igb_main.c 190.0 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
31
#include <linux/bitops.h>
32 33 34 35
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
36
#include <linux/slab.h>
37 38
#include <net/checksum.h>
#include <net/ip6_checksum.h>
39
#include <linux/net_tstamp.h>
40 41
#include <linux/mii.h>
#include <linux/ethtool.h>
42
#include <linux/if.h>
43 44
#include <linux/if_vlan.h>
#include <linux/pci.h>
45
#include <linux/pci-aspm.h>
46 47
#include <linux/delay.h>
#include <linux/interrupt.h>
48 49 50
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
51
#include <linux/if_ether.h>
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
55 56
#include <linux/dca.h>
#endif
57 58
#include "igb.h"

C
Carolyn Wyborny 已提交
59 60 61 62
#define MAJ 3
#define MIN 0
#define BUILD 6
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63
__stringify(BUILD) "-k"
64 65 66 67
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
68
static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
69 70 71 72 73

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

74
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
75 76 77 78
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
79 80
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
81
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
82 83 84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
85 86
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
90
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
92 93
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
95
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
97 98 99 100 101 102 103 104 105 106 107 108 109 110
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
111
static void igb_setup_mrqc(struct igb_adapter *);
112 113
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
A
Anders Berggren 已提交
114
static void igb_init_hw_timer(struct igb_adapter *adapter);
115 116 117 118 119 120 121
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
122 123
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
124
static void igb_set_rx_mode(struct net_device *);
125 126 127
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
128
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
129 130
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
131 132
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
133
static void igb_set_uta(struct igb_adapter *adapter);
134 135 136
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
137
static irqreturn_t igb_msix_ring(int irq, void *);
138
#ifdef CONFIG_IGB_DCA
139
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
140
static void igb_setup_dca(struct igb_adapter *);
141
#endif /* CONFIG_IGB_DCA */
142
static int igb_poll(struct napi_struct *, int);
143
static bool igb_clean_tx_irq(struct igb_q_vector *);
144
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
145 146 147
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
J
Jiri Pirko 已提交
148
static void igb_vlan_mode(struct net_device *netdev, u32 features);
149 150 151
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
152
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
153 154 155
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
156
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
157
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 159 160 161 162 163
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
164
static void igb_check_vf_rate_limit(struct igb_adapter *);
165 166

#ifdef CONFIG_PM
167
static int igb_suspend(struct pci_dev *, pm_message_t);
168 169 170
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
171
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
172 173 174 175 176 177 178
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
179 180 181 182
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
183
#ifdef CONFIG_PCI_IOV
184 185 186 187 188 189
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
L
Lucas De Marchi 已提交
208
	/* Power Management Hooks */
209 210 211 212 213 214 215 216 217 218 219 220
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
		printk(KERN_INFO "%-15s %08x\n",
			reginfo->name, rd32(reginfo->ofs));
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
	printk(KERN_INFO "%-15s ", rname);
	for (n = 0; n < 4; n++)
		printk(KERN_CONT "%08x ", regs[n]);
	printk(KERN_CONT "\n");
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
347
	u16 i, n;
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		printk(KERN_INFO "Device Name     state            "
			"trans_start      last_rx\n");
		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
		netdev->name,
		netdev->state,
		netdev->trans_start,
		netdev->last_rx);
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	printk(KERN_INFO " Register Name   Value\n");
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
		" leng ntw timestamp\n");
	for (n = 0; n < adapter->num_tx_queues; n++) {
380
		struct igb_tx_buffer *buffer_info;
381
		tx_ring = adapter->tx_ring[n];
382
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
383
		printk(KERN_INFO " %5d %5X %5X %016llX %04X %p %016llX\n",
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
			   n, tx_ring->next_to_use, tx_ring->next_to_clean,
			   (u64)buffer_info->dma,
			   buffer_info->length,
			   buffer_info->next_to_watch,
			   (u64)buffer_info->time_stamp);
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "T [desc]     [address 63:0  ] "
			"[PlPOCIStDDM Ln] [bi->dma       ] "
			"leng  ntw timestamp        bi->skb\n");

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
418
			struct igb_tx_buffer *buffer_info;
419
			tx_desc = IGB_TX_DESC(tx_ring, i);
420
			buffer_info = &tx_ring->tx_buffer_info[i];
421 422
			u0 = (struct my_u0 *)tx_desc;
			printk(KERN_INFO "T [0x%03X]    %016llX %016llX %016llX"
423
				" %04X  %p %016llX %p", i,
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
				(u64)buffer_info->dma,
				buffer_info->length,
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
				buffer_info->skb);
			if (i == tx_ring->next_to_use &&
				i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC/U\n");
			else if (i == tx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

			if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
					16, 1, phys_to_virt(buffer_info->dma),
					buffer_info->length, true);
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC]\n");
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO " %5d %5X %5X\n", n,
			   rx_ring->next_to_use, rx_ring->next_to_clean);
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "R  [desc]      [ PktBuf     A0] "
			"[  HeadBuf   DD] [bi->dma       ] [bi->skb] "
			"<-- Adv Rx Read format\n");
		printk(KERN_INFO "RWB[desc]      [PcsmIpSHl PtRs] "
			"[vl er S cks ln] ---------------- [bi->skb] "
			"<-- Adv Rx Write-Back format\n");

		for (i = 0; i < rx_ring->count; i++) {
499 500
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
501
			rx_desc = IGB_RX_DESC(rx_ring, i);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
					"%016llX ---------------- %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					buffer_info->skb);
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
					"%016llX %016llX %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
					buffer_info->skb);

				if (netif_msg_pktdata(adapter)) {
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS,
						16, 1,
						phys_to_virt(buffer_info->dma),
524 525 526 527 528 529 530 531
						IGB_RX_HDR_LEN, true);
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
					  phys_to_virt(
					    buffer_info->page_dma +
					    buffer_info->page_offset),
					  PAGE_SIZE/2, true);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
				}
			}

			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

		}
	}

exit:
	return;
}


P
Patrick Ohly 已提交
550 551 552 553 554 555 556 557
/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
558 559
	u64 stamp = 0;
	int shift = 0;
P
Patrick Ohly 已提交
560

561 562 563 564 565 566 567 568 569 570
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we never
	 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
	 */
	if (hw->mac.type == e1000_82580) {
		stamp = rd32(E1000_SYSTIMR) >> 8;
		shift = IGB_82580_TSYNC_SHIFT;
	}

571 572
	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
P
Patrick Ohly 已提交
573 574 575
	return stamp;
}

576
/**
577
 * igb_get_hw_dev - return device
578 579
 * used by hardware layer to print debugging information
 **/
580
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
581 582
{
	struct igb_adapter *adapter = hw->back;
583
	return adapter->netdev;
584
}
P
Patrick Ohly 已提交
585

586 587 588 589 590 591 592 593 594 595 596 597 598 599
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

600
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
601 602
	dca_register_notify(&dca_notifier);
#endif
603
	ret = pci_register_driver(&igb_driver);
604 605 606 607 608 609 610 611 612 613 614 615 616
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
617
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
618 619
	dca_unregister_notify(&dca_notifier);
#endif
620 621 622 623 624
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

625 626 627 628 629 630 631 632 633 634
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
635
	int i = 0, j = 0;
636
	u32 rbase_offset = adapter->vfs_allocated_count;
637 638 639 640 641 642 643 644

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
645
		if (adapter->vfs_allocated_count) {
646
			for (; i < adapter->rss_queues; i++)
647 648
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
649
		}
650
	case e1000_82575:
651
	case e1000_82580:
652
	case e1000_i350:
653
	default:
654
		for (; i < adapter->num_rx_queues; i++)
655
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
656
		for (; j < adapter->num_tx_queues; j++)
657
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
658 659 660 661
		break;
	}
}

662 663
static void igb_free_queues(struct igb_adapter *adapter)
{
664
	int i;
665

666 667 668 669 670 671 672 673
	for (i = 0; i < adapter->num_tx_queues; i++) {
		kfree(adapter->tx_ring[i]);
		adapter->tx_ring[i] = NULL;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		kfree(adapter->rx_ring[i]);
		adapter->rx_ring[i] = NULL;
	}
674 675 676 677
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

678 679 680 681 682 683 684 685 686
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
687
	struct igb_ring *ring;
688
	int i;
689
	int orig_node = adapter->node;
690

691
	for (i = 0; i < adapter->num_tx_queues; i++) {
692 693 694 695 696 697 698 699 700 701
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
				    adapter->node);
		if (!ring)
			ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
702 703
		if (!ring)
			goto err;
704
		ring->count = adapter->tx_ring_count;
705
		ring->queue_index = i;
706
		ring->dev = &adapter->pdev->dev;
707
		ring->netdev = adapter->netdev;
708
		ring->numa_node = adapter->node;
709 710
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
711
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
712
		adapter->tx_ring[i] = ring;
713
	}
714 715
	/* Restore the adapter's original node */
	adapter->node = orig_node;
716

717
	for (i = 0; i < adapter->num_rx_queues; i++) {
718 719 720 721 722 723 724 725 726 727
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
				    adapter->node);
		if (!ring)
			ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
728 729
		if (!ring)
			goto err;
730
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
731
		ring->queue_index = i;
732
		ring->dev = &adapter->pdev->dev;
733
		ring->netdev = adapter->netdev;
734
		ring->numa_node = adapter->node;
735 736
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
737
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
738
		adapter->rx_ring[i] = ring;
739
	}
740 741
	/* Restore the adapter's original node */
	adapter->node = orig_node;
742 743

	igb_cache_ring_register(adapter);
744

745
	return 0;
A
Alexander Duyck 已提交
746

747
err:
748 749
	/* Restore the adapter's original node */
	adapter->node = orig_node;
750
	igb_free_queues(adapter);
751

752
	return -ENOMEM;
A
Alexander Duyck 已提交
753 754
}

A
Alexander Duyck 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

781
#define IGB_N0_QUEUE -1
782
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
783
{
784
	struct igb_adapter *adapter = q_vector->adapter;
785
	struct e1000_hw *hw = &adapter->hw;
786 787
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
788
	u32 msixbm = 0;
789

790 791 792 793
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
794 795 796

	switch (hw->mac.type) {
	case e1000_82575:
797 798 799 800
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
801
		if (rx_queue > IGB_N0_QUEUE)
802
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803
		if (tx_queue > IGB_N0_QUEUE)
804
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 806
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
807
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
809 810
		break;
	case e1000_82576:
A
Alexander Duyck 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824
		/*
		 * 82576 uses a table that essentially consists of 2 columns
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
825
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
826
		break;
827
	case e1000_82580:
828
	case e1000_i350:
A
Alexander Duyck 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
		/*
		 * On 82580 and newer adapters the scheme is similar to 82576
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
844 845
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
846 847 848 849
	default:
		BUG();
		break;
	}
850 851 852 853 854 855

