick Ohly 已提交
588

589 590 591 592 593 594 595 596 597
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
598
	pr_info("%s - version %s\n",
599 600
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
601
	pr_info("%s\n", igb_copyright);
602

603
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
604 605
	dca_register_notify(&dca_notifier);
#endif
606
	ret = pci_register_driver(&igb_driver);
607 608 609 610 611 612 613 614 615 616 617 618 619
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
620
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
621 622
	dca_unregister_notify(&dca_notifier);
#endif
623 624 625 626 627
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

628 629 630 631 632 633 634 635 636 637
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
638
	int i = 0, j = 0;
639
	u32 rbase_offset = adapter->vfs_allocated_count;
640 641 642 643 644 645 646 647

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
648
		if (adapter->vfs_allocated_count) {
649
			for (; i < adapter->rss_queues; i++)
650 651
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
652
		}
653
	case e1000_82575:
654
	case e1000_82580:
655
	case e1000_i350:
656
	default:
657
		for (; i < adapter->num_rx_queues; i++)
658
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
659
		for (; j < adapter->num_tx_queues; j++)
660
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
661 662 663 664
		break;
	}
}

665 666
static void igb_free_queues(struct igb_adapter *adapter)
{
667
	int i;
668

669 670 671 672 673 674 675 676
	for (i = 0; i < adapter->num_tx_queues; i++) {
		kfree(adapter->tx_ring[i]);
		adapter->tx_ring[i] = NULL;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		kfree(adapter->rx_ring[i]);
		adapter->rx_ring[i] = NULL;
	}
677 678 679 680
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

681 682 683 684 685 686 687 688 689
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
690
	struct igb_ring *ring;
691
	int i;
692
	int orig_node = adapter->node;
693

694
	for (i = 0; i < adapter->num_tx_queues; i++) {
695 696 697 698 699 700 701 702 703 704
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
				    adapter->node);
		if (!ring)
			ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
705 706
		if (!ring)
			goto err;
707
		ring->count = adapter->tx_ring_count;
708
		ring->queue_index = i;
709
		ring->dev = &adapter->pdev->dev;
710
		ring->netdev = adapter->netdev;
711
		ring->numa_node = adapter->node;
712 713
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
714
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
715
		adapter->tx_ring[i] = ring;
716
	}
717 718
	/* Restore the adapter's original node */
	adapter->node = orig_node;
719

720
	for (i = 0; i < adapter->num_rx_queues; i++) {
721 722 723 724 725 726 727 728 729 730
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
				    adapter->node);
		if (!ring)
			ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
731 732
		if (!ring)
			goto err;
733
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
734
		ring->queue_index = i;
735
		ring->dev = &adapter->pdev->dev;
736
		ring->netdev = adapter->netdev;
737
		ring->numa_node = adapter->node;
738 739
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
740
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
741 742 743 744 745

		/* On i350, loopback VLAN packets have the tag byte-swapped. */
		if (adapter->hw.mac.type == e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);

746
		adapter->rx_ring[i] = ring;
747
	}
748 749
	/* Restore the adapter's original node */
	adapter->node = orig_node;
750 751

	igb_cache_ring_register(adapter);
752

753
	return 0;
A
Alexander Duyck 已提交
754

755
err:
756 757
	/* Restore the adapter's original node */
	adapter->node = orig_node;
758
	igb_free_queues(adapter);
759

760
	return -ENOMEM;
A
Alexander Duyck 已提交
761 762
}

A
Alexander Duyck 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

789
#define IGB_N0_QUEUE -1
790
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
791
{
792
	struct igb_adapter *adapter = q_vector->adapter;
793
	struct e1000_hw *hw = &adapter->hw;
794 795
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
796
	u32 msixbm = 0;
797

798 799 800 801
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
802 803 804

	switch (hw->mac.type) {
	case e1000_82575:
805 806 807 808
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
809
		if (rx_queue > IGB_N0_QUEUE)
810
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
811
		if (tx_queue > IGB_N0_QUEUE)
812
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
813 814
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
815
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
816
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
817 818
		break;
	case e1000_82576:
A
Alexander Duyck 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832
		/*
		 * 82576 uses a table that essentially consists of 2 columns
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
833
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
834
		break;
835
	case e1000_82580:
836
	case e1000_i350:
A
Alexander Duyck 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		/*
		 * On 82580 and newer adapters the scheme is similar to 82576
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
852 853
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
854 855 856 857
	default:
		BUG();
		break;
	}
858 859 860 861 862 863

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
881 882
	switch (hw->mac.type) {
	case e1000_82575:
883 884 885 886 887 888 889 890 891
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
892 893 894 895

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
896
		adapter->eims_other = E1000_EIMS_OTHER;
897

A
Alexander Duyck 已提交
898 899 900
		break;

	case e1000_82576:
901
	case e1000_82580:
902
	case e1000_i350:
903 904 905 906 907 908 909 910
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
911 912
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

913
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
914 915 916 917 918
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
919 920 921

	adapter->eims_enable_mask |= adapter->eims_other;

922 923
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
924

925 926 927 928 929 930 931 932 933 934 935 936
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
937
	struct e1000_hw *hw = &adapter->hw;
938 939
	int i, err = 0, vector = 0;

940
	err = request_irq(adapter->msix_entries[vector].vector,
941
	                  igb_msix_other, 0, netdev->name, adapter);
942 943 944 945 946 947 948 949 950
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

951
		if (q_vector->rx.ring && q_vector->tx.ring)
952
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
953 954
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
955
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
956 957
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
958
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
959
				q_vector->rx.ring->queue_index);
960
		else
961 962
			sprintf(q_vector->name, "%s-unused", netdev->name);

963
		err = request_irq(adapter->msix_entries[vector].vector,
964
		                  igb_msix_ring, 0, q_vector->name,
965
		                  q_vector);
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
983
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
984
		pci_disable_msi(adapter->pdev);
985
	}
986 987
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
1003 1004
		if (!q_vector)
			continue;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1023 1024 1025 1026 1027 1028 1029

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1030
static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1031 1032 1033 1034
{
	int err;
	int numvecs, i;

1035
	/* Number of supported queues. */
1036
	adapter->num_rx_queues = adapter->rss_queues;
1037 1038 1039 1040
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1041

1042 1043 1044
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1045
	/* if tx handler is separate add 1 for every tx queue */
1046 1047
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1048 1049 1050 1051 1052 1053

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1066
		goto out;
1067 1068 1069 1070 1071

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1083
		wrfl();
1084 1085 1086 1087
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1088
	adapter->vfs_allocated_count = 0;
1089
	adapter->rss_queues = 1;
1090
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1091
	adapter->num_rx_queues = 1;
1092
	adapter->num_tx_queues = 1;
1093
	adapter->num_q_vectors = 1;
1094
	if (!pci_enable_msi(adapter->pdev))
1095
		adapter->flags |= IGB_FLAG_HAS_MSI;
1096
out:
1097 1098 1099 1100
	/* Notify the stack of the (possibly) reduced queue counts. */
	netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
	return netif_set_real_num_rx_queues(adapter->netdev,
					    adapter->num_rx_queues);
1101 1102
}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;
1115
	int orig_node = adapter->node;
1116 1117

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
		if ((adapter->num_q_vectors == (adapter->num_rx_queues +
						adapter->num_tx_queues)) &&
		    (adapter->num_rx_queues == v_idx))
			adapter->node = orig_node;
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
					adapter->node);
		if (!q_vector)
			q_vector = kzalloc(sizeof(struct igb_q_vector),
					   GFP_KERNEL);
1133 1134 1135 1136 1137 1138 1139 1140
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
1141 1142 1143
	/* Restore the adapter's original node */
	adapter->node = orig_node;

1144 1145 1146
	return 0;

err_out:
1147 1148
	/* Restore the adapter's original node */
	adapter->node = orig_node;
1149
	igb_free_q_vectors(adapter);
1150 1151 1152 1153 1154 1155
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1156
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1157

1158 1159 1160
	q_vector->rx.ring = adapter->rx_ring[ring_idx];
	q_vector->rx.ring->q_vector = q_vector;
	q_vector->rx.count++;
1161 1162 1163
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1164 1165 1166 1167 1168
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1169
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1170

1171 1172 1173
	q_vector->tx.ring = adapter->tx_ring[ring_idx];
	q_vector->tx.ring->q_vector = q_vector;
	q_vector->tx.count++;
1174
	q_vector->itr_val = adapter->tx_itr_setting;
1175
	q_vector->tx.work_limit = adapter->tx_work_limit;
1176 1177
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1222 1223 1224
	err = igb_set_interrupt_capability(adapter);
	if (err)
		return err;
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1255 1256 1257 1258 1259 1260 1261 1262 1263
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1264
	struct pci_dev *pdev = adapter->pdev;
1265 1266 1267 1268
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1269
		if (!err)
1270 1271
			goto request_done;
		/* fall back to MSI */
1272
		igb_clear_interrupt_scheme(adapter);
1273
		if (!pci_enable_msi(pdev))
1274
			adapter->flags |= IGB_FLAG_HAS_MSI;
1275 1276
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1277
		adapter->num_tx_queues = 1;
1278
		adapter->num_rx_queues = 1;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1295
	}
P
PJ Waskiewicz 已提交
1296

1297 1298
	igb_assign_vector(adapter->q_vector[0], 0);

1299
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1300
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1301
				  netdev->name, adapter);
1302 1303
		if (!err)
			goto request_done;
1304

1305 1306
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1307
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1308 1309
	}

1310
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1311
			  netdev->name, adapter);
1312

A
Andy Gospodarek 已提交
1313
	if (err)
1314
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1326
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1327

