igb_main.c 209.0 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2013 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
C
Carolyn Wyborny 已提交
60
#include <linux/i2c.h>
61 62
#include "igb.h"

C
Carolyn Wyborny 已提交
63
#define MAJ 4
C
Carolyn Wyborny 已提交
64 65
#define MIN 1
#define BUILD 2
C
Carolyn Wyborny 已提交
66
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67
__stringify(BUILD) "-k"
68 69 70 71
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
72 73
static const char igb_copyright[] =
				"Copyright (c) 2007-2013 Intel Corporation.";
74 75 76 77 78

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

79
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 81 82 83 84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 86 87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
89 90
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
92 93 94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
95 96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
97 98
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
100
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
102 103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
105
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
106
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
107 108 109 110 111 112 113 114 115 116 117 118 119 120
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
121
static void igb_setup_mrqc(struct igb_adapter *);
122
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123
static void igb_remove(struct pci_dev *pdev);
124 125 126
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
127
static void igb_configure(struct igb_adapter *);
128 129 130 131
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
132 133
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
134
static void igb_set_rx_mode(struct net_device *);
135 136 137
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
138
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
139 140
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
141 142
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
143
static void igb_set_uta(struct igb_adapter *adapter);
144 145 146
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
147
static irqreturn_t igb_msix_ring(int irq, void *);
148
#ifdef CONFIG_IGB_DCA
149
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
150
static void igb_setup_dca(struct igb_adapter *);
151
#endif /* CONFIG_IGB_DCA */
152
static int igb_poll(struct napi_struct *, int);
153
static bool igb_clean_tx_irq(struct igb_q_vector *);
154
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 156 157
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
158
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
159 160
static int igb_vlan_rx_add_vid(struct net_device *, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, u16);
161
static void igb_restore_vlan(struct igb_adapter *);
162
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
163 164 165
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
166
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
167
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
168 169 170 171
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
L
Lior Levy 已提交
172 173
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting);
174 175
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
176
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
177 178

#ifdef CONFIG_PCI_IOV
179
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
180
static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
R
RongQing Li 已提交
181
#endif
182 183

#ifdef CONFIG_PM
184
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
185
static int igb_suspend(struct device *);
186
#endif
Y
Yan, Zheng 已提交
187 188 189 190 191 192 193 194 195 196 197
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
198 199
#endif
static void igb_shutdown(struct pci_dev *);
200
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
201
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
202 203 204 205 206 207 208
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
209 210 211 212
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
213
#ifdef CONFIG_PCI_IOV
214 215 216 217 218 219
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

220 221 222 223 224
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

225
static const struct pci_error_handlers igb_err_handler = {
226 227 228 229 230
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

231
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232 233 234 235 236

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
237
	.remove   = igb_remove,
238
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
239
	.driver.pm = &igb_pm_ops,
240 241
#endif
	.shutdown = igb_shutdown,
242
	.sriov_configure = igb_pci_sriov_configure,
243 244 245 246 247 248 249 250
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

251 252 253 254 255
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

297
/* igb_regdump - register printout routine */
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
354
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 356 357 358
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
359 360
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
361 362
}

363
/* igb_dump - Print registers, Tx-rings and Rx-rings */
364 365 366 367 368 369 370 371 372 373 374
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
375
	u16 i, n;
376 377 378 379 380 381 382

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
383 384 385 386
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
387 388 389 390
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
391
	pr_info(" Register Name   Value\n");
392 393 394 395 396 397 398 399 400 401
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
402
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
403
	for (n = 0; n < adapter->num_tx_queues; n++) {
404
		struct igb_tx_buffer *buffer_info;
405
		tx_ring = adapter->tx_ring[n];
406
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
407 408
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
409 410
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
411 412
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
434 435 436 437 438 439
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
440 441

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
442
			const char *next_desc;
443
			struct igb_tx_buffer *buffer_info;
444
			tx_desc = IGB_TX_DESC(tx_ring, i);
445
			buffer_info = &tx_ring->tx_buffer_info[i];
446
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
447 448 449 450 451 452 453 454 455 456 457 458
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
459 460
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
461 462
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
463 464
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
465
				buffer_info->skb, next_desc);
466

467
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
468 469
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
470
					16, 1, buffer_info->skb->data,
471 472
					dma_unmap_len(buffer_info, len),
					true);
473 474 475 476 477 478
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
479
	pr_info("Queue [NTU] [NTC]\n");
480 481
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
482 483
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
515 516 517 518 519 520 521
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
522 523

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
524
			const char *next_desc;
525 526
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
527
			rx_desc = IGB_RX_DESC(rx_ring, i);
528 529
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
530 531 532 533 534 535 536 537

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

538 539
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
540 541
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
542 543
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
544
					next_desc);
545
			} else {
546 547
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
548 549 550
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
551
					next_desc);
552

553
				if (netif_msg_pktdata(adapter) &&
554
				    buffer_info->dma && buffer_info->page) {
555 556 557
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
558 559
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
560
					  IGB_RX_BUFSZ, true);
561 562 563 564 565 566 567 568 569
				}
			}
		}
	}

exit:
	return;
}

570 571
/**
 *  igb_get_i2c_data - Reads the I2C SDA data bit
C
Carolyn Wyborny 已提交
572 573 574 575
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
576
 **/
C
Carolyn Wyborny 已提交
577 578 579 580 581 582 583 584 585
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
}

586 587
/**
 *  igb_set_i2c_data - Sets the I2C data bit
C
Carolyn Wyborny 已提交
588 589 590 591
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
592
 **/
C
Carolyn Wyborny 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

611 612
/**
 *  igb_set_i2c_clk - Sets the I2C SCL clock
C
Carolyn Wyborny 已提交
613 614 615 616
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
617
 **/
C
Carolyn Wyborny 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

635 636
/**
 *  igb_get_i2c_clk - Gets the I2C SCL clock state
C
Carolyn Wyborny 已提交
637 638 639
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
640
 **/
C
Carolyn Wyborny 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

659
/**
660 661 662 663
 *  igb_get_hw_dev - return device
 *  @hw: pointer to hardware structure
 *
 *  used by hardware layer to print debugging information
664
 **/
665
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
666 667
{
	struct igb_adapter *adapter = hw->back;
668
	return adapter->netdev;
669
}
P
Patrick Ohly 已提交
670

671
/**
672
 *  igb_init_module - Driver Registration Routine
673
 *
674 675
 *  igb_init_module is the first routine called when the driver is
 *  loaded. All it does is register with the PCI subsystem.
676 677 678 679
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
680
	pr_info("%s - version %s\n",
681 682
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
683
	pr_info("%s\n", igb_copyright);
684