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
873 874
	switch (hw->mac.type) {
	case e1000_82575:
875 876 877 878 879 880 881 882 883
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
884 885 886 887

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
888
		adapter->eims_other = E1000_EIMS_OTHER;
889

A
Alexander Duyck 已提交
890 891 892
		break;

	case e1000_82576:
893
	case e1000_82580:
894
	case e1000_i350:
895 896 897 898 899 900 901 902
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
903 904
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

905
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
906 907 908 909 910
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
911 912 913

	adapter->eims_enable_mask |= adapter->eims_other;

914 915
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
916

917 918 919 920 921 922 923 924 925 926 927 928
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
929
	struct e1000_hw *hw = &adapter->hw;
930 931
	int i, err = 0, vector = 0;

932
	err = request_irq(adapter->msix_entries[vector].vector,
933
	                  igb_msix_other, 0, netdev->name, adapter);
934 935 936 937 938 939 940 941 942
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

943
		if (q_vector->rx.ring && q_vector->tx.ring)
944
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
945 946
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
947
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
948 949
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
950
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
951
				q_vector->rx.ring->queue_index);
952
		else
953 954
			sprintf(q_vector->name, "%s-unused", netdev->name);

955
		err = request_irq(adapter->msix_entries[vector].vector,
956
		                  igb_msix_ring, 0, q_vector->name,
957
		                  q_vector);
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
975
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
976
		pci_disable_msi(adapter->pdev);
977
	}
978 979
}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
995 996
		if (!q_vector)
			continue;
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1015 1016 1017 1018 1019 1020 1021

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1022
static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1023 1024 1025 1026
{
	int err;
	int numvecs, i;

1027
	/* Number of supported queues. */
1028
	adapter->num_rx_queues = adapter->rss_queues;
1029 1030 1031 1032
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1033

1034 1035 1036
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1037
	/* if tx handler is separate add 1 for every tx queue */
1038 1039
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1040 1041 1042 1043 1044 1045

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1058
		goto out;
1059 1060 1061 1062 1063

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1075
		wrfl();
1076 1077 1078 1079
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1080
	adapter->vfs_allocated_count = 0;
1081
	adapter->rss_queues = 1;
1082
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1083
	adapter->num_rx_queues = 1;
1084
	adapter->num_tx_queues = 1;
1085
	adapter->num_q_vectors = 1;
1086
	if (!pci_enable_msi(adapter->pdev))
1087
		adapter->flags |= IGB_FLAG_HAS_MSI;
1088
out:
1089 1090 1091 1092
	/* Notify the stack of the (possibly) reduced queue counts. */
	netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
	return netif_set_real_num_rx_queues(adapter->netdev,
					    adapter->num_rx_queues);
1093 1094
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;
1107
	int orig_node = adapter->node;
1108 1109

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
		if ((adapter->num_q_vectors == (adapter->num_rx_queues +
						adapter->num_tx_queues)) &&
		    (adapter->num_rx_queues == v_idx))
			adapter->node = orig_node;
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
					adapter->node);
		if (!q_vector)
			q_vector = kzalloc(sizeof(struct igb_q_vector),
					   GFP_KERNEL);
1125 1126 1127 1128 1129 1130 1131 1132
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
1133 1134 1135
	/* Restore the adapter's original node */
	adapter->node = orig_node;

1136 1137 1138
	return 0;

err_out:
1139 1140
	/* Restore the adapter's original node */
	adapter->node = orig_node;
1141
	igb_free_q_vectors(adapter);
1142 1143 1144 1145 1146 1147
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1148
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1149

1150 1151 1152
	q_vector->rx.ring = adapter->rx_ring[ring_idx];
	q_vector->rx.ring->q_vector = q_vector;
	q_vector->rx.count++;
1153 1154 1155
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1156 1157 1158 1159 1160
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1161
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1162

1163 1164 1165
	q_vector->tx.ring = adapter->tx_ring[ring_idx];
	q_vector->tx.ring->q_vector = q_vector;
	q_vector->tx.count++;
1166
	q_vector->itr_val = adapter->tx_itr_setting;
1167
	q_vector->tx.work_limit = adapter->tx_work_limit;
1168 1169
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1214 1215 1216
	err = igb_set_interrupt_capability(adapter);
	if (err)
		return err;
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1247 1248 1249 1250 1251 1252 1253 1254 1255
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1256
	struct pci_dev *pdev = adapter->pdev;
1257 1258 1259 1260
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1261
		if (!err)
1262 1263
			goto request_done;
		/* fall back to MSI */
1264
		igb_clear_interrupt_scheme(adapter);
1265
		if (!pci_enable_msi(adapter->pdev))
1266
			adapter->flags |= IGB_FLAG_HAS_MSI;
1267 1268
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1269
		adapter->num_tx_queues = 1;
1270
		adapter->num_rx_queues = 1;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
P
PJ Waskiewicz 已提交
1287
	} else {
1288
		igb_assign_vector(adapter->q_vector[0], 0);
1289
	}
P
PJ Waskiewicz 已提交
1290

1291
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1292
		err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1293
				  netdev->name, adapter);
1294 1295
		if (!err)
			goto request_done;
1296

1297 1298
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1299
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1300 1301
	}

1302
	err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1303
			  netdev->name, adapter);
1304

A
Andy Gospodarek 已提交
1305
	if (err)
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1318
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1319

1320 1321 1322 1323 1324 1325 1326
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			free_irq(adapter->msix_entries[vector++].vector,
			         q_vector);
		}
	} else {
		free_irq(adapter->pdev->irq, adapter);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1338 1339 1340 1341 1342
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1343
	if (adapter->msix_entries) {
1344 1345 1346 1347 1348
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1349
	}
P
PJ Waskiewicz 已提交
1350 1351

	wr32(E1000_IAM, 0);
1352 1353
	wr32(E1000_IMC, ~0);
	wrfl();
1354 1355 1356 1357 1358 1359 1360
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1372
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1373 1374 1375 1376
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1377
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1378
		if (adapter->vfs_allocated_count) {
1379
			wr32(E1000_MBVFIMR, 0xFF);
1380 1381
			ims |= E1000_IMS_VMMB;
		}
1382 1383 1384
		if (adapter->hw.mac.type == e1000_82580)
			ims |= E1000_IMS_DRSTA;

1385
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1386
	} else {
1387 1388 1389 1390
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1391
	}
1392 1393 1394 1395
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1396
	struct e1000_hw *hw = &adapter->hw;
1397 1398
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1410
	    !test_bit(old_vid, adapter->active_vlans)) {
1411 1412
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1466
	igb_set_rx_mode(netdev);
1467 1468 1469

	igb_restore_vlan(adapter);

1470
	igb_setup_tctl(adapter);
1471
	igb_setup_mrqc(adapter);
1472
	igb_setup_rctl(adapter);
1473 1474

	igb_configure_tx(adapter);
1475
	igb_configure_rx(adapter);
1476 1477 1478

	igb_rx_fifo_flush_82575(&adapter->hw);

1479
	/* call igb_desc_unused which always leaves
1480 1481 1482
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1483
		struct igb_ring *ring = adapter->rx_ring[i];
1484
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1485 1486 1487
	}
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1526 1527 1528 1529
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
P
PJ Waskiewicz 已提交
1530
	if (adapter->msix_entries)
1531
		igb_configure_msix(adapter);
1532 1533
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1534 1535 1536 1537 1538

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1539 1540 1541 1542 1543 1544 1545
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1546 1547
	netif_tx_start_all_queues(adapter->netdev);

1548 1549 1550 1551
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1552 1553 1554 1555 1556 1557
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1558
	struct e1000_hw *hw = &adapter->hw;
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1571
	netif_tx_stop_all_queues(netdev);
1572 1573 1574 1575 1576 1577 1578 1579 1580

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1581 1582 1583 1584
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_disable(&q_vector->napi);
	}
1585 1586 1587 1588 1589 1590 1591

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1592 1593

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1594 1595 1596
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1597

1598 1599 1600
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1601 1602
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1603 1604
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1605 1606 1607 1608 1609
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1624
	struct pci_dev *pdev = adapter->pdev;
1625
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1626 1627
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1628 1629 1630 1631 1632 1633
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1634
	switch (mac->type) {
1635
	case e1000_i350:
1636 1637 1638 1639
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1640
	case e1000_82576:
1641 1642
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1643 1644 1645 1646 1647
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1648
	}
1649

A
Alexander Duyck 已提交
1650 1651
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1669
				sizeof(union e1000_adv_tx_desc) -
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1690
		wr32(E1000_PBA, pba);
1691 1692 1693 1694 1695 1696 1697 1698 1699
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1700
			((pba << 10) - 2 * adapter->max_frame_size));
1701

1702 1703
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1704 1705
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1706
	fc->current_mode = fc->requested_mode;
1707

1708 1709 1710 1711
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1712
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1713 1714

		/* ping all the active vfs to let them know we are going down */
1715
		igb_ping_all_vfs(adapter);
1716 1717 1718 1719 1720 1721

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1722
	/* Allow time for pending master requests to run */
1723
	hw->mac.ops.reset_hw(hw);
1724 1725
	wr32(E1000_WUC, 0);

1726
	if (hw->mac.ops.init_hw(hw))
1727
		dev_err(&pdev->dev, "Hardware Error\n");
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/*
			 * DMA Coalescing high water mark needs to be higher
			 * than * the * Rx threshold.  The Rx threshold is
			 * currently * pba - 6, so we * should use a high water
			 * mark of pba * - 4. */
			hwm = (pba - 4) << 10;

			reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
			       & E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
			wr32(E1000_DMACR, reg);

			/* no lower threshold to disable coalescing(smart fifb)
			 * -UTRESH=0*/
			wr32(E1000_DMCRTRH, 0);

			/* set hwm to PBA -  2 * max frame size */
			wr32(E1000_FCRTC, hwm);

			/*
			 * This sets the time to wait before requesting tran-
			 * sition to * low power state to number of usecs needed
			 * to receive 1 512 * byte frame at gigabit line rate
			 */
			reg = rd32(E1000_DMCTLX);
			reg |= IGB_DMCTLX_DCFLUSH_DIS;

			/* Delay 255 usec before entering Lx state. */
			reg |= 0xFF;
			wr32(E1000_DMCTLX, reg);

			/* free space in Tx packet buffer to wake from DMAC */
			wr32(E1000_DMCTXTH,
			     (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size))
			     >> 6);

			/* make low power state decision controlled by DMAC */
			reg = rd32(E1000_PCIEMISC);
			reg |= E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* end if IGB_FLAG_DMAC set */
	}
1780 1781 1782 1783 1784
	if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC,
		                reg & ~E1000_PCIEMISC_LX_DECISION);
	}
1785 1786 1787
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1788 1789 1790 1791 1792
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1793
	igb_get_phy_info(hw);
1794 1795
}