1328
		for (i = 0; i < adapter->num_q_vectors; i++)
1329
			free_irq(adapter->msix_entries[vector++].vector,
1330
				 adapter->q_vector[i]);
1331 1332
	} else {
		free_irq(adapter->pdev->irq, adapter);
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1344 1345 1346 1347 1348
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1349
	if (adapter->msix_entries) {
1350 1351 1352 1353 1354
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1355
	}
P
PJ Waskiewicz 已提交
1356 1357

	wr32(E1000_IAM, 0);
1358 1359
	wr32(E1000_IMC, ~0);
	wrfl();
1360 1361 1362 1363 1364 1365 1366
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1378
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1379 1380 1381 1382
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1383
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1384
		if (adapter->vfs_allocated_count) {
1385
			wr32(E1000_MBVFIMR, 0xFF);
1386 1387 1388
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1389
	} else {
1390 1391 1392 1393
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1394
	}
1395 1396 1397 1398
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1399
	struct e1000_hw *hw = &adapter->hw;
1400 1401
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1413
	    !test_bit(old_vid, adapter->active_vlans)) {
1414 1415
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1469
	igb_set_rx_mode(netdev);
1470 1471 1472

	igb_restore_vlan(adapter);

1473
	igb_setup_tctl(adapter);
1474
	igb_setup_mrqc(adapter);
1475
	igb_setup_rctl(adapter);
1476 1477

	igb_configure_tx(adapter);
1478
	igb_configure_rx(adapter);
1479 1480 1481

	igb_rx_fifo_flush_82575(&adapter->hw);

1482
	/* call igb_desc_unused which always leaves
1483 1484 1485
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1486
		struct igb_ring *ring = adapter->rx_ring[i];
1487
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1488 1489 1490
	}
}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1529 1530 1531
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1532
	if (adapter->msix_entries)
1533
		igb_configure_msix(adapter);
1534 1535
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1536 1537 1538 1539 1540

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1541 1542 1543 1544 1545 1546 1547
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1548 1549
	netif_tx_start_all_queues(adapter->netdev);

1550 1551 1552 1553
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1554 1555 1556 1557 1558 1559
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1560
	struct e1000_hw *hw = &adapter->hw;
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1573
	netif_tx_stop_all_queues(netdev);
1574 1575 1576 1577 1578 1579 1580 1581 1582

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1583 1584
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_disable(&(adapter->q_vector[i]->napi));
1585 1586 1587 1588 1589 1590 1591

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1592 1593

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1594 1595 1596
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1597

1598 1599 1600
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1601 1602
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1603 1604
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1605 1606 1607 1608 1609
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1624
	struct pci_dev *pdev = adapter->pdev;
1625
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1626 1627
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1628 1629 1630 1631 1632 1633
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1634
	switch (mac->type) {
1635
	case e1000_i350:
1636 1637 1638 1639
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1640
	case e1000_82576:
1641 1642
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1643 1644 1645 1646 1647
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1648
	}
1649

A
Alexander Duyck 已提交
1650 1651
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1669
				sizeof(union e1000_adv_tx_desc) -
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1690
		wr32(E1000_PBA, pba);
1691 1692 1693 1694 1695 1696 1697 1698 1699
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1700
			((pba << 10) - 2 * adapter->max_frame_size));
1701

1702 1703
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1704 1705
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1706
	fc->current_mode = fc->requested_mode;
1707

1708 1709 1710 1711
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1712
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1713 1714

		/* ping all the active vfs to let them know we are going down */
1715
		igb_ping_all_vfs(adapter);
1716 1717 1718 1719 1720 1721

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1722
	/* Allow time for pending master requests to run */
1723
	hw->mac.ops.reset_hw(hw);
1724 1725
	wr32(E1000_WUC, 0);

1726
	if (hw->mac.ops.init_hw(hw))
1727
		dev_err(&pdev->dev, "Hardware Error\n");
1728

1729
	igb_init_dmac(adapter, pba);
1730 1731 1732
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1733 1734 1735 1736 1737
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1738
	igb_get_phy_info(hw);
1739 1740
}

1741 1742
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
{
	/*
	 * Since there is no support for separate rx/tx vlan accel
	 * enable/disable make sure tx flag is always in same state as rx.
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1756 1757
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1758
{
1759
	netdev_features_t changed = netdev->features ^ features;
1760

J
Jiri Pirko 已提交
1761 1762 1763
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

1764 1765 1766
	return 0;
}

S
Stephen Hemminger 已提交
1767
static const struct net_device_ops igb_netdev_ops = {
1768
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1769
	.ndo_stop		= igb_close,
1770
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1771
	.ndo_get_stats64	= igb_get_stats64,
1772
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1773 1774 1775 1776 1777 1778 1779
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1780 1781 1782 1783
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1784 1785 1786
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1787 1788
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1789 1790
};

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1808
	u16 eeprom_data = 0;
1809
	s32 ret_val;
1810
	static int global_quad_port_a; /* global quad port a indication */
1811 1812
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1813
	int err, pci_using_dac;
1814
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1815
	u8 part_str[E1000_PBANUM_LENGTH];
1816

1817 1818 1819 1820 1821 1822 1823 1824 1825
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
		     pci_name(pdev), pdev->vendor, pdev->device);
		return -EINVAL;
	}

1826
	err = pci_enable_device_mem(pdev);
1827 1828 1829 1830
	if (err)
		return err;

	pci_using_dac = 0;
1831
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1832
	if (!err) {
1833
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1834 1835 1836
		if (!err)
			pci_using_dac = 1;
	} else {
1837
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1838
		if (err) {
1839
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1840 1841 1842 1843 1844 1845 1846 1847
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1848 1849 1850
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1851 1852 1853
	if (err)
		goto err_pci_reg;

1854
	pci_enable_pcie_error_reporting(pdev);
1855

1856
	pci_set_master(pdev);
1857
	pci_save_state(pdev);
1858 1859

	err = -ENOMEM;
1860
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1861
				   IGB_MAX_TX_QUEUES);
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1879 1880
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1881 1882
		goto err_ioremap;

S
Stephen Hemminger 已提交
1883
	netdev->netdev_ops = &igb_netdev_ops;
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1906
		goto err_sw_init;
1907

1908
	/* setup the private structure */
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
	/*
	 * features is initialized to 0 in allocation, it might have bits
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;

	/* set this bit last since it cannot be part of hw_features */
	netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
1954

1955
	if (pci_using_dac) {
1956
		netdev->features |= NETIF_F_HIGHDMA;
1957 1958
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
1959

1960 1961
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
1962
		netdev->features |= NETIF_F_SCTP_CSUM;
1963
	}
1964

1965 1966
	netdev->priv_flags |= IFF_UNICAST_FLT;

1967
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1968 1969 1970 1971 1972 1973

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
1974
	if (hw->nvm.ops.validate(hw) < 0) {
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1993
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
1994
	            (unsigned long) adapter);
1995
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
1996
	            (unsigned long) adapter);
1997 1998 1999 2000

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2001
	/* Initialize link properties that are user-changeable */
2002 2003 2004 2005
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2006 2007
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2008 2009 2010 2011 2012 2013 2014

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

2015
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
2016
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2017
	else if (hw->mac.type >= e1000_82580)
2018 2019 2020
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
2021 2022
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2035 2036
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2037 2038 2039 2040 2041
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
2042
	case E1000_DEV_ID_82576_QUAD_COPPER:
2043
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2044 2045 2046 2047 2048 2049 2050 2051 2052
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2053 2054 2055 2056
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
2057
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2071 2072 2073
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2074
#ifdef CONFIG_IGB_DCA
2075
	if (dca_add_requester(&pdev->dev) == 0) {
2076
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2077 2078 2079 2080
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2081
#endif
A
Anders Berggren 已提交
2082 2083 2084
	/* do hw tstamp init after resetting */
	igb_init_hw_timer(adapter);

2085 2086
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2087
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2088
		 netdev->name,
2089
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2090
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2091
		                                            "unknown"),
2092 2093 2094 2095
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2096
		 netdev->dev_addr);
2097

2098 2099 2100 2101
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2102 2103 2104
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2105
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2106
		adapter->num_rx_queues, adapter->num_tx_queues);
2107 2108 2109 2110 2111 2112 2113
	switch (hw->mac.type) {
	case e1000_i350:
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
2114 2115 2116 2117 2118 2119
	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
2120
		igb_reset_phy(hw);
2121 2122 2123 2124

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2125
	igb_clear_interrupt_scheme(adapter);
2126 2127 2128 2129
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2130 2131
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2151
	struct e1000_hw *hw = &adapter->hw;
2152

2153 2154 2155 2156
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2157 2158 2159 2160
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2161 2162
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2163

2164
#ifdef CONFIG_IGB_DCA
2165
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2166 2167
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2168
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2169
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2170 2171 2172
	}
#endif

2173 2174 2175 2176 2177 2178
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2179
	igb_clear_interrupt_scheme(adapter);
2180

2181 2182 2183 2184
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
2185 2186 2187 2188 2189 2190
		if (!igb_check_vf_assignment(adapter)) {
			pci_disable_sriov(pdev);
			msleep(500);
		} else {
			dev_info(&pdev->dev, "VF(s) assigned to guests!\n");
		}
2191 2192 2193 2194

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2195
		wrfl();
2196 2197 2198 2199
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
2200

2201 2202 2203
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2204 2205
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2206

2207
	kfree(adapter->shadow_vfta);
2208 2209
	free_netdev(netdev);

2210
	pci_disable_pcie_error_reporting(pdev);
2211

2212 2213 2214
	pci_disable_device(pdev);
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2228 2229
	int old_vfs = igb_find_enabled_vfs(adapter);
	int i;
2230

2231 2232 2233 2234
	if (old_vfs) {
		dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
			 "max_vfs setting of %d\n", old_vfs, max_vfs);
		adapter->vfs_allocated_count = old_vfs;
2235 2236
	}

2237 2238 2239 2240 2241 2242 2243
	if (!adapter->vfs_allocated_count)
		return;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);
	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
2244
		adapter->vfs_allocated_count = 0;
2245 2246 2247
		dev_err(&pdev->dev, "Unable to allocate memory for VF "
			"Data Storage\n");
		goto out;
2248
	}
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

	if (!old_vfs) {
		if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
			goto err_out;
	}
	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;
err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return;
2268 2269 2270
#endif /* CONFIG_PCI_IOV */
}