685
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
686 687
	dca_register_notify(&dca_notifier);
#endif
688
	ret = pci_register_driver(&igb_driver);
689 690 691 692 693 694
	return ret;
}

module_init(igb_init_module);

/**
695
 *  igb_exit_module - Driver Exit Cleanup Routine
696
 *
697 698
 *  igb_exit_module is called just before the driver is removed
 *  from memory.
699 700 701
 **/
static void __exit igb_exit_module(void)
{
702
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
703 704
	dca_unregister_notify(&dca_notifier);
#endif
705 706 707 708 709
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

710 711
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
712 713
 *  igb_cache_ring_register - Descriptor ring to register mapping
 *  @adapter: board private structure to initialize
714
 *
715 716
 *  Once we know the feature-set enabled for the device, we'll cache
 *  the register offset the descriptor ring is assigned to.
717 718 719
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
720
	int i = 0, j = 0;
721
	u32 rbase_offset = adapter->vfs_allocated_count;
722 723 724 725 726 727 728 729

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
730
		if (adapter->vfs_allocated_count) {
731
			for (; i < adapter->rss_queues; i++)
732
				adapter->rx_ring[i]->reg_idx = rbase_offset +
733
							       Q_IDX_82576(i);
734
		}
735
	case e1000_82575:
736
	case e1000_82580:
737
	case e1000_i350:
738 739
	case e1000_i210:
	case e1000_i211:
740
	default:
741
		for (; i < adapter->num_rx_queues; i++)
742
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
743
		for (; j < adapter->num_tx_queues; j++)
744
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
745 746 747 748
		break;
	}
}

A
Alexander Duyck 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

775
#define IGB_N0_QUEUE -1
776
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
777
{
778
	struct igb_adapter *adapter = q_vector->adapter;
779
	struct e1000_hw *hw = &adapter->hw;
780 781
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
782
	u32 msixbm = 0;
783

784 785 786 787
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
788 789 790

	switch (hw->mac.type) {
	case e1000_82575:
791
		/* The 82575 assigns vectors using a bitmask, which matches the
792 793 794 795
		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
		 * or more queues to a vector, we write the appropriate bits
		 * into the MSIXBM register for that vector.
		 */
796
		if (rx_queue > IGB_N0_QUEUE)
797
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
798
		if (tx_queue > IGB_N0_QUEUE)
799
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
800 801
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
802
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
803
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
804 805
		break;
	case e1000_82576:
806
		/* 82576 uses a table that essentially consists of 2 columns
A
Alexander Duyck 已提交
807 808 809 810 811 812 813 814 815 816 817 818
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
819
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
820
		break;
821
	case e1000_82580:
822
	case e1000_i350:
823 824
	case e1000_i210:
	case e1000_i211:
825
		/* On 82580 and newer adapters the scheme is similar to 82576
A
Alexander Duyck 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
839 840
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
841 842 843 844
	default:
		BUG();
		break;
	}
845 846 847 848 849 850

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
851 852 853
}

/**
854 855
 *  igb_configure_msix - Configure MSI-X hardware
 *  @adapter: board private structure to initialize
856
 *
857 858
 *  igb_configure_msix sets up the hardware to properly
 *  generate MSI-X interrupts.
859 860 861 862 863 864 865 866 867 868
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
869 870
	switch (hw->mac.type) {
	case e1000_82575:
871 872 873 874 875 876 877 878 879
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
880 881

		/* enable msix_other interrupt */
882
		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
883
		adapter->eims_other = E1000_EIMS_OTHER;
884

A
Alexander Duyck 已提交
885 886 887
		break;

	case e1000_82576:
888
	case e1000_82580:
889
	case e1000_i350:
890 891
	case e1000_i210:
	case e1000_i211:
892
		/* Turn on MSI-X capability first, or our settings
893 894
		 * won't stick.  And it will take days to debug.
		 */
895
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
896 897
		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
		     E1000_GPIE_NSICR);
898 899 900

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
901 902
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

903
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
904 905 906 907 908
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
909 910 911

	adapter->eims_enable_mask |= adapter->eims_other;

912 913
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
914

915 916 917 918
	wrfl();
}

/**
919 920
 *  igb_request_msix - Initialize MSI-X interrupts
 *  @adapter: board private structure to initialize
921
 *
922 923
 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 *  kernel.
924 925 926 927
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
928
	struct e1000_hw *hw = &adapter->hw;
929
	int i, err = 0, vector = 0, free_vector = 0;
930

931
	err = request_irq(adapter->msix_entries[vector].vector,
932
			  igb_msix_other, 0, netdev->name, adapter);
933
	if (err)
934
		goto err_out;
935 936 937 938

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

939 940
		vector++;

941 942
		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

943
		if (q_vector->rx.ring && q_vector->tx.ring)
944
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
945 946
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
947
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
948 949
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
950
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
951
				q_vector->rx.ring->queue_index);
952
		else
953 954
			sprintf(q_vector->name, "%s-unused", netdev->name);

955
		err = request_irq(adapter->msix_entries[vector].vector,
956 957
				  igb_msix_ring, 0, q_vector->name,
				  q_vector);
958
		if (err)
959
			goto err_free;
960 961 962 963
	}

	igb_configure_msix(adapter);
	return 0;
964 965 966 967 968 969 970 971 972 973 974

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
975 976 977 978 979 980 981 982 983
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
984
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
985
		pci_disable_msi(adapter->pdev);
986
	}
987 988
}

989
/**
990 991 992
 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be freed
993
 *
994 995 996
 *  This function frees the memory allocated to the q_vector.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	adapter->q_vector[v_idx] = NULL;
	netif_napi_del(&q_vector->napi);

1011
	/* ixgbe_get_stats64() might access the rings on this vector,
1012 1013 1014 1015 1016
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

1017
/**
1018 1019
 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 *  @adapter: board private structure to initialize
1020
 *
1021 1022 1023
 *  This function frees the memory allocated to the q_vectors.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1024 1025 1026
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
1027 1028 1029 1030
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
1031
	adapter->num_q_vectors = 0;
1032 1033 1034

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);
1035 1036 1037
}

/**
1038 1039
 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *  @adapter: board private structure to initialize
1040
 *
1041 1042
 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 *  MSI-X interrupts allocated.
1043 1044 1045 1046 1047 1048
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1049 1050

/**
1051 1052 1053
 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1054
 *
1055 1056
 *  Attempt to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1057
 **/
1058
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1059 1060 1061 1062
{
	int err;
	int numvecs, i;