J
Jiri Pirko 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
static u32 igb_fix_features(struct net_device *netdev, u32 features)
{
	/*
	 * Since there is no support for separate rx/tx vlan accel
	 * enable/disable make sure tx flag is always in same state as rx.
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1810 1811
static int igb_set_features(struct net_device *netdev, u32 features)
{
J
Jiri Pirko 已提交
1812
	u32 changed = netdev->features ^ features;
1813

J
Jiri Pirko 已提交
1814 1815 1816
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

1817 1818 1819
	return 0;
}

S
Stephen Hemminger 已提交
1820
static const struct net_device_ops igb_netdev_ops = {
1821
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1822
	.ndo_stop		= igb_close,
1823
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1824
	.ndo_get_stats64	= igb_get_stats64,
1825
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1826 1827 1828 1829 1830 1831 1832
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1833 1834 1835 1836
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1837 1838 1839
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1840 1841
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1842 1843
};

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1861
	u16 eeprom_data = 0;
1862
	s32 ret_val;
1863
	static int global_quad_port_a; /* global quad port a indication */
1864 1865
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1866
	int err, pci_using_dac;
1867
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1868
	u8 part_str[E1000_PBANUM_LENGTH];
1869

1870 1871 1872 1873 1874 1875 1876 1877 1878
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
		     pci_name(pdev), pdev->vendor, pdev->device);
		return -EINVAL;
	}

1879
	err = pci_enable_device_mem(pdev);
1880 1881 1882 1883
	if (err)
		return err;

	pci_using_dac = 0;
1884
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1885
	if (!err) {
1886
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1887 1888 1889
		if (!err)
			pci_using_dac = 1;
	} else {
1890
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1891
		if (err) {
1892
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1893 1894 1895 1896 1897 1898 1899 1900
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1901 1902 1903
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1904 1905 1906
	if (err)
		goto err_pci_reg;

1907
	pci_enable_pcie_error_reporting(pdev);
1908

1909
	pci_set_master(pdev);
1910
	pci_save_state(pdev);
1911 1912

	err = -ENOMEM;
1913
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1914
				   IGB_MAX_TX_QUEUES);
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1932 1933
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1934 1935
		goto err_ioremap;

S
Stephen Hemminger 已提交
1936
	netdev->netdev_ops = &igb_netdev_ops;
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1959
		goto err_sw_init;
1960

1961
	/* setup the private structure */
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

1981
	netdev->hw_features = NETIF_F_SG |
1982
			   NETIF_F_IP_CSUM |
1983 1984 1985
			   NETIF_F_IPV6_CSUM |
			   NETIF_F_TSO |
			   NETIF_F_TSO6 |
J
Jiri Pirko 已提交
1986 1987
			   NETIF_F_RXCSUM |
			   NETIF_F_HW_VLAN_RX;
1988 1989

	netdev->features = netdev->hw_features |
1990 1991 1992
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_FILTER;

1993 1994
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1995
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1996
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1997 1998
	netdev->vlan_features |= NETIF_F_SG;

1999
	if (pci_using_dac) {
2000
		netdev->features |= NETIF_F_HIGHDMA;
2001 2002
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2003

2004 2005
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2006
		netdev->features |= NETIF_F_SCTP_CSUM;
2007
	}
2008

2009 2010
	netdev->priv_flags |= IFF_UNICAST_FLT;

2011
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2012 2013 2014 2015 2016 2017

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
2018
	if (hw->nvm.ops.validate(hw) < 0) {
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2037
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2038
	            (unsigned long) adapter);
2039
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2040
	            (unsigned long) adapter);
2041 2042 2043 2044

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2045
	/* Initialize link properties that are user-changeable */
2046 2047 2048 2049
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2050 2051
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2052 2053 2054 2055 2056 2057 2058

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

2059
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
2060
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2061
	else if (hw->mac.type >= e1000_82580)
2062 2063 2064
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
2065 2066
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2079 2080
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2081 2082 2083 2084 2085
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
2086
	case E1000_DEV_ID_82576_QUAD_COPPER:
2087
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2088 2089 2090 2091 2092 2093 2094 2095 2096
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2097 2098 2099 2100
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
2101
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

J
Jiri Pirko 已提交
2115 2116
	igb_vlan_mode(netdev, netdev->features);

2117 2118 2119
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2120
#ifdef CONFIG_IGB_DCA
2121
	if (dca_add_requester(&pdev->dev) == 0) {
2122
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2123 2124 2125 2126
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2127
#endif
A
Anders Berggren 已提交
2128 2129 2130
	/* do hw tstamp init after resetting */
	igb_init_hw_timer(adapter);

2131 2132
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2133
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2134
		 netdev->name,
2135
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2136
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2137
		                                            "unknown"),
2138 2139 2140 2141
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2142
		 netdev->dev_addr);
2143

2144 2145 2146 2147
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2148 2149 2150
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2151
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2152
		adapter->num_rx_queues, adapter->num_tx_queues);
2153 2154 2155 2156 2157 2158 2159
	switch (hw->mac.type) {
	case e1000_i350:
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
2160 2161 2162 2163 2164 2165
	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
2166
		igb_reset_phy(hw);
2167 2168 2169 2170

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2171
	igb_clear_interrupt_scheme(adapter);
2172 2173 2174 2175
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2176 2177
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2197
	struct e1000_hw *hw = &adapter->hw;
2198

2199 2200 2201 2202
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2203 2204 2205 2206
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2207 2208
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2209

2210
#ifdef CONFIG_IGB_DCA
2211
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2212 2213
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2214
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2215
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2216 2217 2218
	}
#endif

2219 2220 2221 2222 2223 2224
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2225
	igb_clear_interrupt_scheme(adapter);
2226

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2237
		wrfl();
2238 2239 2240 2241
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
2242

2243 2244 2245
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2246 2247
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2248 2249 2250

	free_netdev(netdev);

2251
	pci_disable_pcie_error_reporting(pdev);
2252

2253 2254 2255
	pci_disable_device(pdev);
}

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;

	if (adapter->vfs_allocated_count) {
		adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
		                           sizeof(struct vf_data_storage),
		                           GFP_KERNEL);
		/* if allocation failed then we do not support SR-IOV */
		if (!adapter->vf_data) {
			adapter->vfs_allocated_count = 0;
			dev_err(&pdev->dev, "Unable to allocate memory for VF "
			        "Data Storage\n");
		}
	}

	if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
#endif /* CONFIG_PCI_IOV */
		adapter->vfs_allocated_count = 0;
#ifdef CONFIG_PCI_IOV
	} else {
		unsigned char mac_addr[ETH_ALEN];
		int i;
		dev_info(&pdev->dev, "%d vfs allocated\n",
		         adapter->vfs_allocated_count);
		for (i = 0; i < adapter->vfs_allocated_count; i++) {
			random_ether_addr(mac_addr);
			igb_set_vf_mac(adapter, i, mac_addr);
		}
2297 2298 2299
		/* DMA Coalescing is not supported in IOV mode. */
		if (adapter->flags & IGB_FLAG_DMAC)
			adapter->flags &= ~IGB_FLAG_DMAC;
2300 2301 2302 2303
	}
#endif /* CONFIG_PCI_IOV */
}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

/**
 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
 * @adapter: board private structure to initialize
 *
 * igb_init_hw_timer initializes the function pointer and values for the hw
 * timer found in hardware.
 **/
static void igb_init_hw_timer(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
2317
	case e1000_i350:
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	case e1000_82580:
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/*
		 * The 82580 timesync updates the system timer every 8ns by 8ns
		 * and the value cannot be shifted.  Instead we need to shift
		 * the registers to generate a 64bit timer value.  As a result
		 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
		 * 24 in order to generate a larger value for synchronization.
		 */
		adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
		/* disable system timer temporarily by setting bit 31 */
		wr32(E1000_TSAUXC, 0x80000000);
		wrfl();

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIMR, 0x00000000);
		wr32(E1000_SYSTIML, 0x80000000);
		wr32(E1000_SYSTIMH, 0x000000FF);
		wrfl();

		/* enable system timer by clearing bit 31 */
		wr32(E1000_TSAUXC, 0x0);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	case e1000_82576:
		/*
		 * Initialize hardware timer: we keep it running just in case
		 * that some program needs it later on.
		 */
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/**
		 * Scale the NIC clock cycle by a large factor so that
		 * relatively small clock corrections can be added or
L
Lucas De Marchi 已提交
2372
		 * subtracted at each clock tick. The drawbacks of a large
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
		 * factor are a) that the clock register overflows more quickly
		 * (not such a big deal) and b) that the increment per tick has
		 * to fit into 24 bits.  As a result we need to use a shift of
		 * 19 so we can fit a value of 16 into the TIMINCA register.
		 */
		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
		wr32(E1000_TIMINCA,
		                (1 << E1000_TIMINCA_16NS_SHIFT) |
		                (16 << IGB_82576_TSYNC_SHIFT));

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIML, 0x00000000);
		wr32(E1000_SYSTIMH, 0xFF800000);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
	case e1000_82575:
		/* 82575 does not support timesync */
	default:
		break;
	}

}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

2427
	/* set default ring sizes */
2428 2429
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2430 2431

	/* set default ITR values */
2432 2433 2434
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

2435 2436 2437
	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

2438 2439
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
2440 2441
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

2442 2443
	adapter->node = -1;

E
Eric Dumazet 已提交
2444
	spin_lock_init(&adapter->stats64_lock);
2445
#ifdef CONFIG_PCI_IOV
2446 2447 2448
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
2449 2450 2451 2452 2453 2454
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
2455 2456 2457 2458
		break;
	default:
		break;
	}
2459
#endif /* CONFIG_PCI_IOV */
2460
	adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2461 2462 2463
	/* i350 cannot do RSS and SR-IOV at the same time */
	if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
		adapter->rss_queues = 1;
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473

	/*
	 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
	 * then we should combine the queues into a queue pair in order to
	 * conserve interrupts due to limited supply
	 */
	if ((adapter->rss_queues > 4) ||
	    ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
		adapter->flags |= IGB_FLAG_QUEUE_PAIRS;

2474
	/* This call may decrease the number of queues */
2475
	if (igb_init_interrupt_scheme(adapter)) {
2476 2477 2478 2479
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2480 2481
	igb_probe_vfs(adapter);

2482 2483 2484
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2485 2486 2487
	if (hw->mac.type == e1000_i350)
		adapter->flags &= ~IGB_FLAG_DMAC;

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

2515 2516
	netif_carrier_off(netdev);

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2527
	igb_power_up_link(adapter);
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2542 2543 2544 2545
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
2546 2547 2548

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2549 2550 2551

	igb_irq_enable(adapter);

2552 2553 2554 2555 2556 2557 2558
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2559 2560
	netif_tx_start_all_queues(netdev);