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
/**
 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
 * @adapter: board private structure to initialize
 *
 * igb_init_hw_timer initializes the function pointer and values for the hw
 * timer found in hardware.
 **/
static void igb_init_hw_timer(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
2283
	case e1000_i350:
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	case e1000_82580:
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/*
		 * The 82580 timesync updates the system timer every 8ns by 8ns
		 * and the value cannot be shifted.  Instead we need to shift
		 * the registers to generate a 64bit timer value.  As a result
		 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
		 * 24 in order to generate a larger value for synchronization.
		 */
		adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
		/* disable system timer temporarily by setting bit 31 */
		wr32(E1000_TSAUXC, 0x80000000);
		wrfl();

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIMR, 0x00000000);
		wr32(E1000_SYSTIML, 0x80000000);
		wr32(E1000_SYSTIMH, 0x000000FF);
		wrfl();

		/* enable system timer by clearing bit 31 */
		wr32(E1000_TSAUXC, 0x0);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	case e1000_82576:
		/*
		 * Initialize hardware timer: we keep it running just in case
		 * that some program needs it later on.
		 */
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/**
		 * Scale the NIC clock cycle by a large factor so that
		 * relatively small clock corrections can be added or
L
Lucas De Marchi 已提交
2338
		 * subtracted at each clock tick. The drawbacks of a large
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
		 * factor are a) that the clock register overflows more quickly
		 * (not such a big deal) and b) that the increment per tick has
		 * to fit into 24 bits.  As a result we need to use a shift of
		 * 19 so we can fit a value of 16 into the TIMINCA register.
		 */
		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
		wr32(E1000_TIMINCA,
		                (1 << E1000_TIMINCA_16NS_SHIFT) |
		                (16 << IGB_82576_TSYNC_SHIFT));

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIML, 0x00000000);
		wr32(E1000_SYSTIMH, 0xFF800000);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
	case e1000_82575:
		/* 82575 does not support timesync */
	default:
		break;
	}

}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

2393
	/* set default ring sizes */
2394 2395
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2396 2397

	/* set default ITR values */
2398 2399 2400
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

2401 2402 2403
	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

2404 2405
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
2406 2407
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

2408 2409
	adapter->node = -1;

E
Eric Dumazet 已提交
2410
	spin_lock_init(&adapter->stats64_lock);
2411
#ifdef CONFIG_PCI_IOV
2412 2413 2414
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
2415 2416 2417 2418 2419 2420
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
2421 2422 2423 2424
		break;
	default:
		break;
	}
2425
#endif /* CONFIG_PCI_IOV */
2426
	adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2427 2428 2429
	/* i350 cannot do RSS and SR-IOV at the same time */
	if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
		adapter->rss_queues = 1;
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439

	/*
	 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
	 * then we should combine the queues into a queue pair in order to
	 * conserve interrupts due to limited supply
	 */
	if ((adapter->rss_queues > 4) ||
	    ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
		adapter->flags |= IGB_FLAG_QUEUE_PAIRS;

2440 2441 2442 2443 2444
	/* Setup and initialize a copy of the hw vlan table array */
	adapter->shadow_vfta = kzalloc(sizeof(u32) *
				E1000_VLAN_FILTER_TBL_SIZE,
				GFP_ATOMIC);

2445
	/* This call may decrease the number of queues */
2446
	if (igb_init_interrupt_scheme(adapter)) {
2447 2448 2449 2450
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2451 2452
	igb_probe_vfs(adapter);

2453 2454 2455
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2456 2457 2458
	if (hw->mac.type == e1000_i350)
		adapter->flags &= ~IGB_FLAG_DMAC;

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

2486 2487
	netif_carrier_off(netdev);

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2498
	igb_power_up_link(adapter);
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2513 2514
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2515 2516 2517

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2518 2519 2520

	igb_irq_enable(adapter);

2521 2522 2523 2524 2525 2526 2527
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2528 2529
	netif_tx_start_all_queues(netdev);

2530 2531 2532
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2533 2534 2535 2536 2537

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
2538
	igb_power_down_link(adapter);
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2580
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2581
{
2582
	struct device *dev = tx_ring->dev;
2583
	int orig_node = dev_to_node(dev);
2584 2585
	int size;

2586
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2587 2588 2589
	tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
	if (!tx_ring->tx_buffer_info)
		tx_ring->tx_buffer_info = vzalloc(size);
2590
	if (!tx_ring->tx_buffer_info)
2591 2592 2593
		goto err;

	/* round up to nearest 4K */
2594
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2595 2596
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2597
	set_dev_node(dev, tx_ring->numa_node);
2598 2599 2600 2601
	tx_ring->desc = dma_alloc_coherent(dev,
					   tx_ring->size,
					   &tx_ring->dma,
					   GFP_KERNEL);
2602 2603 2604 2605 2606 2607
	set_dev_node(dev, orig_node);
	if (!tx_ring->desc)
		tx_ring->desc = dma_alloc_coherent(dev,
						   tx_ring->size,
						   &tx_ring->dma,
						   GFP_KERNEL);
2608 2609 2610 2611 2612 2613

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2614

2615 2616 2617
	return 0;

err:
2618
	vfree(tx_ring->tx_buffer_info);
2619
	dev_err(dev,
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2633
	struct pci_dev *pdev = adapter->pdev;
2634 2635 2636
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2637
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2638
		if (err) {
2639
			dev_err(&pdev->dev,
2640 2641
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2642
				igb_free_tx_resources(adapter->tx_ring[i]);
2643 2644 2645 2646 2647 2648 2649 2650
			break;
		}
	}

	return err;
}

/**
2651 2652
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2653
 **/
2654
void igb_setup_tctl(struct igb_adapter *adapter)
2655 2656 2657 2658
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2659 2660
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2676 2677 2678 2679 2680 2681 2682
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2683 2684
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2685 2686
{
	struct e1000_hw *hw = &adapter->hw;
2687
	u32 txdctl = 0;
2688 2689 2690 2691
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2692
	wr32(E1000_TXDCTL(reg_idx), 0);
2693 2694 2695 2696 2697 2698 2699 2700 2701
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2702
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2703
	wr32(E1000_TDH(reg_idx), 0);
2704
	writel(0, ring->tail);
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2725
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2726 2727
}

2728 2729 2730 2731 2732 2733
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2734
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2735
{
2736
	struct device *dev = rx_ring->dev;
2737
	int orig_node = dev_to_node(dev);
2738 2739
	int size, desc_len;

2740
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2741 2742 2743
	rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
	if (!rx_ring->rx_buffer_info)
		rx_ring->rx_buffer_info = vzalloc(size);
2744
	if (!rx_ring->rx_buffer_info)
2745 2746 2747 2748 2749 2750 2751 2752
		goto err;

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

2753
	set_dev_node(dev, rx_ring->numa_node);
2754 2755 2756 2757
	rx_ring->desc = dma_alloc_coherent(dev,
					   rx_ring->size,
					   &rx_ring->dma,
					   GFP_KERNEL);
2758 2759 2760 2761 2762 2763
	set_dev_node(dev, orig_node);
	if (!rx_ring->desc)
		rx_ring->desc = dma_alloc_coherent(dev,
						   rx_ring->size,
						   &rx_ring->dma,
						   GFP_KERNEL);
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
2774 2775
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
2776 2777
	dev_err(dev, "Unable to allocate memory for the receive descriptor"
		" ring\n");
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2790
	struct pci_dev *pdev = adapter->pdev;
2791 2792 2793
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2794
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2795
		if (err) {
2796
			dev_err(&pdev->dev,
2797 2798
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2799
				igb_free_rx_resources(adapter->rx_ring[i]);
2800 2801 2802 2803 2804 2805 2806
			break;
		}
	}

	return err;
}

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

2835
	num_rx_queues = adapter->rss_queues;
2836 2837 2838 2839

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
2840
		case e1000_i350:
2841 2842 2843 2844
		case e1000_82580:
			num_rx_queues = 1;
			shift = 0;
			break;
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2896
		if (adapter->rss_queues > 1)
2897 2898 2899 2900 2901 2902 2903 2904
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
	/*
	 * Generate RSS hash based on TCP port numbers and/or
	 * IPv4/v6 src and dst addresses since UDP cannot be
	 * hashed reliably due to IP fragmentation
	 */
	mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2915 2916 2917 2918

	wr32(E1000_MRQC, mrqc);
}

2919 2920 2921 2922
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2923
void igb_setup_rctl(struct igb_adapter *adapter)
2924 2925 2926 2927 2928 2929 2930
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2931
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2932

2933
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2934
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2935

2936 2937 2938 2939
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2940
	 */
2941
	rctl |= E1000_RCTL_SECRC;
2942

2943
	/* disable store bad packets and clear size bits. */
2944
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2945

A
Alexander Duyck 已提交
2946 2947
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2948

2949 2950
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2951

2952 2953 2954 2955 2956 2957 2958 2959 2960
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

2961 2962 2963
	wr32(E1000_RCTL, rctl);
}

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

2984 2985 2986 2987 2988 2989 2990 2991
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
2992
	u32 max_frame_size = adapter->max_frame_size;
2993 2994 2995 2996 2997
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2998 2999 3000 3001 3002 3003 3004
		/*
		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3005
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3006 3007 3008 3009 3010
	}

	wr32(E1000_RLPML, max_frame_size);
}

3011 3012
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3025 3026 3027 3028 3029
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3030 3031 3032 3033

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3034
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

3046 3047 3048 3049 3050 3051 3052
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
3053 3054
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3055 3056 3057 3058
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3059
	u32 srrctl = 0, rxdctl = 0;
3060 3061

	/* disable the queue */
3062
	wr32(E1000_RXDCTL(reg_idx), 0);
3063 3064 3065 3066 3067 3068 3069 3070 3071

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
3072
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3073
	wr32(E1000_RDH(reg_idx), 0);
3074
	writel(0, ring->tail);
3075