1063 1064 1065
	if (!msix)
		goto msi_only;

1066
	/* Number of supported queues. */
1067
	adapter->num_rx_queues = adapter->rss_queues;
1068 1069 1070 1071
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1072

1073
	/* start with one vector for every Rx queue */
1074 1075
	numvecs = adapter->num_rx_queues;

1076
	/* if Tx handler is separate add 1 for every Tx queue */
1077 1078
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1079 1080 1081 1082 1083 1084

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1085 1086
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1098
		return;
1099 1100 1101 1102 1103

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1115
		wrfl();
1116 1117 1118 1119
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1120
	adapter->vfs_allocated_count = 0;
1121
	adapter->rss_queues = 1;
1122
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1123
	adapter->num_rx_queues = 1;
1124
	adapter->num_tx_queues = 1;
1125
	adapter->num_q_vectors = 1;
1126
	if (!pci_enable_msi(adapter->pdev))
1127
		adapter->flags |= IGB_FLAG_HAS_MSI;
1128 1129
}

1130 1131 1132 1133 1134 1135 1136
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1137
/**
1138 1139 1140 1141 1142 1143 1144 1145
 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 *  @v_idx: index of vector in adapter struct
 *  @txr_count: total number of Tx rings to allocate
 *  @txr_idx: index of first Tx ring to allocate
 *  @rxr_count: total number of Rx rings to allocate
 *  @rxr_idx: index of first Rx ring to allocate
1146
 *
1147
 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1148
 **/
1149 1150 1151 1152
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1153 1154
{
	struct igb_q_vector *q_vector;
1155 1156
	struct igb_ring *ring;
	int ring_count, size;
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
	q_vector = kzalloc(size, GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	/* intialize ITR */
	if (rxr_count) {
		/* rx or rx/tx vector */
		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
			q_vector->itr_val = adapter->rx_itr_setting;
	} else {
		/* tx only vector */
		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
			q_vector->itr_val = adapter->tx_itr_setting;
	}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1224
	}
1225

1226 1227 1228 1229
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1230

1231 1232
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1233

1234 1235
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1236

1237 1238 1239
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1240

1241
		/* On i350, i210, and i211, loopback VLAN packets
1242
		 * have the tag byte-swapped.
1243
		 */
1244 1245
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1246

1247 1248 1249 1250 1251 1252 1253 1254 1255
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1256 1257
}

1258

1259
/**
1260 1261
 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 *  @adapter: board private structure to initialize
1262
 *
1263 1264
 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 *  return -ENOMEM.
1265
 **/
1266
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1267
{
1268 1269 1270 1271 1272
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1273

1274 1275 1276 1277
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1278

1279 1280 1281 1282 1283 1284
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1285 1286
		}
	}
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1304
	return 0;
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1315 1316 1317
}

/**
1318 1319 1320
 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1321
 *
1322
 *  This function initializes the interrupts and allocates all of the queues.
1323
 **/
1324
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1325 1326 1327 1328
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1329
	igb_set_interrupt_capability(adapter, msix);
1330 1331 1332 1333 1334 1335 1336

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1337
	igb_cache_ring_register(adapter);
1338 1339

	return 0;
1340

1341 1342 1343 1344 1345
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1346
/**
1347 1348
 *  igb_request_irq - initialize interrupts
 *  @adapter: board private structure to initialize
1349
 *
1350 1351
 *  Attempts to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1352 1353 1354 1355
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1356
	struct pci_dev *pdev = adapter->pdev;
1357 1358 1359 1360
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1361
		if (!err)
1362 1363
			goto request_done;
		/* fall back to MSI */
1364 1365
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1366

1367
		igb_clear_interrupt_scheme(adapter);
1368 1369
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
1370
			goto request_done;
1371

1372 1373
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1374
		igb_configure(adapter);
1375
	}
P
PJ Waskiewicz 已提交
1376

1377 1378
	igb_assign_vector(adapter->q_vector[0], 0);

1379
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1380
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1381
				  netdev->name, adapter);
1382 1383
		if (!err)
			goto request_done;
1384

1385 1386
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1387
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1388 1389
	}

1390
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1391
			  netdev->name, adapter);
1392

A
Andy Gospodarek 已提交
1393
	if (err)
1394
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1406
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1407

1408
		for (i = 0; i < adapter->num_q_vectors; i++)
1409
			free_irq(adapter->msix_entries[vector++].vector,
1410
				 adapter->q_vector[i]);
1411 1412
	} else {
		free_irq(adapter->pdev->irq, adapter);
1413 1414 1415 1416
	}
}

/**
1417 1418
 *  igb_irq_disable - Mask off interrupt generation on the NIC
 *  @adapter: board private structure
1419 1420 1421 1422 1423
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1424
	/* we need to be careful when disabling interrupts.  The VFs are also
1425 1426 1427
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1428
	if (adapter->msix_entries) {
1429 1430 1431 1432 1433
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1434
	}
P
PJ Waskiewicz 已提交
1435 1436

	wr32(E1000_IAM, 0);
1437 1438
	wr32(E1000_IMC, ~0);
	wrfl();
1439 1440 1441 1442 1443 1444 1445
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1446 1447 1448
}

/**
1449 1450
 *  igb_irq_enable - Enable default interrupt generation settings
 *  @adapter: board private structure
1451 1452 1453 1454 1455 1456
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1457
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1458 1459 1460 1461
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1462
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1463
		if (adapter->vfs_allocated_count) {
1464
			wr32(E1000_MBVFIMR, 0xFF);
1465 1466 1467
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1468
	} else {
1469 1470 1471 1472
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1473
	}
1474 1475 1476 1477
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1478
	struct e1000_hw *hw = &adapter->hw;
1479 1480
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1492
	    !test_bit(old_vid, adapter->active_vlans)) {
1493 1494
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1495 1496 1497 1498
	}
}

/**
1499 1500
 *  igb_release_hw_control - release control of the h/w to f/w
 *  @adapter: address of board private structure
1501
 *
1502 1503 1504
 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that the
 *  driver is no longer loaded.
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
1518 1519
 *  igb_get_hw_control - get control of the h/w from f/w
 *  @adapter: address of board private structure
1520
 *
1521 1522 1523
 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that
 *  the driver is loaded.
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
1537 1538
 *  igb_configure - configure the hardware for RX and TX
 *  @adapter: private board structure
1539 1540 1541 1542 1543 1544 1545
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1546
	igb_set_rx_mode(netdev);
1547 1548 1549

	igb_restore_vlan(adapter);