2561 2562 2563
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2564 2565 2566 2567 2568

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
2569
	igb_power_down_link(adapter);
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2611
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2612
{
2613
	struct device *dev = tx_ring->dev;
2614
	int orig_node = dev_to_node(dev);
2615 2616
	int size;

2617
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2618 2619 2620
	tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
	if (!tx_ring->tx_buffer_info)
		tx_ring->tx_buffer_info = vzalloc(size);
2621
	if (!tx_ring->tx_buffer_info)
2622 2623 2624
		goto err;

	/* round up to nearest 4K */
2625
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2626 2627
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2628
	set_dev_node(dev, tx_ring->numa_node);
2629 2630 2631 2632
	tx_ring->desc = dma_alloc_coherent(dev,
					   tx_ring->size,
					   &tx_ring->dma,
					   GFP_KERNEL);
2633 2634 2635 2636 2637 2638
	set_dev_node(dev, orig_node);
	if (!tx_ring->desc)
		tx_ring->desc = dma_alloc_coherent(dev,
						   tx_ring->size,
						   &tx_ring->dma,
						   GFP_KERNEL);
2639 2640 2641 2642 2643 2644

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2645

2646 2647 2648
	return 0;

err:
2649
	vfree(tx_ring->tx_buffer_info);
2650
	dev_err(dev,
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2664
	struct pci_dev *pdev = adapter->pdev;
2665 2666 2667
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2668
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2669
		if (err) {
2670
			dev_err(&pdev->dev,
2671 2672
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2673
				igb_free_tx_resources(adapter->tx_ring[i]);
2674 2675 2676 2677 2678 2679 2680 2681
			break;
		}
	}

	return err;
}

/**
2682 2683
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2684
 **/
2685
void igb_setup_tctl(struct igb_adapter *adapter)
2686 2687 2688 2689
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2690 2691
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2707 2708 2709 2710 2711 2712 2713
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2714 2715
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2716 2717
{
	struct e1000_hw *hw = &adapter->hw;
2718
	u32 txdctl = 0;
2719 2720 2721 2722
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2723
	wr32(E1000_TXDCTL(reg_idx), 0);
2724 2725 2726 2727 2728 2729 2730 2731 2732
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2733
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2734
	wr32(E1000_TDH(reg_idx), 0);
2735
	writel(0, ring->tail);
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2756
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2757 2758
}

2759 2760 2761 2762 2763 2764
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2765
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2766
{
2767
	struct device *dev = rx_ring->dev;
2768
	int orig_node = dev_to_node(dev);
2769 2770
	int size, desc_len;

2771
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2772 2773 2774
	rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
	if (!rx_ring->rx_buffer_info)
		rx_ring->rx_buffer_info = vzalloc(size);
2775
	if (!rx_ring->rx_buffer_info)
2776 2777 2778 2779 2780 2781 2782 2783
		goto err;

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

2784
	set_dev_node(dev, rx_ring->numa_node);
2785 2786 2787 2788
	rx_ring->desc = dma_alloc_coherent(dev,
					   rx_ring->size,
					   &rx_ring->dma,
					   GFP_KERNEL);
2789 2790 2791 2792 2793 2794
	set_dev_node(dev, orig_node);
	if (!rx_ring->desc)
		rx_ring->desc = dma_alloc_coherent(dev,
						   rx_ring->size,
						   &rx_ring->dma,
						   GFP_KERNEL);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
2805 2806
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
2807 2808
	dev_err(dev, "Unable to allocate memory for the receive descriptor"
		" ring\n");
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2821
	struct pci_dev *pdev = adapter->pdev;
2822 2823 2824
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2825
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2826
		if (err) {
2827
			dev_err(&pdev->dev,
2828 2829
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2830
				igb_free_rx_resources(adapter->rx_ring[i]);
2831 2832 2833 2834 2835 2836 2837
			break;
		}
	}

	return err;
}

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

2866
	num_rx_queues = adapter->rss_queues;
2867 2868 2869 2870

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
2871
		case e1000_i350:
2872 2873 2874 2875
		case e1000_82580:
			num_rx_queues = 1;
			shift = 0;
			break;
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2927
		if (adapter->rss_queues > 1)
2928 2929 2930 2931 2932 2933 2934 2935
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	/*
	 * Generate RSS hash based on TCP port numbers and/or
	 * IPv4/v6 src and dst addresses since UDP cannot be
	 * hashed reliably due to IP fragmentation
	 */
	mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2946 2947 2948 2949

	wr32(E1000_MRQC, mrqc);
}

2950 2951 2952 2953
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2954
void igb_setup_rctl(struct igb_adapter *adapter)
2955 2956 2957 2958 2959 2960 2961
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2962
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2963

2964
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2965
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2966

2967 2968 2969 2970
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2971
	 */
2972
	rctl |= E1000_RCTL_SECRC;
2973

2974
	/* disable store bad packets and clear size bits. */
2975
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2976

A
Alexander Duyck 已提交
2977 2978
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2979

2980 2981
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2982

2983 2984 2985 2986 2987 2988 2989 2990 2991
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

2992 2993 2994
	wr32(E1000_RCTL, rctl);
}

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3015 3016 3017 3018 3019 3020 3021 3022
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3023
	u32 max_frame_size = adapter->max_frame_size;
3024 3025 3026 3027 3028
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3029 3030 3031 3032 3033 3034 3035
		/*
		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3036
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3037 3038 3039 3040 3041
	}

	wr32(E1000_RLPML, max_frame_size);
}

3042 3043
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3056 3057 3058 3059 3060
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3061 3062 3063 3064

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3065
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

3077 3078 3079 3080 3081 3082 3083
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
3084 3085
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3086 3087 3088 3089
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3090
	u32 srrctl = 0, rxdctl = 0;
3091 3092

	/* disable the queue */
3093
	wr32(E1000_RXDCTL(reg_idx), 0);
3094 3095 3096 3097 3098 3099 3100 3101 3102

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
3103
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3104
	wr32(E1000_RDH(reg_idx), 0);
3105
	writel(0, ring->tail);
3106

3107
	/* set descriptor configuration */
3108
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3109
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3110
	srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3111
#else
3112
	srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3113
#endif
3114
	srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
N
Nick Nunley 已提交
3115 3116
	if (hw->mac.type == e1000_82580)
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3117 3118 3119
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3120 3121 3122

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3123
	/* set filtering for VMDQ pools */
3124
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3125

3126 3127 3128
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3129 3130 3131

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3132 3133 3134
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3135 3136 3137 3138 3139 3140 3141 3142
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3143
	int i;
3144

3145 3146 3147
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3148 3149 3150 3151
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

3152 3153 3154
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
3155
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3156 3157 3158 3159 3160 3161 3162 3163
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3164
void igb_free_tx_resources(struct igb_ring *tx_ring)
3165
{
3166
	igb_clean_tx_ring(tx_ring);
3167

3168 3169
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3170

3171 3172 3173 3174
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3175 3176
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3192
		igb_free_tx_resources(adapter->tx_ring[i]);
3193 3194
}

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
		if (tx_buffer->dma)
			dma_unmap_single(ring->dev,
					 tx_buffer->dma,
					 tx_buffer->length,
					 DMA_TO_DEVICE);
	} else if (tx_buffer->dma) {
		dma_unmap_page(ring->dev,
			       tx_buffer->dma,
			       tx_buffer->length,
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	tx_buffer->dma = 0;
	/* buffer_info must be completely set up in the transmit path */
3215 3216 3217 3218 3219 3220
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3221
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3222
{
3223
	struct igb_tx_buffer *buffer_info;
3224
	unsigned long size;
3225
	u16 i;
3226

3227
	if (!tx_ring->tx_buffer_info)
3228 3229 3230 3231
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3232
		buffer_info = &tx_ring->tx_buffer_info[i];
3233
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3234 3235
	}

3236 3237
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3255
		igb_clean_tx_ring(adapter->tx_ring[i]);
3256 3257 3258 3259 3260 3261 3262 3263
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3264
void igb_free_rx_resources(struct igb_ring *rx_ring)
3265
{
3266
	igb_clean_rx_ring(rx_ring);
3267

3268 3269
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3270

3271 3272 3273 3274
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3275 3276
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3292
		igb_free_rx_resources(adapter->rx_ring[i]);
3293 3294 3295 3296 3297 3298
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3299
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3300 3301
{
	unsigned long size;
3302
	u16 i;
3303

3304
	if (!rx_ring->rx_buffer_info)
3305
		return;
3306

3307 3308
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3309
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3310
		if (buffer_info->dma) {
3311
			dma_unmap_single(rx_ring->dev,
3312
			                 buffer_info->dma,
3313
					 IGB_RX_HDR_LEN,
3314
					 DMA_FROM_DEVICE);
3315 3316 3317 3318 3319 3320 3321
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
3322
		if (buffer_info->page_dma) {
3323
			dma_unmap_page(rx_ring->dev,
3324
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
3325
				       PAGE_SIZE / 2,
3326
				       DMA_FROM_DEVICE);
A
Alexander Duyck 已提交
3327 3328
			buffer_info->page_dma = 0;
		}
3329 3330 3331
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
3332
			buffer_info->page_offset = 0;
3333 3334 3335
		}
	}

3336 3337
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3355
		igb_clean_rx_ring(adapter->rx_ring[i]);
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3368
	struct e1000_hw *hw = &adapter->hw;
3369 3370 3371 3372 3373 3374
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3375
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3376

3377 3378 3379
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3380

3381 3382 3383 3384
	return 0;
}

/**
3385
 * igb_write_mc_addr_list - write multicast addresses to MTA
3386 3387
 * @netdev: network interface device structure
 *
3388 3389 3390 3391
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3392
 **/
3393
static int igb_write_mc_addr_list(struct net_device *netdev)
3394 3395 3396
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3397
	struct netdev_hw_addr *ha;
3398
	u8  *mta_list;
3399 3400
	int i;

3401
	if (netdev_mc_empty(netdev)) {
3402 3403 3404 3405 3406
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3407

3408
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3409 3410
	if (!mta_list)
		return -ENOMEM;
3411

3412
	/* The shared function expects a packed array of only addresses. */
3413
	i = 0;
3414 3415
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3416 3417 3418 3419

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3420
	return netdev_mc_count(netdev);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3441
	if (netdev_uc_count(netdev) > rar_entries)
3442
		return -ENOMEM;
3443

3444
	if (!netdev_uc_empty(netdev) && rar_entries) {
3445
		struct netdev_hw_addr *ha;
3446 3447

		netdev_for_each_uc_addr(ha, netdev) {
3448 3449
			if (!rar_entries)
				break;
3450 3451
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3452 3453
			                 vfn);
			count++;
3454 3455 3456 3457 3458 3459 3460 3461 3462
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3499
			 * then we should just turn on promiscuous mode so
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3513
		 * unicast promiscuous mode
3514 3515 3516 3517 3518 3519 3520
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3521
	}
3522
	wr32(E1000_RCTL, rctl);
3523