3076
	/* set descriptor configuration */
3077
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3078
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3079
	srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3080
#else
3081
	srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3082
#endif
3083
	srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3084
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3085
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3086 3087 3088
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3089 3090 3091

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3092
	/* set filtering for VMDQ pools */
3093
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3094

3095 3096 3097
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3098 3099 3100

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3101 3102 3103
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3104 3105 3106 3107 3108 3109 3110 3111
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3112
	int i;
3113

3114 3115 3116
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3117 3118 3119 3120
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

3121 3122 3123
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
3124
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3125 3126 3127 3128 3129 3130 3131 3132
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3133
void igb_free_tx_resources(struct igb_ring *tx_ring)
3134
{
3135
	igb_clean_tx_ring(tx_ring);
3136

3137 3138
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3139

3140 3141 3142 3143
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3144 3145
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3161
		igb_free_tx_resources(adapter->tx_ring[i]);
3162 3163
}

3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
		if (tx_buffer->dma)
			dma_unmap_single(ring->dev,
					 tx_buffer->dma,
					 tx_buffer->length,
					 DMA_TO_DEVICE);
	} else if (tx_buffer->dma) {
		dma_unmap_page(ring->dev,
			       tx_buffer->dma,
			       tx_buffer->length,
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	tx_buffer->dma = 0;
	/* buffer_info must be completely set up in the transmit path */
3184 3185 3186 3187 3188 3189
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3190
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3191
{
3192
	struct igb_tx_buffer *buffer_info;
3193
	unsigned long size;
3194
	u16 i;
3195

3196
	if (!tx_ring->tx_buffer_info)
3197 3198 3199 3200
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3201
		buffer_info = &tx_ring->tx_buffer_info[i];
3202
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3203 3204
	}

3205 3206
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3224
		igb_clean_tx_ring(adapter->tx_ring[i]);
3225 3226 3227 3228 3229 3230 3231 3232
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3233
void igb_free_rx_resources(struct igb_ring *rx_ring)
3234
{
3235
	igb_clean_rx_ring(rx_ring);
3236

3237 3238
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3239

3240 3241 3242 3243
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3244 3245
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3261
		igb_free_rx_resources(adapter->rx_ring[i]);
3262 3263 3264 3265 3266 3267
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3268
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3269 3270
{
	unsigned long size;
3271
	u16 i;
3272

3273
	if (!rx_ring->rx_buffer_info)
3274
		return;
3275

3276 3277
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3278
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3279
		if (buffer_info->dma) {
3280
			dma_unmap_single(rx_ring->dev,
3281
			                 buffer_info->dma,
3282
					 IGB_RX_HDR_LEN,
3283
					 DMA_FROM_DEVICE);
3284 3285 3286 3287 3288 3289 3290
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
3291
		if (buffer_info->page_dma) {
3292
			dma_unmap_page(rx_ring->dev,
3293
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
3294
				       PAGE_SIZE / 2,
3295
				       DMA_FROM_DEVICE);
A
Alexander Duyck 已提交
3296 3297
			buffer_info->page_dma = 0;
		}
3298 3299 3300
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
3301
			buffer_info->page_offset = 0;
3302 3303 3304
		}
	}

3305 3306
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3324
		igb_clean_rx_ring(adapter->rx_ring[i]);
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3337
	struct e1000_hw *hw = &adapter->hw;
3338 3339 3340 3341 3342 3343
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3344
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3345

3346 3347 3348
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3349

3350 3351 3352 3353
	return 0;
}

/**
3354
 * igb_write_mc_addr_list - write multicast addresses to MTA
3355 3356
 * @netdev: network interface device structure
 *
3357 3358 3359 3360
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3361
 **/
3362
static int igb_write_mc_addr_list(struct net_device *netdev)
3363 3364 3365
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3366
	struct netdev_hw_addr *ha;
3367
	u8  *mta_list;
3368 3369
	int i;

3370
	if (netdev_mc_empty(netdev)) {
3371 3372 3373 3374 3375
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3376

3377
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3378 3379
	if (!mta_list)
		return -ENOMEM;
3380

3381
	/* The shared function expects a packed array of only addresses. */
3382
	i = 0;
3383 3384
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3385 3386 3387 3388

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3389
	return netdev_mc_count(netdev);
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3410
	if (netdev_uc_count(netdev) > rar_entries)
3411
		return -ENOMEM;
3412

3413
	if (!netdev_uc_empty(netdev) && rar_entries) {
3414
		struct netdev_hw_addr *ha;
3415 3416

		netdev_for_each_uc_addr(ha, netdev) {
3417 3418
			if (!rar_entries)
				break;
3419 3420
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3421 3422
			                 vfn);
			count++;
3423 3424 3425 3426 3427 3428 3429 3430 3431
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3468
			 * then we should just turn on promiscuous mode so
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3482
		 * unicast promiscuous mode
3483 3484 3485 3486 3487 3488 3489
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3490
	}
3491
	wr32(E1000_RCTL, rctl);
3492

3493 3494 3495 3496 3497 3498 3499
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
3500
		return;
3501

3502 3503 3504
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3505
	igb_restore_vf_multicasts(adapter);
3506 3507
}

G
Greg Rose 已提交
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3547 3548 3549 3550 3551
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3552
	igb_get_phy_info(&adapter->hw);
3553 3554
}

A
Alexander Duyck 已提交
3555 3556 3557 3558
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3559
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

	/* check for thermal sensor event on i350, copper only */
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
			ret = !!(thstat & event);
		}
	}

	return ret;
}

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3624 3625
	                                           struct igb_adapter,
                                                   watchdog_task);
3626 3627
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3628
	u32 link;
3629
	int i;
3630

A
Alexander Duyck 已提交
3631
	link = igb_has_link(adapter);
3632 3633 3634
	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3635 3636 3637
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3638 3639

			ctrl = rd32(E1000_CTRL);
3640
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3641 3642
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3643 3644 3645
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3646 3647 3648 3649 3650
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3651

3652
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3653 3654 3655 3656 3657
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3658
			}
3659

3660
			/* adjust timeout factor according to speed/duplex */
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3673
			igb_ping_all_vfs(adapter);
3674
			igb_check_vf_rate_limit(adapter);
3675

3676
			/* link state has changed, schedule phy info update */
3677 3678 3679 3680 3681 3682 3683 3684
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3685 3686

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3687 3688 3689 3690
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
3691
			}
3692

3693 3694 3695
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3696
			netif_carrier_off(netdev);
3697

3698 3699
			igb_ping_all_vfs(adapter);

3700
			/* link state has changed, schedule phy info update */
3701 3702 3703 3704 3705 3706
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

E
Eric Dumazet 已提交
3707 3708 3709
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3710

3711
	for (i = 0; i < adapter->num_tx_queues; i++) {
3712
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3713
		if (!netif_carrier_ok(netdev)) {
3714 3715 3716 3717
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3718 3719 3720 3721 3722 3723
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3724 3725
		}

3726
		/* Force detection of hung controller every watchdog period */
3727
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3728
	}
3729

3730
	/* Cause software interrupt to ensure rx ring is cleaned */
3731
	if (adapter->msix_entries) {
3732
		u32 eics = 0;
3733 3734
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
3735 3736 3737 3738
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3739

G
Greg Rose 已提交
3740 3741
	igb_spoof_check(adapter);

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3755 3756 3757 3758 3759 3760
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
3761
 *      receive rings.  The divisors and thresholds used by this function
3762 3763 3764 3765 3766 3767 3768
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3769
 * @q_vector: pointer to q_vector
3770
 **/
3771
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3772
{
3773
	int new_val = q_vector->itr_val;
3774
	int avg_wire_size = 0;
3775
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
3776
	unsigned int packets;
3777

3778 3779 3780 3781
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3782
		new_val = IGB_4K_ITR;
3783
		goto set_itr_val;
3784
	}
3785

3786 3787 3788
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
3789

3790 3791 3792 3793
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
3794 3795 3796 3797

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3798

3799 3800 3801 3802 3803
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3804

3805 3806 3807 3808 3809
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3810

3811 3812 3813 3814 3815
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
3816

3817
set_itr_val:
3818 3819 3820
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3821
	}
3822
clear_counts:
3823 3824 3825 3826
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
3842 3843
 * @q_vector: pointer to q_vector
 * @ring_container: ring info to update the itr for
3844
 **/
3845 3846
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
3847
{
3848 3849 3850
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
3851

3852
	/* no packets, exit with status unchanged */
3853
	if (packets == 0)
3854
		return;
3855

3856
	switch (itrval) {
3857 3858 3859
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
3860
			itrval = bulk_latency;
3861
		else if ((packets < 5) && (bytes > 512))
3862
			itrval = low_latency;
3863 3864 3865 3866 3867
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
3868
				itrval = bulk_latency;
3869
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
3870
				itrval = bulk_latency;
3871
			} else if ((packets > 35)) {
3872
				itrval = lowest_latency;
3873 3874
			}
		} else if (bytes/packets > 2000) {
3875
			itrval = bulk_latency;
3876
		} else if (packets <= 2 && bytes < 512) {
3877
			itrval = lowest_latency;
3878 3879 3880 3881 3882
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
3883
				itrval = low_latency;
3884
		} else if (bytes < 1500) {
3885
			itrval = low_latency;
3886 3887 3888 3889
		}
		break;
	}

3890 3891 3892 3893 3894 3895
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
3896 3897
}

3898
static void igb_set_itr(struct igb_q_vector *q_vector)
3899
{
3900
	struct igb_adapter *adapter = q_vector->adapter;
3901
	u32 new_itr = q_vector->itr_val;
3902
	u8 current_itr = 0;
3903 3904 3905 3906

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
3907
		new_itr = IGB_4K_ITR;
3908 3909 3910
		goto set_itr_now;
	}

3911 3912
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
3913

3914
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3915

3916
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3917 3918 3919
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3920 3921
		current_itr = low_latency;