1550
	igb_setup_tctl(adapter);
1551
	igb_setup_mrqc(adapter);
1552
	igb_setup_rctl(adapter);
1553 1554

	igb_configure_tx(adapter);
1555
	igb_configure_rx(adapter);
1556 1557 1558

	igb_rx_fifo_flush_82575(&adapter->hw);

1559
	/* call igb_desc_unused which always leaves
1560
	 * at least 1 descriptor unused to make sure
1561 1562
	 * next_to_use != next_to_clean
	 */
1563
	for (i = 0; i < adapter->num_rx_queues; i++) {
1564
		struct igb_ring *ring = adapter->rx_ring[i];
1565
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1566 1567 1568
	}
}

1569
/**
1570 1571
 *  igb_power_up_link - Power up the phy/serdes link
 *  @adapter: address of board private structure
1572 1573 1574
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1575 1576
	igb_reset_phy(&adapter->hw);

1577 1578 1579 1580 1581 1582 1583
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
1584 1585
 *  igb_power_down_link - Power down the phy/serdes link
 *  @adapter: address of board private structure
1586 1587 1588 1589 1590 1591 1592 1593
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1594 1595

/**
1596 1597
 *  igb_up - Open the interface and prepare it to handle traffic
 *  @adapter: board private structure
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1609 1610 1611
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1612
	if (adapter->msix_entries)
1613
		igb_configure_msix(adapter);
1614 1615
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1616 1617 1618 1619 1620

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1621 1622 1623 1624 1625 1626 1627
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1628 1629
	netif_tx_start_all_queues(adapter->netdev);

1630 1631 1632 1633
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1634 1635 1636 1637 1638 1639
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1640
	struct e1000_hw *hw = &adapter->hw;
1641 1642 1643 1644
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
1645 1646
	 * reschedule our watchdog timer
	 */
1647 1648 1649 1650 1651 1652 1653
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1654
	netif_tx_stop_all_queues(netdev);
1655 1656 1657 1658 1659 1660 1661 1662 1663

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1664 1665
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_disable(&(adapter->q_vector[i]->napi));
1666 1667 1668 1669 1670 1671 1672

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1673 1674

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1675 1676 1677
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1678

1679 1680 1681
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1682 1683
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1684 1685
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1686 1687 1688 1689 1690
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1705
	struct pci_dev *pdev = adapter->pdev;
1706
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1707 1708
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1709
	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1710 1711 1712 1713

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1714
	switch (mac->type) {
1715
	case e1000_i350:
1716 1717 1718 1719
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1720
	case e1000_82576:
1721 1722
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1723 1724
		break;
	case e1000_82575:
1725 1726
	case e1000_i210:
	case e1000_i211:
1727 1728 1729
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1730
	}
1731

A
Alexander Duyck 已提交
1732 1733
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1734 1735 1736 1737 1738 1739 1740 1741
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
1742 1743
		 * expressed in KB.
		 */
1744 1745 1746 1747 1748
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
1749 1750 1751
		/* the Tx fifo also stores 16 bytes of information about the Tx
		 * but don't include ethernet FCS because hardware appends it
		 */
1752
		min_tx_space = (adapter->max_frame_size +
1753
				sizeof(union e1000_adv_tx_desc) -
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
1764 1765
		 * allocation, take space away from current Rx allocation
		 */
1766 1767 1768 1769
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

1770 1771 1772
			/* if short on Rx space, Rx wins and must trump Tx
			 * adjustment
			 */
1773 1774 1775
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1776
		wr32(E1000_PBA, pba);
1777 1778 1779 1780 1781 1782 1783
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
1784 1785
	 * - the full Rx FIFO size minus one full frame
	 */
1786
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1787
			((pba << 10) - 2 * adapter->max_frame_size));
1788

1789
	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1790
	fc->low_water = fc->high_water - 16;
1791 1792
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1793
	fc->current_mode = fc->requested_mode;
1794

1795 1796 1797 1798
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1799
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1800 1801

		/* ping all the active vfs to let them know we are going down */
1802
		igb_ping_all_vfs(adapter);
1803 1804 1805 1806 1807 1808

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1809
	/* Allow time for pending master requests to run */
1810
	hw->mac.ops.reset_hw(hw);
1811 1812
	wr32(E1000_WUC, 0);

1813
	if (hw->mac.ops.init_hw(hw))
1814
		dev_err(&pdev->dev, "Hardware Error\n");
1815

1816
	/* Flow control settings reset on hardware reset, so guarantee flow
1817 1818 1819 1820 1821
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1822
	igb_init_dmac(adapter, pba);
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
1835 1836 1837
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1838 1839 1840 1841 1842
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1843 1844 1845
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);

1846
	igb_get_phy_info(hw);
1847 1848
}

1849 1850
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1851
{
1852 1853
	/* Since there is no support for separate Rx/Tx vlan accel
	 * enable/disable make sure Tx flag is always in same state as Rx.
J
Jiri Pirko 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1863 1864
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1865
{
1866
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
1867
	struct igb_adapter *adapter = netdev_priv(netdev);
1868

J
Jiri Pirko 已提交
1869 1870 1871
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

1882 1883 1884
	return 0;
}

S
Stephen Hemminger 已提交
1885
static const struct net_device_ops igb_netdev_ops = {
1886
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1887
	.ndo_stop		= igb_close,
1888
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1889
	.ndo_get_stats64	= igb_get_stats64,
1890
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1891 1892 1893 1894 1895 1896 1897
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1898 1899 1900
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
L
Lior Levy 已提交
1901
	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1902
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1903 1904 1905
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1906 1907
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1908 1909
};

1910 1911 1912 1913 1914 1915 1916
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1917 1918 1919 1920 1921 1922
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
	case e1000_i211:
1923
		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
			 "%2d.%2d-%d",
			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
		break;

	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
		} else {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x",
				 fw.eep_major, fw.eep_minor, fw.etrack_id);
		}
		break;
1944 1945 1946 1947
	}
	return;
}

1948 1949
/**
 *  igb_init_i2c - Init I2C interface
C
Carolyn Wyborny 已提交
1950
 *  @adapter: pointer to adapter structure
1951
 **/
C
Carolyn Wyborny 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
	s32 status = E1000_SUCCESS;

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
		return E1000_SUCCESS;

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structue that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

1975
/**
1976 1977 1978
 *  igb_probe - Device Initialization Routine
 *  @pdev: PCI device information struct
 *  @ent: entry in igb_pci_tbl
1979
 *
1980
 *  Returns 0 on success, negative on failure
1981
 *
1982 1983 1984
 *  igb_probe initializes an adapter identified by a pci_dev structure.
 *  The OS initialization, configuring of the adapter private structure,
 *  and a hardware reset occur.
1985
 **/
1986
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1987 1988 1989 1990
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1991
	u16 eeprom_data = 0;
1992
	s32 ret_val;
1993
	static int global_quad_port_a; /* global quad port a indication */
1994 1995
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1996
	int err, pci_using_dac;
1997
	u8 part_str[E1000_PBANUM_LENGTH];
1998