3524 3525 3526 3527 3528 3529 3530
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
3531
		return;
3532

3533 3534 3535
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3536
	igb_restore_vf_multicasts(adapter);
3537 3538
}

G
Greg Rose 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3578 3579 3580 3581 3582
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3583
	igb_get_phy_info(&adapter->hw);
3584 3585
}

A
Alexander Duyck 已提交
3586 3587 3588 3589
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3590
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

	/* check for thermal sensor event on i350, copper only */
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
			ret = !!(thstat & event);
		}
	}

	return ret;
}

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3655 3656
	                                           struct igb_adapter,
                                                   watchdog_task);
3657 3658
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3659
	u32 link;
3660
	int i;
3661

A
Alexander Duyck 已提交
3662
	link = igb_has_link(adapter);
3663 3664 3665
	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3666 3667 3668
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3669 3670

			ctrl = rd32(E1000_CTRL);
3671 3672
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3673
				 "Flow Control: %s\n",
3674 3675 3676
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
3677
				 "Full Duplex" : "Half Duplex",
3678 3679 3680 3681
			       ((ctrl & E1000_CTRL_TFCE) &&
			        (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
			       ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
3682

3683 3684 3685 3686 3687 3688
			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
				printk(KERN_INFO "igb: %s The network adapter "
						 "link speed was downshifted "
						 "because it overheated.\n",
						 netdev->name);
3689
			}
3690

3691
			/* adjust timeout factor according to speed/duplex */
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3704
			igb_ping_all_vfs(adapter);
3705
			igb_check_vf_rate_limit(adapter);
3706

3707
			/* link state has changed, schedule phy info update */
3708 3709 3710 3711 3712 3713 3714 3715
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3716 3717 3718 3719 3720 3721

			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
				printk(KERN_ERR "igb: %s The network adapter "
						"was stopped because it "
						"overheated.\n",
3722 3723
						netdev->name);
			}
3724

3725 3726 3727
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3728
			netif_carrier_off(netdev);
3729

3730 3731
			igb_ping_all_vfs(adapter);

3732
			/* link state has changed, schedule phy info update */
3733 3734 3735 3736 3737 3738
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

E
Eric Dumazet 已提交
3739 3740 3741
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3742

3743
	for (i = 0; i < adapter->num_tx_queues; i++) {
3744
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3745
		if (!netif_carrier_ok(netdev)) {
3746 3747 3748 3749
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3750 3751 3752 3753 3754 3755
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3756 3757
		}

3758 3759 3760
		/* Force detection of hung controller every watchdog period */
		tx_ring->detect_tx_hung = true;
	}
3761

3762
	/* Cause software interrupt to ensure rx ring is cleaned */
3763
	if (adapter->msix_entries) {
3764 3765 3766 3767 3768
		u32 eics = 0;
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			eics |= q_vector->eims_value;
		}
3769 3770 3771 3772
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3773

G
Greg Rose 已提交
3774 3775
	igb_spoof_check(adapter);

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3789 3790 3791 3792 3793 3794
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
3795
 *      receive rings.  The divisors and thresholds used by this function
3796 3797 3798 3799 3800 3801 3802
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3803
 * @q_vector: pointer to q_vector
3804
 **/
3805
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3806
{
3807
	int new_val = q_vector->itr_val;
3808
	int avg_wire_size = 0;
3809
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
3810
	unsigned int packets;
3811

3812 3813 3814 3815
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3816
		new_val = IGB_4K_ITR;
3817
		goto set_itr_val;
3818
	}
3819

3820 3821 3822
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
3823

3824 3825 3826 3827
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
3828 3829 3830 3831

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3832

3833 3834 3835 3836 3837
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3838

3839 3840 3841 3842 3843
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3844

3845 3846 3847 3848 3849
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
3850

3851
set_itr_val:
3852 3853 3854
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3855
	}
3856
clear_counts:
3857 3858 3859 3860
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
3876 3877
 * @q_vector: pointer to q_vector
 * @ring_container: ring info to update the itr for
3878
 **/
3879 3880
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
3881
{
3882 3883 3884
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
3885

3886
	/* no packets, exit with status unchanged */
3887
	if (packets == 0)
3888
		return;
3889

3890
	switch (itrval) {
3891 3892 3893
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
3894
			itrval = bulk_latency;
3895
		else if ((packets < 5) && (bytes > 512))
3896
			itrval = low_latency;
3897 3898 3899 3900 3901
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
3902
				itrval = bulk_latency;
3903
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
3904
				itrval = bulk_latency;
3905
			} else if ((packets > 35)) {
3906
				itrval = lowest_latency;
3907 3908
			}
		} else if (bytes/packets > 2000) {
3909
			itrval = bulk_latency;
3910
		} else if (packets <= 2 && bytes < 512) {
3911
			itrval = lowest_latency;
3912 3913 3914 3915 3916
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
3917
				itrval = low_latency;
3918
		} else if (bytes < 1500) {
3919
			itrval = low_latency;
3920 3921 3922 3923
		}
		break;
	}

3924 3925 3926 3927 3928 3929
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
3930 3931
}

3932
static void igb_set_itr(struct igb_q_vector *q_vector)
3933
{
3934
	struct igb_adapter *adapter = q_vector->adapter;
3935
	u32 new_itr = q_vector->itr_val;
3936
	u8 current_itr = 0;
3937 3938 3939 3940

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
3941
		new_itr = IGB_4K_ITR;
3942 3943 3944
		goto set_itr_now;
	}

3945 3946
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
3947

3948
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3949

3950
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3951 3952 3953
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3954 3955
		current_itr = low_latency;

3956 3957 3958
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3959
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3960 3961
		break;
	case low_latency:
3962
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3963 3964
		break;
	case bulk_latency:
3965
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3966 3967 3968 3969 3970 3971
		break;
	default:
		break;
	}

set_itr_now:
3972
	if (new_itr != q_vector->itr_val) {
3973 3974 3975
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3976 3977 3978
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
3979
				 new_itr) :
3980 3981 3982 3983 3984 3985 3986
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3987 3988
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3989 3990 3991
	}
}

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
		     u32 type_tucmd, u32 mss_l4len_idx)
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4007
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4008 4009 4010 4011 4012 4013 4014 4015
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4016 4017 4018
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4019
{
4020
	struct sk_buff *skb = first->skb;
4021 4022 4023 4024 4025
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

	if (!skb_is_gso(skb))
		return 0;
4026 4027

	if (skb_header_cloned(skb)) {
4028
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4029 4030 4031 4032
		if (err)
			return err;
	}

4033 4034
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4035

4036
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4037 4038 4039 4040 4041 4042 4043
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4044
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4045 4046 4047
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4048
	} else if (skb_is_gso_v6(skb)) {
4049 4050 4051 4052
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4053 4054
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4055 4056
	}

4057
	/* compute header lengths */
4058 4059
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4060

4061 4062 4063 4064
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4065
	/* MSS L4LEN IDX */
4066 4067
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4068

4069 4070 4071
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4072
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4073

4074
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4075

4076
	return 1;
4077 4078
}

4079
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4080
{
4081
	struct sk_buff *skb = first->skb;
4082 4083 4084
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4085

4086
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4087 4088
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4089 4090
	} else {
		u8 l4_hdr = 0;
4091
		switch (first->protocol) {
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but proto=%x!\n",
4105
				 first->protocol);
4106
			}
4107 4108
			break;
		}
4109

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but l4 proto=%x!\n",
				 l4_hdr);
4130
			}
4131
			break;
4132
		}
4133 4134 4135

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4136
	}
4137

4138
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4139
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4140

4141
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4142 4143
}

4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
static __le32 igb_tx_cmd_type(u32 tx_flags)
{
	/* set type for advanced descriptor with frame checksum insertion */
	__le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
				      E1000_ADVTXD_DCMD_IFCS |
				      E1000_ADVTXD_DCMD_DEXT);

	/* set HW vlan bit if vlan is present */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);

	/* set timestamp bit if present */
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);

	/* set segmentation bits for TSO */
	if (tx_flags & IGB_TX_FLAGS_TSO)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);

	return cmd_type;
}

4166 4167 4168
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4169 4170 4171 4172 4173
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

	/* 82575 requires a unique index per ring if any offload is enabled */
	if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4174
	    test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
	if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert IPv4 checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
	}

4186
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4187 4188
}

4189 4190 4191 4192 4193
/*
 * The largest size we can write to the descriptor is 65535.  In order to
 * maintain a power of two alignment we have to limit ourselves to 32K.
 */
#define IGB_MAX_TXD_PWR	15
4194
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4195

4196 4197
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4198
		       const u8 hdr_len)
4199
{
4200
	struct sk_buff *skb = first->skb;
4201 4202 4203 4204 4205 4206 4207 4208
	struct igb_tx_buffer *tx_buffer_info;
	union e1000_adv_tx_desc *tx_desc;
	dma_addr_t dma;
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	unsigned int paylen = skb->len - hdr_len;
	__le32 cmd_type;
4209
	u32 tx_flags = first->tx_flags;
4210 4211 4212 4213
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4214
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4215 4216 4217 4218
	cmd_type = igb_tx_cmd_type(tx_flags);

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
	if (dma_mapping_error(tx_ring->dev, dma))
4219
		goto dma_error;
4220

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	/* record length, and DMA address */
	first->length = size;
	first->dma = dma;
	tx_desc->read.buffer_addr = cpu_to_le64(dma);

	for (;;) {
		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
				cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.olinfo_status = 0;
			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4247

4248
		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4249

4250
		i++;
4251 4252 4253
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4254
			i = 0;
4255
		}
4256

4257 4258 4259 4260 4261 4262
		size = frag->size;
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
				   size, DMA_TO_DEVICE);
		if (dma_mapping_error(tx_ring->dev, dma))
4263 4264
			goto dma_error;

4265 4266 4267 4268 4269 4270 4271 4272
		tx_buffer_info = &tx_ring->tx_buffer_info[i];
		tx_buffer_info->length = size;
		tx_buffer_info->dma = dma;

		tx_desc->read.olinfo_status = 0;
		tx_desc->read.buffer_addr = cpu_to_le64(dma);

		frag++;
4273 4274
	}

4275 4276 4277
	/* write last descriptor with RS and EOP bits */
	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
	tx_desc->read.cmd_type_len = cmd_type;
4278 4279 4280 4281

	/* set the timestamp */
	first->time_stamp = jiffies;

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
	/*
	 * Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4292
	/* set next_to_watch value indicating a packet is present */
4293
	first->next_to_watch = tx_desc;
4294