3922 3923 3924
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3925
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3926 3927
		break;
	case low_latency:
3928
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3929 3930
		break;
	case bulk_latency:
3931
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3932 3933 3934 3935 3936 3937
		break;
	default:
		break;
	}

set_itr_now:
3938
	if (new_itr != q_vector->itr_val) {
3939 3940 3941
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3942 3943 3944
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
3945
				 new_itr) :
3946 3947 3948 3949 3950 3951 3952
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3953 3954
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3955 3956 3957
	}
}

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
		     u32 type_tucmd, u32 mss_l4len_idx)
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
3973
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
3974 3975 3976 3977 3978 3979 3980 3981
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

3982 3983 3984
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
3985
{
3986
	struct sk_buff *skb = first->skb;
3987 3988 3989 3990 3991
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

	if (!skb_is_gso(skb))
		return 0;
3992 3993

	if (skb_header_cloned(skb)) {
3994
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3995 3996 3997 3998
		if (err)
			return err;
	}

3999 4000
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4001

4002
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4003 4004 4005 4006 4007 4008 4009
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4010
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4011 4012 4013
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4014
	} else if (skb_is_gso_v6(skb)) {
4015 4016 4017 4018
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4019 4020
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4021 4022
	}

4023
	/* compute header lengths */
4024 4025
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4026

4027 4028 4029 4030
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4031
	/* MSS L4LEN IDX */
4032 4033
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4034

4035 4036 4037
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4038
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4039

4040
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4041

4042
	return 1;
4043 4044
}

4045
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4046
{
4047
	struct sk_buff *skb = first->skb;
4048 4049 4050
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4051

4052
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4053 4054
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4055 4056
	} else {
		u8 l4_hdr = 0;
4057
		switch (first->protocol) {
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but proto=%x!\n",
4071
				 first->protocol);
4072
			}
4073 4074
			break;
		}
4075

4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but l4 proto=%x!\n",
				 l4_hdr);
4096
			}
4097
			break;
4098
		}
4099 4100 4101

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4102
	}
4103

4104
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4105
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4106

4107
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4108 4109
}

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
static __le32 igb_tx_cmd_type(u32 tx_flags)
{
	/* set type for advanced descriptor with frame checksum insertion */
	__le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
				      E1000_ADVTXD_DCMD_IFCS |
				      E1000_ADVTXD_DCMD_DEXT);

	/* set HW vlan bit if vlan is present */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);

	/* set timestamp bit if present */
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);

	/* set segmentation bits for TSO */
	if (tx_flags & IGB_TX_FLAGS_TSO)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);

	return cmd_type;
}

4132 4133 4134
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4135 4136 4137 4138 4139
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

	/* 82575 requires a unique index per ring if any offload is enabled */
	if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4140
	    test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
	if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert IPv4 checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
	}

4152
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4153 4154
}

4155 4156 4157 4158 4159
/*
 * The largest size we can write to the descriptor is 65535.  In order to
 * maintain a power of two alignment we have to limit ourselves to 32K.
 */
#define IGB_MAX_TXD_PWR	15
4160
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4161

4162 4163
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4164
		       const u8 hdr_len)
4165
{
4166
	struct sk_buff *skb = first->skb;
4167 4168 4169 4170 4171 4172 4173 4174
	struct igb_tx_buffer *tx_buffer_info;
	union e1000_adv_tx_desc *tx_desc;
	dma_addr_t dma;
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	unsigned int paylen = skb->len - hdr_len;
	__le32 cmd_type;
4175
	u32 tx_flags = first->tx_flags;
4176 4177 4178 4179
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4180
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4181 4182 4183 4184
	cmd_type = igb_tx_cmd_type(tx_flags);

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
	if (dma_mapping_error(tx_ring->dev, dma))
4185
		goto dma_error;
4186

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
	/* record length, and DMA address */
	first->length = size;
	first->dma = dma;
	tx_desc->read.buffer_addr = cpu_to_le64(dma);

	for (;;) {
		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
				cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.olinfo_status = 0;
			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4213

4214
		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4215

4216
		i++;
4217 4218 4219
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4220
			i = 0;
4221
		}
4222

E
Eric Dumazet 已提交
4223
		size = skb_frag_size(frag);
4224 4225 4226 4227 4228
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
				   size, DMA_TO_DEVICE);
		if (dma_mapping_error(tx_ring->dev, dma))
4229 4230
			goto dma_error;

4231 4232 4233 4234 4235 4236 4237 4238
		tx_buffer_info = &tx_ring->tx_buffer_info[i];
		tx_buffer_info->length = size;
		tx_buffer_info->dma = dma;

		tx_desc->read.olinfo_status = 0;
		tx_desc->read.buffer_addr = cpu_to_le64(dma);

		frag++;
4239 4240
	}

4241 4242 4243
	/* write last descriptor with RS and EOP bits */
	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
	tx_desc->read.cmd_type_len = cmd_type;
4244 4245 4246 4247

	/* set the timestamp */
	first->time_stamp = jiffies;

4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
	/*
	 * Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4258
	/* set next_to_watch value indicating a packet is present */
4259
	first->next_to_watch = tx_desc;
4260

4261 4262 4263
	i++;
	if (i == tx_ring->count)
		i = 0;
4264

4265
	tx_ring->next_to_use = i;
4266

4267
	writel(i, tx_ring->tail);
4268

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
		tx_buffer_info = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
		if (tx_buffer_info == first)
			break;
4284 4285
		if (i == 0)
			i = tx_ring->count;
4286 4287 4288
		i--;
	}

4289 4290 4291
	tx_ring->next_to_use = i;
}

4292
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4293
{
4294 4295
	struct net_device *netdev = tx_ring->netdev;

4296 4297
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4298 4299 4300 4301 4302 4303 4304
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4305
	if (igb_desc_unused(tx_ring) < size)
4306 4307 4308
		return -EBUSY;

	/* A reprieve! */
4309
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4310 4311 4312 4313 4314

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4315 4316 4317
	return 0;
}

4318
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4319
{
4320
	if (igb_desc_unused(tx_ring) >= size)
4321
		return 0;
4322
	return __igb_maybe_stop_tx(tx_ring, size);
4323 4324
}

4325 4326
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4327
{
4328
	struct igb_tx_buffer *first;
4329
	int tso;
N
Nick Nunley 已提交
4330
	u32 tx_flags = 0;
4331
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4332
	u8 hdr_len = 0;
4333 4334 4335 4336 4337 4338

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4339
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4340 4341 4342
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4343

4344 4345 4346 4347 4348 4349
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4350 4351
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4352 4353
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
4354

4355
	if (vlan_tx_tag_present(skb)) {
4356 4357 4358 4359
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4360 4361 4362
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4363

4364 4365
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4366
		goto out_drop;
4367 4368
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4369

4370
	igb_tx_map(tx_ring, first, hdr_len);
4371 4372

	/* Make sure there is space in the ring for the next send. */
4373
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4374

4375
	return NETDEV_TX_OK;
4376 4377

out_drop:
4378 4379
	igb_unmap_and_free_tx_resource(tx_ring, first);

4380
	return NETDEV_TX_OK;
4381 4382
}

4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4394 4395
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4396 4397
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4409 4410 4411 4412 4413 4414 4415 4416 4417
	/*
	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
	if (skb->len < 17) {
		if (skb_padto(skb, 17))
			return NETDEV_TX_OK;
		skb->len = 17;
	}
4418

4419
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4433

4434
	if (hw->mac.type >= e1000_82580)
4435 4436
		hw->dev_spec._82575.global_device_reset = true;

4437
	schedule_work(&adapter->reset_task);
4438 4439
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4440 4441 4442 4443 4444 4445 4446
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4447 4448
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4449 4450 4451 4452
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4453
 * igb_get_stats64 - Get System Network Statistics
4454
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4455
 * @stats: rtnl_link_stats64 pointer
4456 4457
 *
 **/
E
Eric Dumazet 已提交
4458 4459
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4460
{
E
Eric Dumazet 已提交
4461 4462 4463 4464 4465 4466 4467 4468
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4481
	struct pci_dev *pdev = adapter->pdev;
4482
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4483

4484
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4485
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4486 4487 4488
		return -EINVAL;
	}

4489
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4490
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4491
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4492 4493 4494 4495 4496
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4497

4498 4499
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4500

4501 4502
	if (netif_running(netdev))
		igb_down(adapter);
4503

4504
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4523 4524
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4525 4526 4527
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4528
	u32 reg, mpc;
4529
	u16 phy_tmp;
4530 4531
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4532 4533
	unsigned int start;
	u64 _bytes, _packets;
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4546 4547 4548 4549
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4550
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4551

4552
		ring->rx_stats.drops += rqdpc_tmp;
4553
		net_stats->rx_fifo_errors += rqdpc_tmp;
E
Eric Dumazet 已提交
4554 4555 4556 4557 4558 4559 4560 4561

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4562 4563
	}

4564 4565
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4566 4567 4568 4569

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4570
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4571 4572 4573 4574 4575 4576 4577
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4578
	}
4579 4580
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4581 4582

	/* read stats registers */
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4600 4601 4602
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4617
	adapter->stats.rnbc += rd32(E1000_RNBC);
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4635 4636
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4637 4638

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4639 4640 4641 4642 4643 4644 4645
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
		adapter->stats.tncrs += rd32(E1000_TNCRS);
	}

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4660 4661
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4662 4663 4664 4665

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4666
	 * our own version based on RUC and ROC */
4667
	net_stats->rx_errors = adapter->stats.rxerrc +
4668 4669 4670
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4671 4672 4673 4674 4675
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4676 4677

	/* Tx Errors */
4678 4679 4680 4681 4682
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4683 4684 4685 4686 4687 4688

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4689
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4690 4691 4692 4693 4694 4695 4696 4697 4698
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4699 4700 4701 4702 4703 4704 4705 4706 4707

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
4708 4709 4710 4711
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4712
	struct igb_adapter *adapter = data;
4713
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4714 4715
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4716

4717 4718 4719
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4720
	if (icr & E1000_ICR_DOUTSYNC) {
4721 4722
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
4723 4724 4725 4726
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
4727
	}
4728