1999 2000 2001 2002 2003
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2004
			pci_name(pdev), pdev->vendor, pdev->device);
2005 2006 2007
		return -EINVAL;
	}

2008
	err = pci_enable_device_mem(pdev);
2009 2010 2011 2012
	if (err)
		return err;

	pci_using_dac = 0;
2013
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2014
	if (!err) {
2015
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2016 2017 2018
		if (!err)
			pci_using_dac = 1;
	} else {
2019
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2020
		if (err) {
2021 2022
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
2023
			if (err) {
2024 2025
				dev_err(&pdev->dev,
					"No usable DMA configuration, aborting\n");
2026 2027 2028 2029 2030
				goto err_dma;
			}
		}
	}

2031
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2032 2033
					   IORESOURCE_MEM),
					   igb_driver_name);
2034 2035 2036
	if (err)
		goto err_pci_reg;

2037
	pci_enable_pcie_error_reporting(pdev);
2038

2039
	pci_set_master(pdev);
2040
	pci_save_state(pdev);
2041 2042

	err = -ENOMEM;
2043
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2044
				   IGB_MAX_TX_QUEUES);
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
2056
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2057 2058 2059 2060 2061

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
2062 2063
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
2064 2065
		goto err_ioremap;

S
Stephen Hemminger 已提交
2066
	netdev->netdev_ops = &igb_netdev_ops;
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
2089
		goto err_sw_init;
2090

2091
	/* setup the private structure */
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

2111
	/* features is initialized to 0 in allocation, it might have bits
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
2127
	netdev->hw_features |= NETIF_F_RXALL;
2128 2129 2130 2131 2132 2133 2134 2135 2136

	/* set this bit last since it cannot be part of hw_features */
	netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2137

2138 2139
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2140
	if (pci_using_dac) {
2141
		netdev->features |= NETIF_F_HIGHDMA;
2142 2143
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2144

2145 2146
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2147
		netdev->features |= NETIF_F_SCTP_CSUM;
2148
	}
2149

2150 2151
	netdev->priv_flags |= IFF_UNICAST_FLT;

2152
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2153 2154

	/* before reading the NVM, reset the controller to put the device in a
2155 2156
	 * known good starting state
	 */
2157 2158
	hw->mac.ops.reset_hw(hw);

2159
	/* make sure the NVM is good , i211 parts have special NVM that
2160 2161 2162 2163 2164 2165 2166 2167
	 * doesn't contain a checksum
	 */
	if (hw->mac.type != e1000_i211) {
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2168 2169 2170 2171 2172 2173 2174 2175
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

2176
	if (!is_valid_ether_addr(netdev->dev_addr)) {
2177 2178 2179 2180 2181
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2182 2183 2184
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2185
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2186
		    (unsigned long) adapter);
2187
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2188
		    (unsigned long) adapter);
2189 2190 2191 2192

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2193
	/* Initialize link properties that are user-changeable */
2194 2195 2196 2197
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2198 2199
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2200 2201 2202

	igb_validate_mdi_setting(hw);

2203
	/* By default, support wake on port A */
2204
	if (hw->bus.func == 0)
2205 2206 2207 2208
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
2209
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2210 2211
				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				 &eeprom_data);
2212 2213
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2214

2215 2216
	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2217 2218 2219

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
2220 2221
	 * lan on a particular port
	 */
2222 2223
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2224
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2225 2226
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2227 2228
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2229
		/* Wake events only supported on port A for dual fiber
2230 2231
		 * regardless of eeprom setting
		 */
2232
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2233
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2234
		break;
2235
	case E1000_DEV_ID_82576_QUAD_COPPER:
2236
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2237 2238
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
2239
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2240 2241 2242 2243 2244 2245
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2246 2247 2248 2249
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2250 2251 2252
	}

	/* initialize the wol settings based on the eeprom settings */
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2265 2266 2267 2268

	/* reset the hardware with the new settings */
	igb_reset(adapter);

C
Carolyn Wyborny 已提交
2269 2270 2271 2272 2273 2274 2275
	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

2276 2277 2278 2279 2280 2281 2282 2283 2284
	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2285 2286 2287
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2288
#ifdef CONFIG_IGB_DCA
2289
	if (dca_add_requester(&pdev->dev) == 0) {
2290
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2291 2292 2293 2294
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2295
#endif
2296 2297 2298 2299
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;
2300

2301
		/* Read the NVM to determine if this i350 device supports an
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
A
Anders Berggren 已提交
2316
	/* do hw tstamp init after resetting */
2317
	igb_ptp_init(adapter);
A
Anders Berggren 已提交
2318

2319 2320
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2321
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2322
		 netdev->name,
2323
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2324
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2325
		   "unknown"),
2326 2327 2328 2329
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2330
		 netdev->dev_addr);
2331

2332 2333 2334 2335
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2336 2337 2338
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2339
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2340
		adapter->num_rx_queues, adapter->num_tx_queues);
2341 2342
	switch (hw->mac.type) {
	case e1000_i350:
2343 2344
	case e1000_i210:
	case e1000_i211:
2345 2346 2347 2348 2349
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
Y
Yan, Zheng 已提交
2350 2351

	pm_runtime_put_noidle(&pdev->dev);
2352 2353 2354 2355
	return 0;

err_register:
	igb_release_hw_control(adapter);
C
Carolyn Wyborny 已提交
2356
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2357 2358
err_eeprom:
	if (!igb_check_reset_block(hw))
2359
		igb_reset_phy(hw);
2360 2361 2362 2363

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2364
	igb_clear_interrupt_scheme(adapter);
2365 2366 2367 2368
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2369
	pci_release_selected_regions(pdev,
2370
				     pci_select_bars(pdev, IORESOURCE_MEM));
2371 2372 2373 2374 2375 2376
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
#ifdef CONFIG_PCI_IOV
static int  igb_disable_sriov(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		if (igb_vfs_are_assigned(adapter)) {
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	int err = 0;
	int i;

	if (!num_vfs)
		goto out;
	else if (old_vfs && old_vfs == num_vfs)
		goto out;
	else if (old_vfs && old_vfs != num_vfs)
		err = igb_disable_sriov(pdev);

	if (err)
		goto out;

	if (num_vfs > 7) {
		err = -EPERM;
		goto out;
	}

	adapter->vfs_allocated_count = num_vfs;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF Data Storage\n");
		err = -ENOMEM;
		goto out;
	}