4295 4296 4297
	i++;
	if (i == tx_ring->count)
		i = 0;
4298

4299
	tx_ring->next_to_use = i;
4300

4301
	writel(i, tx_ring->tail);
4302

4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
		tx_buffer_info = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
		if (tx_buffer_info == first)
			break;
4318 4319
		if (i == 0)
			i = tx_ring->count;
4320 4321 4322
		i--;
	}

4323 4324 4325
	tx_ring->next_to_use = i;
}

4326
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4327
{
4328 4329
	struct net_device *netdev = tx_ring->netdev;

4330 4331
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4332 4333 4334 4335 4336 4337 4338
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4339
	if (igb_desc_unused(tx_ring) < size)
4340 4341 4342
		return -EBUSY;

	/* A reprieve! */
4343
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4344 4345 4346 4347 4348

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4349 4350 4351
	return 0;
}

4352
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4353
{
4354
	if (igb_desc_unused(tx_ring) >= size)
4355
		return 0;
4356
	return __igb_maybe_stop_tx(tx_ring, size);
4357 4358
}

4359 4360
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4361
{
4362
	struct igb_tx_buffer *first;
4363
	int tso;
N
Nick Nunley 已提交
4364
	u32 tx_flags = 0;
4365
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4366
	u8 hdr_len = 0;
4367 4368 4369 4370 4371 4372

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4373
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4374 4375 4376
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4377

4378 4379 4380 4381 4382 4383
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4384 4385
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4386 4387
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
4388

4389
	if (vlan_tx_tag_present(skb)) {
4390 4391 4392 4393
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4394 4395 4396
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4397

4398 4399
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4400
		goto out_drop;
4401 4402
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4403

4404
	igb_tx_map(tx_ring, first, hdr_len);
4405 4406

	/* Make sure there is space in the ring for the next send. */
4407
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4408

4409
	return NETDEV_TX_OK;
4410 4411

out_drop:
4412 4413
	igb_unmap_and_free_tx_resource(tx_ring, first);

4414
	return NETDEV_TX_OK;
4415 4416
}

4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4428 4429
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4430 4431
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4443 4444 4445 4446 4447 4448 4449 4450 4451
	/*
	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
	if (skb->len < 17) {
		if (skb_padto(skb, 17))
			return NETDEV_TX_OK;
		skb->len = 17;
	}
4452

4453
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4467

4468 4469 4470
	if (hw->mac.type == e1000_82580)
		hw->dev_spec._82575.global_device_reset = true;

4471
	schedule_work(&adapter->reset_task);
4472 4473
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4474 4475 4476 4477 4478 4479 4480
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4481 4482
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4483 4484 4485 4486
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4487
 * igb_get_stats64 - Get System Network Statistics
4488
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4489
 * @stats: rtnl_link_stats64 pointer
4490 4491
 *
 **/
E
Eric Dumazet 已提交
4492 4493
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4494
{
E
Eric Dumazet 已提交
4495 4496 4497 4498 4499 4500 4501 4502
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4515
	struct pci_dev *pdev = adapter->pdev;
4516
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4517

4518
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4519
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4520 4521 4522
		return -EINVAL;
	}

4523
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4524
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4525
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4526 4527 4528 4529 4530
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4531

4532 4533
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4534

4535 4536
	if (netif_running(netdev))
		igb_down(adapter);
4537

4538
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4557 4558
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4559 4560 4561
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4562
	u32 reg, mpc;
4563
	u16 phy_tmp;
4564 4565
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4566 4567
	unsigned int start;
	u64 _bytes, _packets;
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4580 4581 4582 4583
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4584
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4585

4586
		ring->rx_stats.drops += rqdpc_tmp;
4587
		net_stats->rx_fifo_errors += rqdpc_tmp;
E
Eric Dumazet 已提交
4588 4589 4590 4591 4592 4593 4594 4595

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4596 4597
	}

4598 4599
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4600 4601 4602 4603

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4604
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4605 4606 4607 4608 4609 4610 4611
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4612
	}
4613 4614
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4615 4616

	/* read stats registers */
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4634 4635 4636
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4651
	adapter->stats.rnbc += rd32(E1000_RNBC);
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4669 4670
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4671 4672

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4673 4674 4675 4676 4677 4678 4679
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
		adapter->stats.tncrs += rd32(E1000_TNCRS);
	}

4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4694 4695
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4696 4697 4698 4699

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4700
	 * our own version based on RUC and ROC */
4701
	net_stats->rx_errors = adapter->stats.rxerrc +
4702 4703 4704
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4705 4706 4707 4708 4709
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4710 4711

	/* Tx Errors */
4712 4713 4714 4715 4716
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4717 4718 4719 4720 4721 4722

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4723
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4724 4725 4726 4727 4728 4729 4730 4731 4732
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4733 4734 4735 4736 4737 4738 4739 4740 4741

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
4742 4743 4744 4745
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4746
	struct igb_adapter *adapter = data;
4747
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4748 4749
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4750

4751 4752 4753
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4754
	if (icr & E1000_ICR_DOUTSYNC) {
4755 4756
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
4757 4758 4759 4760
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
4761
	}
4762

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4774 4775 4776 4777 4778 4779
	if (adapter->vfs_allocated_count)
		wr32(E1000_IMS, E1000_IMS_LSC |
				E1000_IMS_VMMB |
				E1000_IMS_DOUTSYNC);
	else
		wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
P
PJ Waskiewicz 已提交
4780
	wr32(E1000_EIMS, adapter->eims_other);
4781 4782 4783 4784

	return IRQ_HANDLED;
}

4785
static void igb_write_itr(struct igb_q_vector *q_vector)
4786
{
4787
	struct igb_adapter *adapter = q_vector->adapter;
4788
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4789

4790 4791
	if (!q_vector->set_itr)
		return;
4792

4793 4794
	if (!itr_val)
		itr_val = 0x4;
4795

4796 4797
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4798
	else
4799
		itr_val |= E1000_EITR_CNT_IGNR;
4800

4801 4802
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4803 4804
}

4805
static irqreturn_t igb_msix_ring(int irq, void *data)
4806
{
4807
	struct igb_q_vector *q_vector = data;
4808

4809 4810
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4811

4812
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4813

4814
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4815 4816
}

4817
#ifdef CONFIG_IGB_DCA
4818
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4819
{
4820
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4821 4822 4823
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4824 4825 4826
	if (q_vector->cpu == cpu)
		goto out_no_update;

4827 4828
	if (q_vector->tx.ring) {
		int q = q_vector->tx.ring->reg_idx;
4829 4830 4831 4832
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4833
		} else {
4834 4835 4836 4837 4838 4839 4840
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
4841 4842
	if (q_vector->rx.ring) {
		int q = q_vector->rx.ring->reg_idx;
4843 4844
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4845
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4846
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4847 4848 4849 4850
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4851
		}
J
Jeb Cramer 已提交
4852 4853 4854 4855 4856
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4857 4858
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4859 4860 4861 4862 4863
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4864
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4865 4866
	int i;

4867
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4868 4869
		return;

4870 4871 4872
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4873
	for (i = 0; i < adapter->num_q_vectors; i++) {
4874 4875
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4876 4877 4878 4879 4880 4881 4882
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4883
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4884 4885 4886 4887 4888 4889
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4890
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4891 4892
			break;
		if (dca_add_requester(dev) == 0) {
4893
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4894
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4895 4896 4897 4898 4899
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4900
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4901
			/* without this a class_device is left
4902
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4903
			dca_remove_requester(dev);
4904
			dev_info(&pdev->dev, "DCA disabled\n");
4905
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4906
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4907 4908 4909
		}
		break;
	}
4910

J
Jeb Cramer 已提交
4911
	return 0;
4912 4913
}

J
Jeb Cramer 已提交
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4924
#endif /* CONFIG_IGB_DCA */
4925

4926 4927 4928 4929 4930 4931 4932 4933
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
4934
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4935 4936 4937 4938 4939
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

4940 4941 4942 4943 4944 4945
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

4946
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
4947 4948 4949 4950 4951
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
4952
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

4980 4981 4982 4983 4984 4985 4986 4987
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

4988
	/* salt away the number of multicast addresses assigned
4989 4990 4991 4992 4993
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

4994 4995 4996 4997 4998
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
4999
	for (i = 0; i < n; i++)
5000
		vf_data->vf_mc_hashes[i] = hash_list[i];
5001 5002

	/* Flush and reset the mta with the new values */
5003
	igb_set_rx_mode(adapter->netdev);
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5015 5016 5017
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5018
		vf_data = &adapter->vf_data[i];
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5057 5058

	adapter->vf_data[vf].vlans_enabled = 0;
5059 5060 5061 5062 5063 5064 5065
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5066 5067 5068 5069 5070
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5100 5101
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5102 5103
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5104 5105
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5106
			wr32(E1000_VLVF(i), reg);
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5122
			adapter->vf_data[vf].vlans_enabled++;
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5150 5151
		}
	}
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5211
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5212
{
G
Greg Rose 已提交
5213 5214
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5215
	adapter->vf_data[vf].last_nack = jiffies;
5216 5217

	/* reset offloads to defaults */
5218
	igb_set_vmolr(adapter, vf, true);
5219 5220 5221

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5222 5223 5224 5225 5226 5227
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5228 5229 5230 5231 5232

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5233
	igb_set_rx_mode(adapter->netdev);
5234 5235
}

5236 5237 5238 5239 5240
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
5241 5242
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
		random_ether_addr(vf_mac);
5243 5244 5245 5246 5247 5248

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5249 5250 5251
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5252
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5253 5254 5255 5256
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5257
	igb_vf_reset(adapter, vf);
5258 5259

	/* set vf mac address */
5260
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5261 5262 5263 5264 5265 5266 5267

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5268
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5269 5270 5271 5272 5273 5274 5275 5276 5277

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5278 5279 5280 5281
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5282 5283
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5284

5285 5286
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5287

5288
	return err;
5289 5290 5291 5292 5293
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5294
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5295 5296 5297
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5298 5299
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5300
		igb_write_mbx(hw, &msg, 1, vf);
5301
		vf_data->last_nack = jiffies;
5302 5303 5304
	}
}

5305
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5306
{
5307 5308
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5309
	struct e1000_hw *hw = &adapter->hw;
5310
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5311 5312
	s32 retval;

5313
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5314

5315 5316
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5317
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5318 5319 5320 5321 5322
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5323 5324 5325

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5326
		return;
5327 5328 5329 5330 5331 5332 5333 5334

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5335
		return;
5336 5337
	}

5338
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5339 5340 5341 5342
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5343 5344 5345 5346
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5347 5348 5349 5350 5351 5352 5353 5354
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5355
		break;
5356 5357 5358
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5359 5360 5361 5362 5363 5364 5365
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5366 5367 5368 5369 5370 5371
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5372 5373
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5374 5375
		break;
	default:
5376
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5377 5378 5379 5380
		retval = -1;
		break;
	}