4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

P
PJ Waskiewicz 已提交
4740
	wr32(E1000_EIMS, adapter->eims_other);
4741 4742 4743 4744

	return IRQ_HANDLED;
}

4745
static void igb_write_itr(struct igb_q_vector *q_vector)
4746
{
4747
	struct igb_adapter *adapter = q_vector->adapter;
4748
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4749

4750 4751
	if (!q_vector->set_itr)
		return;
4752

4753 4754
	if (!itr_val)
		itr_val = 0x4;
4755

4756 4757
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4758
	else
4759
		itr_val |= E1000_EITR_CNT_IGNR;
4760

4761 4762
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4763 4764
}

4765
static irqreturn_t igb_msix_ring(int irq, void *data)
4766
{
4767
	struct igb_q_vector *q_vector = data;
4768

4769 4770
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4771

4772
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4773

4774
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4775 4776
}

4777
#ifdef CONFIG_IGB_DCA
4778
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4779
{
4780
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4781 4782 4783
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4784 4785 4786
	if (q_vector->cpu == cpu)
		goto out_no_update;

4787 4788
	if (q_vector->tx.ring) {
		int q = q_vector->tx.ring->reg_idx;
4789 4790 4791 4792
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4793
		} else {
4794 4795 4796 4797 4798 4799 4800
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
4801 4802
	if (q_vector->rx.ring) {
		int q = q_vector->rx.ring->reg_idx;
4803 4804
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4805
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4806
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4807 4808 4809 4810
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4811
		}
J
Jeb Cramer 已提交
4812 4813 4814 4815 4816
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4817 4818
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4819 4820 4821 4822 4823
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4824
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4825 4826
	int i;

4827
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4828 4829
		return;

4830 4831 4832
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4833
	for (i = 0; i < adapter->num_q_vectors; i++) {
4834 4835
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4836 4837 4838 4839 4840 4841 4842
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4843
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4844 4845 4846 4847 4848 4849
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4850
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4851 4852
			break;
		if (dca_add_requester(dev) == 0) {
4853
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4854
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4855 4856 4857 4858 4859
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4860
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4861
			/* without this a class_device is left
4862
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4863
			dca_remove_requester(dev);
4864
			dev_info(&pdev->dev, "DCA disabled\n");
4865
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4866
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4867 4868 4869
		}
		break;
	}
4870

J
Jeb Cramer 已提交
4871
	return 0;
4872 4873
}

J
Jeb Cramer 已提交
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4884
#endif /* CONFIG_IGB_DCA */
4885

4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pvfdev;
	unsigned int device_id;
	u16 thisvf_devfn;

	random_ether_addr(mac_addr);
	igb_set_vf_mac(adapter, vf, mac_addr);

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		device_id = IGB_82576_VF_DEV_ID;
		/* VF Stride for 82576 is 2 */
		thisvf_devfn = (pdev->devfn + 0x80 + (vf << 1)) |
			(pdev->devfn & 1);
		break;
	case e1000_i350:
		device_id = IGB_I350_VF_DEV_ID;
		/* VF Stride for I350 is 4 */
		thisvf_devfn = (pdev->devfn + 0x80 + (vf << 2)) |
				(pdev->devfn & 3);
		break;
	default:
		device_id = 0;
		thisvf_devfn = 0;
		break;
	}

	pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
	while (pvfdev) {
		if (pvfdev->devfn == thisvf_devfn)
			break;
		pvfdev = pci_get_device(hw->vendor_id,
					device_id, pvfdev);
	}

	if (pvfdev)
		adapter->vf_data[vf].vfdev = pvfdev;
	else
		dev_err(&pdev->dev,
			"Couldn't find pci dev ptr for VF %4.4x\n",
			thisvf_devfn);
	return pvfdev != NULL;
}

static int igb_find_enabled_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
	struct pci_dev *pvfdev;
	u16 vf_devfn = 0;
	u16 vf_stride;
	unsigned int device_id;
	int vfs_found = 0;

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		device_id = IGB_82576_VF_DEV_ID;
		/* VF Stride for 82576 is 2 */
		vf_stride = 2;
		break;
	case e1000_i350:
		device_id = IGB_I350_VF_DEV_ID;
		/* VF Stride for I350 is 4 */
		vf_stride = 4;
		break;
	default:
		device_id = 0;
		vf_stride = 0;
		break;
	}

	vf_devfn = pdev->devfn + 0x80;
	pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
	while (pvfdev) {
		if (pvfdev->devfn == vf_devfn)
			vfs_found++;
		vf_devfn += vf_stride;
		pvfdev = pci_get_device(hw->vendor_id,
					device_id, pvfdev);
	}

	return vfs_found;
}

static int igb_check_vf_assignment(struct igb_adapter *adapter)
{
	int i;
	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (adapter->vf_data[i].vfdev) {
			if (adapter->vf_data[i].vfdev->dev_flags &
			    PCI_DEV_FLAGS_ASSIGNED)
				return true;
		}
	}
	return false;
}

#endif
4989 4990 4991 4992 4993 4994 4995 4996
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
4997
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4998 4999 5000 5001 5002
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5003 5004 5005 5006 5007 5008
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5009
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5010 5011 5012 5013 5014
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5015
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

5043 5044 5045 5046 5047 5048 5049 5050
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5051
	/* salt away the number of multicast addresses assigned
5052 5053 5054 5055 5056
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5057 5058 5059 5060 5061
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5062
	for (i = 0; i < n; i++)
5063
		vf_data->vf_mc_hashes[i] = hash_list[i];
5064 5065

	/* Flush and reset the mta with the new values */
5066
	igb_set_rx_mode(adapter->netdev);
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5078 5079 5080
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5081
		vf_data = &adapter->vf_data[i];
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5120 5121

	adapter->vf_data[vf].vlans_enabled = 0;
5122 5123 5124 5125 5126 5127 5128
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5129 5130 5131 5132 5133
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5163 5164
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5165 5166
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5167 5168
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5169
			wr32(E1000_VLVF(i), reg);
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5185
			adapter->vf_data[vf].vlans_enabled++;
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5212 5213
		}
	}
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5273
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5274
{
G
Greg Rose 已提交
5275 5276
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5277
	adapter->vf_data[vf].last_nack = jiffies;
5278 5279

	/* reset offloads to defaults */
5280
	igb_set_vmolr(adapter, vf, true);
5281 5282 5283

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5284 5285 5286 5287 5288 5289
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5290 5291 5292 5293 5294

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5295
	igb_set_rx_mode(adapter->netdev);
5296 5297
}

5298 5299 5300 5301 5302
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
5303 5304
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
		random_ether_addr(vf_mac);
5305 5306 5307 5308 5309 5310

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5311 5312 5313
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5314
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5315 5316 5317 5318
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5319
	igb_vf_reset(adapter, vf);
5320 5321

	/* set vf mac address */
5322
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5323 5324 5325 5326 5327 5328 5329

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5330
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5331 5332 5333 5334 5335 5336 5337 5338 5339

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5340 5341 5342 5343
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5344 5345
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5346

5347 5348
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5349

5350
	return err;
5351 5352 5353 5354 5355
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5356
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5357 5358 5359
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5360 5361
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5362
		igb_write_mbx(hw, &msg, 1, vf);
5363
		vf_data->last_nack = jiffies;
5364 5365 5366
	}
}

5367
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5368
{
5369 5370
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5371
	struct e1000_hw *hw = &adapter->hw;
5372
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5373 5374
	s32 retval;

5375
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5376

5377 5378
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5379
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5380 5381 5382 5383 5384
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5385 5386 5387

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5388
		return;
5389 5390 5391 5392 5393 5394 5395 5396

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5397
		return;
5398 5399
	}

5400
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5401 5402 5403 5404
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5405 5406 5407 5408
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5409 5410 5411 5412 5413 5414 5415 5416
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5417
		break;
5418 5419 5420
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5421 5422 5423 5424 5425 5426 5427
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5428 5429 5430 5431 5432 5433
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5434 5435
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5436 5437
		break;
	default:
5438
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5439 5440 5441 5442
		retval = -1;
		break;
	}

5443 5444
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5445 5446 5447 5448 5449 5450 5451
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5452
}
5453

5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5472 5473
}

5474 5475 5476 5477 5478 5479 5480
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5481 5482
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5501 5502 5503 5504 5505 5506 5507
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5508 5509
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5510 5511 5512 5513
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5514
	igb_write_itr(q_vector);
5515

5516 5517 5518
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5519
	if (icr & E1000_ICR_DOUTSYNC) {
5520 5521 5522 5523
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5524 5525 5526 5527 5528 5529
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5530
	napi_schedule(&q_vector->napi);
5531 5532 5533 5534 5535

	return IRQ_HANDLED;
}

/**
5536
 * igb_intr - Legacy Interrupt Handler
5537 5538 5539 5540 5541
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5542 5543
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5554 5555
	igb_write_itr(q_vector);

5556 5557 5558
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5559
	if (icr & E1000_ICR_DOUTSYNC) {
5560 5561 5562 5563
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5564 5565 5566 5567 5568 5569 5570
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5571
	napi_schedule(&q_vector->napi);
5572 5573 5574 5575

	return IRQ_HANDLED;
}

5576
void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5577
{
5578
	struct igb_adapter *adapter = q_vector->adapter;
5579
	struct e1000_hw *hw = &adapter->hw;
5580

5581 5582 5583 5584
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5585
		else
5586
			igb_update_ring_itr(q_vector);
5587 5588
	}

5589 5590
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5591
			wr32(E1000_EIMS, q_vector->eims_value);
5592 5593 5594
		else
			igb_irq_enable(adapter);
	}
5595 5596
}

5597 5598 5599 5600 5601 5602
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5603
{
5604 5605 5606
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
5607
	bool clean_complete = true;
5608

5609
#ifdef CONFIG_IGB_DCA
5610 5611
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5612
#endif
5613
	if (q_vector->tx.ring)
5614
		clean_complete = igb_clean_tx_irq(q_vector);
5615

5616
	if (q_vector->rx.ring)
5617
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5618