	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
	if (err)
		goto err_out;

	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
2470
/**
C
Carolyn Wyborny 已提交
2471 2472
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
2473
 **/
C
Carolyn Wyborny 已提交
2474 2475 2476 2477 2478 2479
static void igb_remove_i2c(struct igb_adapter *adapter)
{
	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

2480
/**
2481 2482
 *  igb_remove - Device Removal Routine
 *  @pdev: PCI device information struct
2483
 *
2484 2485 2486 2487
 *  igb_remove is called by the PCI subsystem to alert the driver
 *  that it should release a PCI device.  The could be caused by a
 *  Hot-Plug event, or because the driver is going to be removed from
 *  memory.
2488
 **/
2489
static void igb_remove(struct pci_dev *pdev)
2490 2491 2492
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2493
	struct e1000_hw *hw = &adapter->hw;
2494

Y
Yan, Zheng 已提交
2495
	pm_runtime_get_noresume(&pdev->dev);
2496 2497 2498
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
C
Carolyn Wyborny 已提交
2499
	igb_remove_i2c(adapter);
2500
	igb_ptp_stop(adapter);
2501
	/* The watchdog timer may be rescheduled, so explicitly
2502 2503
	 * disable watchdog from being rescheduled.
	 */
2504 2505 2506 2507
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2508 2509
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2510

2511
#ifdef CONFIG_IGB_DCA
2512
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2513 2514
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2515
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2516
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2517 2518 2519
	}
#endif

2520
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2521 2522
	 * would have already happened in close and is redundant.
	 */
2523 2524 2525 2526
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2527
	igb_clear_interrupt_scheme(adapter);
2528

2529
#ifdef CONFIG_PCI_IOV
2530
	igb_disable_sriov(pdev);
2531
#endif
2532

2533 2534 2535
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2536
	pci_release_selected_regions(pdev,
2537
				     pci_select_bars(pdev, IORESOURCE_MEM));
2538

2539
	kfree(adapter->shadow_vfta);
2540 2541
	free_netdev(netdev);

2542
	pci_disable_pcie_error_reporting(pdev);
2543

2544 2545 2546
	pci_disable_device(pdev);
}

2547
/**
2548 2549
 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 *  @adapter: board private structure to initialize
2550
 *
2551 2552 2553 2554
 *  This function initializes the vf specific data storage and then attempts to
 *  allocate the VFs.  The reason for ordering it this way is because it is much
 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 *  the memory for the VFs.
2555
 **/
2556
static void igb_probe_vfs(struct igb_adapter *adapter)
2557 2558 2559
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2560
	struct e1000_hw *hw = &adapter->hw;
2561

2562 2563 2564 2565
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2566
	pci_sriov_set_totalvfs(pdev, 7);
A
Alex Williamson 已提交
2567
	igb_enable_sriov(pdev, max_vfs);
2568

2569 2570 2571
#endif /* CONFIG_PCI_IOV */
}

2572
static void igb_init_queue_configuration(struct igb_adapter *adapter)
2573 2574
{
	struct e1000_hw *hw = &adapter->hw;
2575
	u32 max_rss_queues;
2576

2577
	/* Determine the maximum number of RSS queues supported. */
2578
	switch (hw->mac.type) {
2579 2580 2581 2582
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2583
	case e1000_i210:
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2602
		break;
2603 2604 2605 2606 2607 2608 2609
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2610
	case e1000_i211:
2611
		/* Device supports enough interrupts without queue pairing. */
2612
		break;
2613
	case e1000_82576:
2614
		/* If VFs are going to be allocated with RSS queues then we
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
	case e1000_i210:
2625
	default:
2626
		/* If rss_queues > half of max_rss_queues, pair the queues in
2627 2628 2629 2630
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2631 2632
		break;
	}
2633 2634 2635
}

/**
2636 2637
 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 *  @adapter: board private structure to initialize
2638
 *
2639 2640 2641
 *  igb_sw_init initializes the Adapter private data structure.
 *  Fields are initialized based on PCI device information and
 *  OS network device settings (MTU size).
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
2674
			max_vfs = adapter->vfs_allocated_count = 7;
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	igb_init_queue_configuration(adapter);
2687

2688
	/* Setup and initialize a copy of the hw vlan table array */
2689 2690
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_ATOMIC);
2691

2692
	/* This call may decrease the number of queues */
2693
	if (igb_init_interrupt_scheme(adapter, true)) {
2694 2695 2696 2697
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2698 2699
	igb_probe_vfs(adapter);

2700 2701 2702
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2703
	if (hw->mac.type >= e1000_i350)
2704 2705
		adapter->flags &= ~IGB_FLAG_DMAC;

2706 2707 2708 2709 2710
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
2711 2712
 *  igb_open - Called when a network interface is made active
 *  @netdev: network interface device structure
2713
 *
2714
 *  Returns 0 on success, negative value on failure
2715
 *
2716 2717 2718 2719 2720
 *  The open entry point is called when a network interface is made
 *  active by the system (IFF_UP).  At this point all resources needed
 *  for transmit and receive operations are allocated, the interrupt
 *  handler is registered with the OS, the watchdog timer is started,
 *  and the stack is notified that the interface is ready.
2721
 **/
Y
Yan, Zheng 已提交
2722
static int __igb_open(struct net_device *netdev, bool resuming)
2723 2724 2725
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2726
	struct pci_dev *pdev = adapter->pdev;
2727 2728 2729 2730
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2731 2732
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2733
		return -EBUSY;
Y
Yan, Zheng 已提交
2734 2735 2736 2737
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2738

2739 2740
	netif_carrier_off(netdev);

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2751
	igb_power_up_link(adapter);
2752 2753 2754 2755

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
2756 2757
	 * clean_rx handler before we do so.
	 */
2758 2759 2760 2761 2762 2763
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

2775 2776 2777
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2778 2779
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2780 2781 2782

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2783 2784 2785

	igb_irq_enable(adapter);

2786 2787 2788 2789 2790 2791 2792
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2793 2794
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2795 2796 2797
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2798 2799 2800
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2801 2802 2803

	return 0;