5381 5382
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5383 5384 5385 5386 5387 5388 5389
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5390
}
5391

5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5410 5411
}

5412 5413 5414 5415 5416 5417 5418
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5419 5420
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5439 5440 5441 5442 5443 5444 5445
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5446 5447
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5448 5449 5450 5451
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5452
	igb_write_itr(q_vector);
5453

5454 5455 5456
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5457
	if (icr & E1000_ICR_DOUTSYNC) {
5458 5459 5460 5461
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5462 5463 5464 5465 5466 5467
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5468
	napi_schedule(&q_vector->napi);
5469 5470 5471 5472 5473

	return IRQ_HANDLED;
}

/**
5474
 * igb_intr - Legacy Interrupt Handler
5475 5476 5477 5478 5479
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5480 5481
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5492 5493
	igb_write_itr(q_vector);

5494 5495 5496
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5497
	if (icr & E1000_ICR_DOUTSYNC) {
5498 5499 5500 5501
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5502 5503 5504 5505 5506 5507 5508
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5509
	napi_schedule(&q_vector->napi);
5510 5511 5512 5513

	return IRQ_HANDLED;
}

5514
void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5515
{
5516
	struct igb_adapter *adapter = q_vector->adapter;
5517
	struct e1000_hw *hw = &adapter->hw;
5518

5519 5520 5521 5522
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5523
		else
5524
			igb_update_ring_itr(q_vector);
5525 5526
	}

5527 5528
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5529
			wr32(E1000_EIMS, q_vector->eims_value);
5530 5531 5532
		else
			igb_irq_enable(adapter);
	}
5533 5534
}

5535 5536 5537 5538 5539 5540
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5541
{
5542 5543 5544
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
5545
	bool clean_complete = true;
5546

5547
#ifdef CONFIG_IGB_DCA
5548 5549
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5550
#endif
5551
	if (q_vector->tx.ring)
5552
		clean_complete = igb_clean_tx_irq(q_vector);
5553

5554
	if (q_vector->rx.ring)
5555
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5556

5557 5558 5559
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5560

5561
	/* If not enough Rx work done, exit the polling mode */
5562 5563
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5564

5565
	return 0;
5566
}
A
Al Viro 已提交
5567

5568
/**
5569
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5570
 * @adapter: board private structure
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
 * @shhwtstamps: timestamp structure to update
 * @regval: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions
 */
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
                                   struct skb_shared_hwtstamps *shhwtstamps,
                                   u64 regval)
{
	u64 ns;

5583 5584 5585 5586 5587 5588 5589
	/*
	 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
	 * 24 to match clock shift we setup earlier.
	 */
	if (adapter->hw.mac.type == e1000_82580)
		regval <<= IGB_82580_TSYNC_SHIFT;

5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
	ns = timecounter_cyc2time(&adapter->clock, regval);
	timecompare_update(&adapter->compare, ns);
	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
}

/**
 * igb_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: pointer to q_vector containing needed info
5600
 * @buffer: pointer to igb_tx_buffer structure
5601 5602 5603 5604 5605
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
5606 5607
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
			    struct igb_tx_buffer *buffer_info)
5608
{
5609
	struct igb_adapter *adapter = q_vector->adapter;
5610
	struct e1000_hw *hw = &adapter->hw;
5611 5612
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
5613

5614
	/* if skb does not support hw timestamp or TX stamp not valid exit */
5615
	if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
5616 5617 5618 5619 5620 5621 5622
	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
		return;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5623
	skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5624 5625
}

5626 5627
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5628
 * @q_vector: pointer to q_vector containing needed info
5629 5630
 * returns true if ring is completely cleaned
 **/
5631
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5632
{
5633
	struct igb_adapter *adapter = q_vector->adapter;
5634
	struct igb_ring *tx_ring = q_vector->tx.ring;
5635
	struct igb_tx_buffer *tx_buffer;
5636
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
5637
	unsigned int total_bytes = 0, total_packets = 0;
5638
	unsigned int budget = q_vector->tx.work_limit;
5639
	unsigned int i = tx_ring->next_to_clean;
5640

5641 5642
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5643

5644
	tx_buffer = &tx_ring->tx_buffer_info[i];
5645
	tx_desc = IGB_TX_DESC(tx_ring, i);
5646
	i -= tx_ring->count;
5647

5648
	for (; budget; budget--) {
5649
		eop_desc = tx_buffer->next_to_watch;
5650

5651 5652 5653 5654 5655 5656
		/* prevent any other reads prior to eop_desc */
		rmb();

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5657 5658 5659 5660 5661

		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5662 5663
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5664

5665 5666 5667
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5668

5669 5670 5671 5672 5673 5674
		/* retrieve hardware timestamp */
		igb_tx_hwtstamp(q_vector, tx_buffer);

		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
		tx_buffer->skb = NULL;
5675

5676 5677 5678 5679 5680 5681 5682 5683 5684
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 tx_buffer->dma,
				 tx_buffer->length,
				 DMA_TO_DEVICE);

		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buffer->dma = 0;
5685

5686 5687
			tx_buffer++;
			tx_desc++;
5688
			i++;
5689 5690
			if (unlikely(!i)) {
				i -= tx_ring->count;
5691
				tx_buffer = tx_ring->tx_buffer_info;
5692 5693
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715

			/* unmap any remaining paged data */
			if (tx_buffer->dma) {
				dma_unmap_page(tx_ring->dev,
					       tx_buffer->dma,
					       tx_buffer->length,
					       DMA_TO_DEVICE);
			}
		}

		/* clear last DMA location */
		tx_buffer->dma = 0;

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
A
Alexander Duyck 已提交
5716 5717
	}

5718
	i += tx_ring->count;
5719
	tx_ring->next_to_clean = i;
5720 5721 5722 5723
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
5724 5725
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
5726

5727 5728
	if (tx_ring->detect_tx_hung) {
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
5729

5730
		eop_desc = tx_buffer->next_to_watch;
5731 5732 5733 5734

		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
5735 5736
		if (eop_desc &&
		    time_after(jiffies, tx_buffer->time_stamp +
5737 5738
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5739 5740

			/* detected Tx unit hang */
5741
			dev_err(tx_ring->dev,
5742
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5743
				"  Tx Queue             <%d>\n"
5744 5745 5746 5747 5748 5749
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
5750
				"  next_to_watch        <%p>\n"
5751 5752
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5753
				tx_ring->queue_index,
5754
				rd32(E1000_TDH(tx_ring->reg_idx)),
5755
				readl(tx_ring->tail),
5756 5757
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5758 5759
				tx_buffer->time_stamp,
				eop_desc,
5760
				jiffies,
A
Alexander Duyck 已提交
5761
				eop_desc->wb.status);
5762 5763 5764 5765 5766
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
5767 5768
		}
	}
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789

	if (unlikely(total_packets &&
		     netif_carrier_ok(tx_ring->netdev) &&
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
5790 5791
}

5792
static inline void igb_rx_checksum(struct igb_ring *ring,
5793 5794
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
5795
{
5796
	skb_checksum_none_assert(skb);
5797

5798
	/* Ignore Checksum bit is set */
5799
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
5800 5801 5802 5803
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
5804
		return;
5805

5806
	/* TCP/UDP checksum error bit is set */
5807 5808 5809
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
5810 5811 5812 5813 5814
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
5815 5816
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
5817
			u64_stats_update_begin(&ring->rx_syncp);
5818
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
5819 5820
			u64_stats_update_end(&ring->rx_syncp);
		}
5821 5822 5823 5824
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
5825 5826
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
5827 5828
		skb->ip_summed = CHECKSUM_UNNECESSARY;

5829 5830
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
5831 5832
}

5833 5834 5835
static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
5836 5837 5838 5839 5840
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

5841 5842 5843 5844
	if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
				       E1000_RXDADV_STAT_TS))
		return;

5845 5846 5847 5848 5849 5850 5851 5852
	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
5853
	 * If nothing went wrong, then it should have a shared tx_flags that we
5854 5855
	 * can turn into a skb_shared_hwtstamps.
	 */
5856
	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
N
Nick Nunley 已提交
5857 5858 5859 5860 5861 5862 5863
		u32 *stamp = (u32 *)skb->data;
		regval = le32_to_cpu(*(stamp + 2));
		regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
		skb_pull(skb, IGB_TS_HDR_LEN);
	} else {
		if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
			return;
5864

N
Nick Nunley 已提交
5865 5866 5867
		regval = rd32(E1000_RXSTMPL);
		regval |= (u64)rd32(E1000_RXSTMPH) << 32;
	}
5868 5869 5870

	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
5871
static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
5872 5873 5874 5875 5876 5877 5878
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5879 5880
	if (hlen > IGB_RX_HDR_LEN)
		hlen = IGB_RX_HDR_LEN;
5881 5882 5883
	return hlen;
}

5884
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
5885
{
5886
	struct igb_ring *rx_ring = q_vector->rx.ring;
5887 5888
	union e1000_adv_rx_desc *rx_desc;
	const int current_node = numa_node_id();
5889
	unsigned int total_bytes = 0, total_packets = 0;
5890 5891
	u16 cleaned_count = igb_desc_unused(rx_ring);
	u16 i = rx_ring->next_to_clean;
5892

5893
	rx_desc = IGB_RX_DESC(rx_ring, i);
5894

5895
	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
5896
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5897 5898
		struct sk_buff *skb = buffer_info->skb;
		union e1000_adv_rx_desc *next_rxd;
5899

5900
		buffer_info->skb = NULL;
5901
		prefetch(skb->data);
5902 5903 5904 5905

		i++;
		if (i == rx_ring->count)
			i = 0;
5906

5907
		next_rxd = IGB_RX_DESC(rx_ring, i);
5908
		prefetch(next_rxd);
5909

5910 5911 5912 5913 5914 5915
		/*
		 * This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();
5916

5917 5918 5919
		if (!skb_is_nonlinear(skb)) {
			__skb_put(skb, igb_get_hlen(rx_desc));
			dma_unmap_single(rx_ring->dev, buffer_info->dma,
5920
					 IGB_RX_HDR_LEN,
5921
					 DMA_FROM_DEVICE);
J
Jesse Brandeburg 已提交
5922
			buffer_info->dma = 0;
5923 5924
		}

5925 5926
		if (rx_desc->wb.upper.length) {
			u16 length = le16_to_cpu(rx_desc->wb.upper.length);
5927

K
Koki Sanagi 已提交
5928
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5929 5930 5931 5932
						buffer_info->page,
						buffer_info->page_offset,
						length);

5933 5934 5935 5936
			skb->len += length;
			skb->data_len += length;
			skb->truesize += length;

5937 5938
			if ((page_count(buffer_info->page) != 1) ||
			    (page_to_nid(buffer_info->page) != current_node))
5939 5940 5941
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
5942

5943 5944 5945
			dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
			buffer_info->page_dma = 0;
5946 5947
		}