5619 5620 5621
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5622

5623
	/* If not enough Rx work done, exit the polling mode */
5624 5625
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5626

5627
	return 0;
5628
}
A
Al Viro 已提交
5629

5630
/**
5631
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5632
 * @adapter: board private structure
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
 * @shhwtstamps: timestamp structure to update
 * @regval: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions
 */
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
                                   struct skb_shared_hwtstamps *shhwtstamps,
                                   u64 regval)
{
	u64 ns;

5645 5646 5647 5648
	/*
	 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
	 * 24 to match clock shift we setup earlier.
	 */
5649
	if (adapter->hw.mac.type >= e1000_82580)
5650 5651
		regval <<= IGB_82580_TSYNC_SHIFT;

5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
	ns = timecounter_cyc2time(&adapter->clock, regval);
	timecompare_update(&adapter->compare, ns);
	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
}

/**
 * igb_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: pointer to q_vector containing needed info
5662
 * @buffer: pointer to igb_tx_buffer structure
5663 5664 5665 5666 5667
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
5668 5669
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
			    struct igb_tx_buffer *buffer_info)
5670
{
5671
	struct igb_adapter *adapter = q_vector->adapter;
5672
	struct e1000_hw *hw = &adapter->hw;
5673 5674
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
5675

5676
	/* if skb does not support hw timestamp or TX stamp not valid exit */
5677
	if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
5678 5679 5680 5681 5682 5683 5684
	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
		return;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5685
	skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5686 5687
}

5688 5689
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5690
 * @q_vector: pointer to q_vector containing needed info
5691 5692
 * returns true if ring is completely cleaned
 **/
5693
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5694
{
5695
	struct igb_adapter *adapter = q_vector->adapter;
5696
	struct igb_ring *tx_ring = q_vector->tx.ring;
5697
	struct igb_tx_buffer *tx_buffer;
5698
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
5699
	unsigned int total_bytes = 0, total_packets = 0;
5700
	unsigned int budget = q_vector->tx.work_limit;
5701
	unsigned int i = tx_ring->next_to_clean;
5702

5703 5704
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5705

5706
	tx_buffer = &tx_ring->tx_buffer_info[i];
5707
	tx_desc = IGB_TX_DESC(tx_ring, i);
5708
	i -= tx_ring->count;
5709

5710
	for (; budget; budget--) {
5711
		eop_desc = tx_buffer->next_to_watch;
5712

5713 5714 5715 5716 5717 5718
		/* prevent any other reads prior to eop_desc */
		rmb();

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5719 5720 5721 5722 5723

		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5724 5725
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5726

5727 5728 5729
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5730

5731 5732 5733 5734 5735 5736
		/* retrieve hardware timestamp */
		igb_tx_hwtstamp(q_vector, tx_buffer);

		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
		tx_buffer->skb = NULL;
5737

5738 5739 5740 5741 5742 5743 5744 5745 5746
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 tx_buffer->dma,
				 tx_buffer->length,
				 DMA_TO_DEVICE);

		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buffer->dma = 0;
5747

5748 5749
			tx_buffer++;
			tx_desc++;
5750
			i++;
5751 5752
			if (unlikely(!i)) {
				i -= tx_ring->count;
5753
				tx_buffer = tx_ring->tx_buffer_info;
5754 5755
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777

			/* unmap any remaining paged data */
			if (tx_buffer->dma) {
				dma_unmap_page(tx_ring->dev,
					       tx_buffer->dma,
					       tx_buffer->length,
					       DMA_TO_DEVICE);
			}
		}

		/* clear last DMA location */
		tx_buffer->dma = 0;

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
A
Alexander Duyck 已提交
5778 5779
	}

5780
	i += tx_ring->count;
5781
	tx_ring->next_to_clean = i;
5782 5783 5784 5785
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
5786 5787
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
5788

5789
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5790
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
5791

5792
		eop_desc = tx_buffer->next_to_watch;
5793 5794 5795

		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
5796
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5797 5798
		if (eop_desc &&
		    time_after(jiffies, tx_buffer->time_stamp +
5799 5800
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5801 5802

			/* detected Tx unit hang */
5803
			dev_err(tx_ring->dev,
5804
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5805
				"  Tx Queue             <%d>\n"
5806 5807 5808 5809 5810 5811
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
5812
				"  next_to_watch        <%p>\n"
5813 5814
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5815
				tx_ring->queue_index,
5816
				rd32(E1000_TDH(tx_ring->reg_idx)),
5817
				readl(tx_ring->tail),
5818 5819
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5820 5821
				tx_buffer->time_stamp,
				eop_desc,
5822
				jiffies,
A
Alexander Duyck 已提交
5823
				eop_desc->wb.status);
5824 5825 5826 5827 5828
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
5829 5830
		}
	}
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851

	if (unlikely(total_packets &&
		     netif_carrier_ok(tx_ring->netdev) &&
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
5852 5853
}

5854
static inline void igb_rx_checksum(struct igb_ring *ring,
5855 5856
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
5857
{
5858
	skb_checksum_none_assert(skb);
5859

5860
	/* Ignore Checksum bit is set */
5861
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
5862 5863 5864 5865
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
5866
		return;
5867

5868
	/* TCP/UDP checksum error bit is set */
5869 5870 5871
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
5872 5873 5874 5875 5876
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
5877 5878
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
5879
			u64_stats_update_begin(&ring->rx_syncp);
5880
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
5881 5882
			u64_stats_update_end(&ring->rx_syncp);
		}
5883 5884 5885 5886
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
5887 5888
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
5889 5890
		skb->ip_summed = CHECKSUM_UNNECESSARY;

5891 5892
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
5893 5894
}

5895 5896 5897 5898 5899 5900 5901 5902
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

5903 5904 5905
static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
5906 5907 5908 5909 5910
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

5911 5912 5913 5914
	if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
				       E1000_RXDADV_STAT_TS))
		return;

5915 5916 5917 5918 5919 5920 5921 5922
	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
5923
	 * If nothing went wrong, then it should have a shared tx_flags that we
5924 5925
	 * can turn into a skb_shared_hwtstamps.
	 */
5926
	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
N
Nick Nunley 已提交
5927 5928 5929 5930 5931 5932 5933
		u32 *stamp = (u32 *)skb->data;
		regval = le32_to_cpu(*(stamp + 2));
		regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
		skb_pull(skb, IGB_TS_HDR_LEN);
	} else {
		if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
			return;
5934

N
Nick Nunley 已提交
5935 5936 5937
		regval = rd32(E1000_RXSTMPL);
		regval |= (u64)rd32(E1000_RXSTMPH) << 32;
	}
5938 5939 5940

	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957

static void igb_rx_vlan(struct igb_ring *ring,
			union e1000_adv_rx_desc *rx_desc,
			struct sk_buff *skb)
{
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, vid);
	}
}

5958
static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
5959 5960 5961 5962 5963 5964 5965
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5966 5967
	if (hlen > IGB_RX_HDR_LEN)
		hlen = IGB_RX_HDR_LEN;
5968 5969 5970
	return hlen;
}

5971
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
5972
{
5973
	struct igb_ring *rx_ring = q_vector->rx.ring;
5974 5975
	union e1000_adv_rx_desc *rx_desc;
	const int current_node = numa_node_id();
5976
	unsigned int total_bytes = 0, total_packets = 0;
5977 5978
	u16 cleaned_count = igb_desc_unused(rx_ring);
	u16 i = rx_ring->next_to_clean;
5979

5980
	rx_desc = IGB_RX_DESC(rx_ring, i);
5981

5982
	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
5983
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5984 5985
		struct sk_buff *skb = buffer_info->skb;
		union e1000_adv_rx_desc *next_rxd;
5986

5987
		buffer_info->skb = NULL;
5988
		prefetch(skb->data);
5989 5990 5991 5992

		i++;
		if (i == rx_ring->count)
			i = 0;
5993

5994
		next_rxd = IGB_RX_DESC(rx_ring, i);
5995
		prefetch(next_rxd);
5996

5997 5998 5999 6000 6001 6002
		/*
		 * This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();
6003

6004 6005 6006
		if (!skb_is_nonlinear(skb)) {
			__skb_put(skb, igb_get_hlen(rx_desc));
			dma_unmap_single(rx_ring->dev, buffer_info->dma,
6007
					 IGB_RX_HDR_LEN,
6008
					 DMA_FROM_DEVICE);
J
Jesse Brandeburg 已提交
6009
			buffer_info->dma = 0;
6010 6011
		}

6012 6013
		if (rx_desc->wb.upper.length) {
			u16 length = le16_to_cpu(rx_desc->wb.upper.length);
6014

K
Koki Sanagi 已提交
6015
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
6016 6017 6018 6019
						buffer_info->page,
						buffer_info->page_offset,
						length);

6020 6021
			skb->len += length;
			skb->data_len += length;
6022
			skb->truesize += PAGE_SIZE / 2;
6023

6024 6025
			if ((page_count(buffer_info->page) != 1) ||
			    (page_to_nid(buffer_info->page) != current_node))
6026 6027 6028
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
6029

6030 6031 6032
			dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
			buffer_info->page_dma = 0;
6033 6034
		}

6035
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
6036 6037
			struct igb_rx_buffer *next_buffer;
			next_buffer = &rx_ring->rx_buffer_info[i];
6038 6039 6040 6041
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
6042 6043
			goto next_desc;
		}
6044

6045 6046
		if (igb_test_staterr(rx_desc,
				     E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
6047
			dev_kfree_skb_any(skb);
6048 6049 6050
			goto next_desc;
		}

6051
		igb_rx_hwtstamp(q_vector, rx_desc, skb);
6052
		igb_rx_hash(rx_ring, rx_desc, skb);
6053
		igb_rx_checksum(rx_ring, rx_desc, skb);
6054
		igb_rx_vlan(rx_ring, rx_desc, skb);
6055 6056 6057 6058 6059 6060

		total_bytes += skb->len;
		total_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