2804 2805
err_set_queues:
	igb_free_irq(adapter);
2806 2807
err_req_irq:
	igb_release_hw_control(adapter);
2808
	igb_power_down_link(adapter);
2809 2810 2811 2812 2813
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2814 2815
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2816 2817 2818 2819

	return err;
}

Y
Yan, Zheng 已提交
2820 2821 2822 2823 2824
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2825
/**
2826 2827
 *  igb_close - Disables a network interface
 *  @netdev: network interface device structure
2828
 *
2829
 *  Returns 0, this is not allowed to fail
2830
 *
2831 2832 2833 2834
 *  The close entry point is called when an interface is de-activated
 *  by the OS.  The hardware is still under the driver's control, but
 *  needs to be disabled.  A global MAC reset is issued to stop the
 *  hardware, and all transmit and receive resources are freed.
2835
 **/
Y
Yan, Zheng 已提交
2836
static int __igb_close(struct net_device *netdev, bool suspending)
2837 2838
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2839
	struct pci_dev *pdev = adapter->pdev;
2840 2841 2842

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2843 2844 2845 2846
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2847 2848 2849 2850 2851
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2852 2853
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2854 2855 2856
	return 0;
}

Y
Yan, Zheng 已提交
2857 2858 2859 2860 2861
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2862
/**
2863 2864
 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2865
 *
2866
 *  Return 0 on success, negative on failure
2867
 **/
2868
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2869
{
2870
	struct device *dev = tx_ring->dev;
2871 2872
	int size;

2873
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2874 2875

	tx_ring->tx_buffer_info = vzalloc(size);
2876
	if (!tx_ring->tx_buffer_info)
2877 2878 2879
		goto err;

	/* round up to nearest 4K */
2880
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2881 2882
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2883 2884
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
2885 2886 2887 2888 2889
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2890

2891 2892 2893
	return 0;

err:
2894
	vfree(tx_ring->tx_buffer_info);
2895 2896
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2897 2898 2899 2900
	return -ENOMEM;
}

/**
2901 2902 2903
 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
2904
 *
2905
 *  Return 0 on success, negative on failure
2906 2907 2908
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2909
	struct pci_dev *pdev = adapter->pdev;
2910 2911 2912
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2913
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2914
		if (err) {
2915
			dev_err(&pdev->dev,
2916 2917
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2918
				igb_free_tx_resources(adapter->tx_ring[i]);
2919 2920 2921 2922 2923 2924 2925 2926
			break;
		}
	}

	return err;
}

/**
2927 2928
 *  igb_setup_tctl - configure the transmit control registers
 *  @adapter: Board private structure
2929
 **/
2930
void igb_setup_tctl(struct igb_adapter *adapter)
2931 2932 2933 2934
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2935 2936
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2952
/**
2953 2954 2955
 *  igb_configure_tx_ring - Configure transmit ring after Reset
 *  @adapter: board private structure
 *  @ring: tx ring to configure
2956
 *
2957
 *  Configure a transmit ring after a reset.
2958
 **/
2959 2960
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2961 2962
{
	struct e1000_hw *hw = &adapter->hw;
2963
	u32 txdctl = 0;
2964 2965 2966 2967
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2968
	wr32(E1000_TXDCTL(reg_idx), 0);
2969 2970 2971 2972
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
2973
	     ring->count * sizeof(union e1000_adv_tx_desc));
2974
	wr32(E1000_TDBAL(reg_idx),
2975
	     tdba & 0x00000000ffffffffULL);
2976 2977
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2978
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2979
	wr32(E1000_TDH(reg_idx), 0);
2980
	writel(0, ring->tail);
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
2991 2992
 *  igb_configure_tx - Configure transmit Unit after Reset
 *  @adapter: board private structure
2993
 *
2994
 *  Configure the Tx unit of the MAC after a reset.
2995 2996 2997 2998 2999 3000
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3001
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3002 3003
}

3004
/**
3005 3006
 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3007
 *
3008
 *  Returns 0 on success, negative on failure
3009
 **/
3010
int igb_setup_rx_resources(struct igb_ring *rx_ring)
3011
{
3012
	struct device *dev = rx_ring->dev;
3013
	int size;
3014

3015
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3016 3017

	rx_ring->rx_buffer_info = vzalloc(size);
3018
	if (!rx_ring->rx_buffer_info)
3019 3020 3021
		goto err;

	/* Round up to nearest 4K */
3022
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3023 3024
	rx_ring->size = ALIGN(rx_ring->size, 4096);

3025 3026
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
3027 3028 3029
	if (!rx_ring->desc)
		goto err;

3030
	rx_ring->next_to_alloc = 0;
3031 3032 3033 3034 3035 3036
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
3037 3038
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3039
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3040 3041 3042 3043
	return -ENOMEM;
}

/**
3044 3045 3046
 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
3047
 *
3048
 *  Return 0 on success, negative on failure
3049 3050 3051
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
3052
	struct pci_dev *pdev = adapter->pdev;
3053 3054 3055
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
3056
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3057
		if (err) {
3058
			dev_err(&pdev->dev,
3059 3060
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3061
				igb_free_rx_resources(adapter->rx_ring[i]);
3062 3063 3064 3065 3066 3067 3068
			break;
		}
	}

	return err;
}

3069
/**
3070 3071
 *  igb_setup_mrqc - configure the multiple receive queue control registers
 *  @adapter: Board private structure
3072 3073 3074 3075 3076
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
3077
	u32 j, num_rx_queues, shift = 0;
3078 3079 3080 3081
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
3082 3083

	/* Fill out hash function seeds */
3084 3085
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
3086

3087
	num_rx_queues = adapter->rss_queues;
3088

3089 3090 3091 3092 3093 3094 3095
	switch (hw->mac.type) {
	case e1000_82575:
		shift = 6;
		break;
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count) {
3096 3097 3098
			shift = 3;
			num_rx_queues = 2;
		}
3099 3100 3101
		break;
	default:
		break;
3102 3103
	}

3104
	/* Populate the indirection table 4 entries at a time.  To do this
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	 * we are generating the results for n and n+2 and then interleaving
	 * those with the results with n+1 and n+3.
	 */
	for (j = 0; j < 32; j++) {
		/* first pass generates n and n+2 */
		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
		u32 reta = (base & 0x07800780) >> (7 - shift);

		/* second pass generates n+1 and n+3 */
		base += 0x00010001 * num_rx_queues;
		reta |= (base & 0x07800780) << (1 + shift);

		wr32(E1000_RETA(j), reta);
3118 3119
	}

3120
	/* Disable raw packet checksumming so that RSS hash is placed in
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
3133

3134 3135 3136
	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
3137 3138 3139 3140 3141
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3142

3143 3144 3145 3146 3147
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

3148 3149
	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
3150 3151
	 * if we are only using one queue
	 */
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
3162
		if (adapter->rss_queues > 1)
3163
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3164
		else
3165
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3166
	} else {
3167 3168
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3169 3170 3171 3172 3173 3174
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