5948
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
5949 5950
			struct igb_rx_buffer *next_buffer;
			next_buffer = &rx_ring->rx_buffer_info[i];
5951 5952 5953 5954
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
5955 5956
			goto next_desc;
		}
5957

5958 5959
		if (igb_test_staterr(rx_desc,
				     E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
5960
			dev_kfree_skb_any(skb);
5961 5962 5963
			goto next_desc;
		}

5964 5965
		igb_rx_hwtstamp(q_vector, rx_desc, skb);
		igb_rx_checksum(rx_ring, rx_desc, skb);
5966

5967
		if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
J
Jiri Pirko 已提交
5968
			u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
5969

J
Jiri Pirko 已提交
5970 5971
			__vlan_hwaccel_put_tag(skb, vid);
		}
5972 5973 5974 5975 5976 5977

		total_bytes += skb->len;
		total_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

J
Jiri Pirko 已提交
5978
		napi_gro_receive(&q_vector->napi, skb);
5979

5980
		budget--;
5981
next_desc:
5982 5983 5984 5985
		if (!budget)
			break;

		cleaned_count++;
5986 5987
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5988
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
5989 5990 5991 5992 5993 5994
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
	}
5995

5996
	rx_ring->next_to_clean = i;
E
Eric Dumazet 已提交
5997
	u64_stats_update_begin(&rx_ring->rx_syncp);
5998 5999
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6000
	u64_stats_update_end(&rx_ring->rx_syncp);
6001 6002
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6003 6004

	if (cleaned_count)
6005
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6006

6007
	return !!budget;
6008 6009
}

6010
static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
6011
				 struct igb_rx_buffer *bi)
6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
{
	struct sk_buff *skb = bi->skb;
	dma_addr_t dma = bi->dma;

	if (dma)
		return true;

	if (likely(!skb)) {
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		bi->skb = skb;
		if (!skb) {
			rx_ring->rx_stats.alloc_failed++;
			return false;
		}

		/* initialize skb for ring */
		skb_record_rx_queue(skb, rx_ring->queue_index);
	}

	dma = dma_map_single(rx_ring->dev, skb->data,
			     IGB_RX_HDR_LEN, DMA_FROM_DEVICE);

	if (dma_mapping_error(rx_ring->dev, dma)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->dma = dma;
	return true;
}

static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6045
				  struct igb_rx_buffer *bi)
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076
{
	struct page *page = bi->page;
	dma_addr_t page_dma = bi->page_dma;
	unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);

	if (page_dma)
		return true;

	if (!page) {
		page = netdev_alloc_page(rx_ring->netdev);
		bi->page = page;
		if (unlikely(!page)) {
			rx_ring->rx_stats.alloc_failed++;
			return false;
		}
	}

	page_dma = dma_map_page(rx_ring->dev, page,
				page_offset, PAGE_SIZE / 2,
				DMA_FROM_DEVICE);

	if (dma_mapping_error(rx_ring->dev, page_dma)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->page_dma = page_dma;
	bi->page_offset = page_offset;
	return true;
}

6077
/**
6078
 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6079 6080
 * @adapter: address of board private structure
 **/
6081
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6082 6083
{
	union e1000_adv_rx_desc *rx_desc;
6084
	struct igb_rx_buffer *bi;
6085
	u16 i = rx_ring->next_to_use;
6086

6087
	rx_desc = IGB_RX_DESC(rx_ring, i);
6088
	bi = &rx_ring->rx_buffer_info[i];
6089
	i -= rx_ring->count;
6090 6091

	while (cleaned_count--) {
6092 6093
		if (!igb_alloc_mapped_skb(rx_ring, bi))
			break;
6094

6095 6096 6097
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info. */
		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
6098

6099 6100 6101 6102
		if (!igb_alloc_mapped_page(rx_ring, bi))
			break;

		rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
6103

6104 6105
		rx_desc++;
		bi++;
6106
		i++;
6107
		if (unlikely(!i)) {
6108
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6109
			bi = rx_ring->rx_buffer_info;
6110 6111 6112 6113 6114
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6115 6116
	}

6117 6118
	i += rx_ring->count;

6119 6120 6121 6122 6123 6124 6125 6126
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
6127
		writel(i, rx_ring->tail);
6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6150 6151
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6152 6153 6154 6155 6156 6157 6158 6159 6160
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

6161 6162 6163 6164 6165 6166
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
6179 6180 6181 6182
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
6183 6184
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6185
	struct hwtstamp_config config;
6186 6187
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6188
	u32 tsync_rx_cfg = 0;
6189 6190
	bool is_l4 = false;
	bool is_l2 = false;
6191
	u32 regval;
6192 6193 6194 6195 6196 6197 6198 6199

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

6200 6201
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
6202
		tsync_tx_ctl = 0;
6203 6204 6205 6206 6207 6208 6209 6210
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
6211
		tsync_rx_ctl = 0;
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
6222
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6223 6224 6225
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6226
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6227
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6228
		is_l4 = true;
6229 6230
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6231
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6232
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6233
		is_l4 = true;
6234 6235 6236
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6237
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6238
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6239 6240
		is_l2 = true;
		is_l4 = true;
6241 6242 6243 6244
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6245
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6246
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6247 6248
		is_l2 = true;
		is_l4 = true;
6249 6250 6251 6252 6253
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6254
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6255
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6256
		is_l2 = true;
6257 6258 6259 6260 6261
		break;
	default:
		return -ERANGE;
	}

6262 6263 6264 6265 6266 6267
	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

N
Nick Nunley 已提交
6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
	/*
	 * Per-packet timestamping only works if all packets are
	 * timestamped, so enable timestamping in all packets as
	 * long as one rx filter was configured.
	 */
	if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
	}

6278 6279
	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
6280 6281
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
6282 6283
	wr32(E1000_TSYNCTXCTL, regval);

6284
	/* enable/disable RX */
6285
	regval = rd32(E1000_TSYNCRXCTL);
6286 6287
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
6288 6289
	wr32(E1000_TSYNCRXCTL, regval);

6290 6291
	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6292

6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		                 E1000_ETQF_1588 | /* enable timestamping */
		                 ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
6323 6324 6325 6326 6327 6328 6329
	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
6330

6331 6332
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
6333 6334
}

6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6348 6349
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6350 6351 6352 6353 6354
	default:
		return -EOPNOTSUPP;
	}
}

6355 6356 6357 6358 6359
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

6360
	cap_offset = adapter->pdev->pcie_cap;
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

6374
	cap_offset = adapter->pdev->pcie_cap;
6375 6376 6377 6378 6379 6380 6381 6382
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

J
Jiri Pirko 已提交
6383
static void igb_vlan_mode(struct net_device *netdev, u32 features)
6384 6385 6386 6387 6388 6389 6390
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);

J
Jiri Pirko 已提交
6391
	if (features & NETIF_F_HW_VLAN_RX) {
6392 6393 6394 6395 6396
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6397
		/* Disable CFI check */
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6408 6409
	igb_rlpml_set(adapter);

6410 6411 6412 6413 6414 6415 6416 6417
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6418
	int pf_id = adapter->vfs_allocated_count;
6419

6420 6421
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6422

6423 6424
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6425 6426

	set_bit(vid, adapter->active_vlans);
6427 6428 6429 6430 6431 6432
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6433
	int pf_id = adapter->vfs_allocated_count;
6434
	s32 err;
6435 6436 6437 6438 6439 6440

	igb_irq_disable(adapter);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

6441 6442
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6443

6444 6445
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6446
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6447 6448

	clear_bit(vid, adapter->active_vlans);
6449 6450 6451 6452
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6453
	u16 vid;
6454

J
Jiri Pirko 已提交
6455 6456
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
6457 6458
}

6459
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6460
{
6461
	struct pci_dev *pdev = adapter->pdev;
6462 6463 6464 6465
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6466 6467 6468 6469 6470
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6471 6472
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6473 6474 6475
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL)
		goto err_inval;
6476

6477
	switch (spd + dplx) {
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6496
		goto err_inval;
6497 6498
	}
	return 0;
6499 6500 6501 6502

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
6503 6504
}

6505
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6506 6507 6508 6509
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6510
	u32 ctrl, rctl, status;
6511 6512 6513 6514 6515 6516 6517
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6518 6519 6520
	if (netif_running(netdev))
		igb_close(netdev);

6521
	igb_clear_interrupt_scheme(adapter);
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6535
		igb_set_rx_mode(netdev);
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6553
		igb_disable_pcie_master(hw);
6554 6555 6556 6557 6558 6559 6560 6561

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6562 6563
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6564 6565 6566
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

6597 6598 6599 6600 6601 6602 6603 6604 6605
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
6606
	pci_save_state(pdev);
T
Taku Izumi 已提交
6607

6608
	err = pci_enable_device_mem(pdev);
6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

6619
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
6620 6621
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
6622 6623 6624
	}

	igb_reset(adapter);
6625 6626 6627 6628 6629

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

6630 6631
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
6632 6633 6634 6635 6636
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
6637 6638 6639 6640 6641 6642 6643 6644 6645

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
6646 6647 6648 6649 6650 6651 6652 6653
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
6665
	struct e1000_hw *hw = &adapter->hw;
6666 6667
	int i;

6668
	if (!adapter->msix_entries) {
6669
		struct igb_q_vector *q_vector = adapter->q_vector[0];
6670
		igb_irq_disable(adapter);
6671
		napi_schedule(&q_vector->napi);
6672 6673
		return;
	}
6674

6675 6676 6677 6678
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		wr32(E1000_EIMC, q_vector->eims_value);
		napi_schedule(&q_vector->napi);
6679
	}
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

6699 6700 6701
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6722
	pci_ers_result_t result;
T
Taku Izumi 已提交
6723
	int err;
6724

6725
	if (pci_enable_device_mem(pdev)) {
6726 6727
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
6728 6729 6730 6731
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
6732
		pci_save_state(pdev);
6733

6734 6735
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
6736

6737 6738 6739 6740
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
6741

6742 6743 6744 6745 6746 6747
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
6748 6749

	return result;
6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

6806 6807 6808 6809
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
6810 6811 6812
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6813

6814
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6815

6816
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6817 6818 6819 6820

	return 0;
}

6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

6904 6905
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6934
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
6935 6936 6937 6938 6939
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

6940 6941 6942
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
6943
	u32 reg;
6944

6945 6946 6947 6948
	switch (hw->mac.type) {
	case e1000_82575:
	default:
		/* replication is not supported for 82575 */
6949
		return;
6950 6951 6952 6953 6954 6955 6956 6957 6958 6959
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
6960 6961
	case e1000_i350:
		/* none of the above registers are supported by i350 */
6962 6963
		break;
	}
6964

6965 6966 6967
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
6968 6969
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
6970 6971 6972 6973
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
6974 6975
}

6976
/* igb_main.c */