J
Jiri Pirko 已提交
6061
		napi_gro_receive(&q_vector->napi, skb);
6062

6063
		budget--;
6064
next_desc:
6065 6066 6067 6068
		if (!budget)
			break;

		cleaned_count++;
6069 6070
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6071
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6072 6073 6074 6075 6076 6077
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
	}
6078

6079
	rx_ring->next_to_clean = i;
E
Eric Dumazet 已提交
6080
	u64_stats_update_begin(&rx_ring->rx_syncp);
6081 6082
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6083
	u64_stats_update_end(&rx_ring->rx_syncp);
6084 6085
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6086 6087

	if (cleaned_count)
6088
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6089

6090
	return !!budget;
6091 6092
}

6093
static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
6094
				 struct igb_rx_buffer *bi)
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
{
	struct sk_buff *skb = bi->skb;
	dma_addr_t dma = bi->dma;

	if (dma)
		return true;

	if (likely(!skb)) {
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		bi->skb = skb;
		if (!skb) {
			rx_ring->rx_stats.alloc_failed++;
			return false;
		}

		/* initialize skb for ring */
		skb_record_rx_queue(skb, rx_ring->queue_index);
	}

	dma = dma_map_single(rx_ring->dev, skb->data,
			     IGB_RX_HDR_LEN, DMA_FROM_DEVICE);

	if (dma_mapping_error(rx_ring->dev, dma)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->dma = dma;
	return true;
}

static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6128
				  struct igb_rx_buffer *bi)
6129 6130 6131 6132 6133 6134 6135 6136 6137
{
	struct page *page = bi->page;
	dma_addr_t page_dma = bi->page_dma;
	unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);

	if (page_dma)
		return true;

	if (!page) {
6138
		page = alloc_page(GFP_ATOMIC | __GFP_COLD);
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
		bi->page = page;
		if (unlikely(!page)) {
			rx_ring->rx_stats.alloc_failed++;
			return false;
		}
	}

	page_dma = dma_map_page(rx_ring->dev, page,
				page_offset, PAGE_SIZE / 2,
				DMA_FROM_DEVICE);

	if (dma_mapping_error(rx_ring->dev, page_dma)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->page_dma = page_dma;
	bi->page_offset = page_offset;
	return true;
}

6160
/**
6161
 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6162 6163
 * @adapter: address of board private structure
 **/
6164
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6165 6166
{
	union e1000_adv_rx_desc *rx_desc;
6167
	struct igb_rx_buffer *bi;
6168
	u16 i = rx_ring->next_to_use;
6169

6170
	rx_desc = IGB_RX_DESC(rx_ring, i);
6171
	bi = &rx_ring->rx_buffer_info[i];
6172
	i -= rx_ring->count;
6173 6174

	while (cleaned_count--) {
6175 6176
		if (!igb_alloc_mapped_skb(rx_ring, bi))
			break;
6177

6178 6179 6180
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info. */
		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
6181

6182 6183 6184 6185
		if (!igb_alloc_mapped_page(rx_ring, bi))
			break;

		rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
6186

6187 6188
		rx_desc++;
		bi++;
6189
		i++;
6190
		if (unlikely(!i)) {
6191
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6192
			bi = rx_ring->rx_buffer_info;
6193 6194 6195 6196 6197
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6198 6199
	}

6200 6201
	i += rx_ring->count;

6202 6203 6204 6205 6206 6207 6208 6209
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
6210
		writel(i, rx_ring->tail);
6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6233 6234
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6235 6236 6237 6238 6239 6240 6241 6242 6243
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

6244 6245 6246 6247 6248 6249
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
6262 6263 6264 6265
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
6266 6267
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6268
	struct hwtstamp_config config;
6269 6270
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6271
	u32 tsync_rx_cfg = 0;
6272 6273
	bool is_l4 = false;
	bool is_l2 = false;
6274
	u32 regval;
6275 6276 6277 6278 6279 6280 6281 6282

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

6283 6284
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
6285
		tsync_tx_ctl = 0;
6286 6287 6288 6289 6290 6291 6292 6293
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
6294
		tsync_rx_ctl = 0;
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
6305
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6306 6307 6308
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6309
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6310
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6311
		is_l4 = true;
6312 6313
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6314
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6315
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6316
		is_l4 = true;
6317 6318 6319
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6320
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6321
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6322 6323
		is_l2 = true;
		is_l4 = true;
6324 6325 6326 6327
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6328
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6329
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6330 6331
		is_l2 = true;
		is_l4 = true;
6332 6333 6334 6335 6336
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6337
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6338
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6339
		is_l2 = true;
6340
		is_l4 = true;
6341 6342 6343 6344 6345
		break;
	default:
		return -ERANGE;
	}

6346 6347 6348 6349 6350 6351
	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

N
Nick Nunley 已提交
6352 6353 6354 6355 6356
	/*
	 * Per-packet timestamping only works if all packets are
	 * timestamped, so enable timestamping in all packets as
	 * long as one rx filter was configured.
	 */
6357
	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
N
Nick Nunley 已提交
6358 6359 6360 6361
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
	}

6362 6363
	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
6364 6365
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
6366 6367
	wr32(E1000_TSYNCTXCTL, regval);

6368
	/* enable/disable RX */
6369
	regval = rd32(E1000_TSYNCRXCTL);
6370 6371
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
6372 6373
	wr32(E1000_TSYNCRXCTL, regval);

6374 6375
	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6376

6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		                 E1000_ETQF_1588 | /* enable timestamping */
		                 ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
6407 6408 6409 6410 6411 6412 6413
	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
6414

6415 6416
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
6417 6418
}

6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6432 6433
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6434 6435 6436 6437 6438
	default:
		return -EOPNOTSUPP;
	}
}

6439 6440 6441 6442 6443
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

6444
	cap_offset = adapter->pdev->pcie_cap;
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

6458
	cap_offset = adapter->pdev->pcie_cap;
6459 6460 6461 6462 6463 6464 6465 6466
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

6467
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6468 6469 6470 6471
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6472
	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6473

6474
	if (enable) {
6475 6476 6477 6478 6479
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6480
		/* Disable CFI check */
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6491
	igb_rlpml_set(adapter);
6492 6493
}

6494
static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6495 6496 6497
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6498
	int pf_id = adapter->vfs_allocated_count;
6499

6500 6501
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6502

6503 6504
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6505 6506

	set_bit(vid, adapter->active_vlans);
6507 6508

	return 0;
6509 6510
}

6511
static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6512 6513 6514
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6515
	int pf_id = adapter->vfs_allocated_count;
6516
	s32 err;
6517

6518 6519
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6520

6521 6522
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6523
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6524 6525

	clear_bit(vid, adapter->active_vlans);
6526 6527

	return 0;
6528 6529 6530 6531
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6532
	u16 vid;
6533

6534 6535
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6536 6537
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
6538 6539
}

6540
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6541
{
6542
	struct pci_dev *pdev = adapter->pdev;
6543 6544 6545 6546
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6547 6548 6549 6550 6551
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6552 6553
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6554 6555 6556
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL)
		goto err_inval;
6557

6558
	switch (spd + dplx) {
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6577
		goto err_inval;
6578 6579
	}
	return 0;
6580 6581 6582 6583

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
6584 6585
}

6586
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6587 6588 6589 6590
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6591
	u32 ctrl, rctl, status;
6592 6593 6594 6595 6596 6597 6598
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6599 6600 6601
	if (netif_running(netdev))
		igb_close(netdev);

6602
	igb_clear_interrupt_scheme(adapter);
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6616
		igb_set_rx_mode(netdev);
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6634
		igb_disable_pcie_master(hw);
6635 6636 6637 6638 6639 6640 6641 6642

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6643 6644
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6645 6646 6647
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

6678 6679 6680 6681 6682 6683 6684 6685 6686
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
6687
	pci_save_state(pdev);
T
Taku Izumi 已提交
6688

6689
	err = pci_enable_device_mem(pdev);
6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

6700
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
6701 6702
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
6703 6704 6705
	}

	igb_reset(adapter);
6706 6707 6708 6709 6710

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

6711 6712
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
6713 6714 6715 6716 6717
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
6718 6719 6720 6721 6722 6723 6724 6725 6726

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
6727 6728 6729 6730 6731 6732 6733 6734
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
6746
	struct e1000_hw *hw = &adapter->hw;
6747
	struct igb_q_vector *q_vector;
6748 6749
	int i;

6750
	for (i = 0; i < adapter->num_q_vectors; i++) {
6751 6752 6753 6754 6755
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
6756
		napi_schedule(&q_vector->napi);
6757
	}
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

6777 6778 6779
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6800
	pci_ers_result_t result;
T
Taku Izumi 已提交
6801
	int err;
6802

6803
	if (pci_enable_device_mem(pdev)) {
6804 6805
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
6806 6807 6808 6809
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
6810
		pci_save_state(pdev);
6811

6812 6813
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
6814

6815 6816 6817 6818
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
6819

6820 6821 6822 6823 6824 6825
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
6826 6827

	return result;
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

6884 6885 6886 6887
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
6888 6889 6890
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6891

6892
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6893

6894
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6895 6896 6897 6898

	return 0;
}

6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

6982 6983
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7012
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7013 7014 7015 7016 7017
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

7018 7019 7020
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7021
	u32 reg;
7022

7023 7024 7025 7026
	switch (hw->mac.type) {
	case e1000_82575:
	default:
		/* replication is not supported for 82575 */
7027
		return;
7028 7029 7030 7031 7032 7033 7034 7035 7036 7037
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7038 7039
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7040 7041
		break;
	}
7042

7043 7044 7045
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7046 7047
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
7048 7049 7050 7051
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7052 7053
}

7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

			/*
7068 7069 7070
			 * DMA Coalescing high water mark needs to be greater
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7071
			 */
7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

			/*
			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
			wr32(E1000_DMACR, reg);

			/*
			 * no lower threshold to disable
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

			/*
			 * free space in tx packet buffer to wake from
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

			/*
			 * make low power state decision controlled
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

7132
/* igb_main.c */