3175
/**
3176 3177
 *  igb_setup_rctl - configure the receive control registers
 *  @adapter: Board private structure
3178
 **/
3179
void igb_setup_rctl(struct igb_adapter *adapter)
3180 3181 3182 3183 3184 3185 3186
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3187
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3188

3189
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3190
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3191

3192
	/* enable stripping of CRC. It's unlikely this will break BMC
3193 3194
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
3195
	 */
3196
	rctl |= E1000_RCTL_SECRC;
3197

3198
	/* disable store bad packets and clear size bits. */
3199
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3200

A
Alexander Duyck 已提交
3201 3202
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
3203

3204 3205
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
3206

3207 3208 3209 3210 3211 3212 3213 3214 3215
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
3216 3217 3218
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
3219 3220
		 * in e1000e_set_rx_mode
		 */
B
Ben Greear 已提交
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3233 3234 3235
	wr32(E1000_RCTL, rctl);
}

3236 3237 3238 3239 3240 3241 3242
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
3243 3244
	 * increase the size to support vlan tags
	 */
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3257
/**
3258 3259
 *  igb_rlpml_set - set maximum receive packet size
 *  @adapter: board private structure
3260
 *
3261
 *  Configure maximum receivable packet size.
3262 3263 3264
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3265
	u32 max_frame_size = adapter->max_frame_size;
3266 3267 3268 3269 3270
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3271
		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3272 3273 3274 3275 3276
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3277
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3278 3279 3280 3281 3282
	}

	wr32(E1000_RLPML, max_frame_size);
}

3283 3284
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3285 3286 3287 3288
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

3289
	/* This register exists only on 82576 and newer so if we are older then
3290 3291 3292 3293 3294 3295
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3296
	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3297
	if (aupe)
3298
		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3299 3300
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3301 3302 3303 3304

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3305
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3306
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3307
	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3308 3309 3310
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
3311
		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3312 3313 3314 3315

	wr32(E1000_VMOLR(vfn), vmolr);
}

3316
/**
3317 3318 3319
 *  igb_configure_rx_ring - Configure a receive ring after Reset
 *  @adapter: board private structure
 *  @ring: receive ring to be configured
3320
 *
3321
 *  Configure the Rx unit of the MAC after a reset.
3322
 **/
3323
void igb_configure_rx_ring(struct igb_adapter *adapter,
3324
			   struct igb_ring *ring)
3325 3326 3327 3328
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3329
	u32 srrctl = 0, rxdctl = 0;
3330 3331

	/* disable the queue */
3332
	wr32(E1000_RXDCTL(reg_idx), 0);
3333 3334 3335 3336 3337 3338

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
3339
	     ring->count * sizeof(union e1000_adv_rx_desc));
3340 3341

	/* initialize head and tail */
3342
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3343
	wr32(E1000_RDH(reg_idx), 0);
3344
	writel(0, ring->tail);
3345

3346
	/* set descriptor configuration */
3347
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3348
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3349
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3350
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3351
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3352 3353 3354
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3355 3356 3357

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3358
	/* set filtering for VMDQ pools */
3359
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3360

3361 3362 3363
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3364 3365 3366

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3367 3368 3369
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
				  struct igb_ring *rx_ring)
{
#define IGB_MAX_BUILD_SKB_SIZE \
	(SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) - \
	 (NET_SKB_PAD + NET_IP_ALIGN + IGB_TS_HDR_LEN))

	/* set build_skb flag */
	if (adapter->max_frame_size <= IGB_MAX_BUILD_SKB_SIZE)
		set_ring_build_skb_enabled(rx_ring);
	else
		clear_ring_build_skb_enabled(rx_ring);
}

3384
/**
3385 3386
 *  igb_configure_rx - Configure receive Unit after Reset
 *  @adapter: board private structure
3387
 *
3388
 *  Configure the Rx unit of the MAC after a reset.
3389 3390 3391
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3392
	int i;
3393

3394 3395 3396
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3397 3398
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3399
			 adapter->vfs_allocated_count);
3400

3401
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3402 3403
	 * the Base and Length of the Rx Descriptor Ring
	 */
3404 3405 3406 3407 3408
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *rx_ring = adapter->rx_ring[i];
		igb_set_rx_buffer_len(adapter, rx_ring);
		igb_configure_rx_ring(adapter, rx_ring);
	}
3409 3410 3411
}

/**
3412 3413
 *  igb_free_tx_resources - Free Tx Resources per Queue
 *  @tx_ring: Tx descriptor ring for a specific queue
3414
 *
3415
 *  Free all transmit software resources
3416
 **/
3417
void igb_free_tx_resources(struct igb_ring *tx_ring)
3418
{
3419
	igb_clean_tx_ring(tx_ring);
3420

3421 3422
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3423

3424 3425 3426 3427
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3428 3429
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3430 3431 3432 3433 3434

	tx_ring->desc = NULL;
}

/**
3435 3436
 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 *  @adapter: board private structure
3437
 *
3438
 *  Free all transmit software resources
3439 3440 3441 3442 3443 3444
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3445
		igb_free_tx_resources(adapter->tx_ring[i]);
3446 3447
}

3448 3449 3450 3451 3452
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3453
		if (dma_unmap_len(tx_buffer, len))
3454
			dma_unmap_single(ring->dev,
3455 3456
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3457
					 DMA_TO_DEVICE);
3458
	} else if (dma_unmap_len(tx_buffer, len)) {
3459
		dma_unmap_page(ring->dev,
3460 3461
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3462 3463 3464 3465
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3466
	dma_unmap_len_set(tx_buffer, len, 0);
3467
	/* buffer_info must be completely set up in the transmit path */
3468 3469 3470
}

/**
3471 3472
 *  igb_clean_tx_ring - Free Tx Buffers
 *  @tx_ring: ring to be cleaned
3473
 **/
3474
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3475
{
3476
	struct igb_tx_buffer *buffer_info;
3477
	unsigned long size;
3478
	u16 i;
3479

3480
	if (!tx_ring->tx_buffer_info)
3481 3482 3483 3484
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3485
		buffer_info = &tx_ring->tx_buffer_info[i];
3486
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3487 3488
	}

3489 3490
	netdev_tx_reset_queue(txring_txq(tx_ring));

3491 3492
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3493 3494 3495 3496 3497 3498 3499 3500 3501

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
3502 3503
 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 *  @adapter: board private structure
3504 3505 3506 3507 3508 3509
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3510
		igb_clean_tx_ring(adapter->tx_ring[i]);
3511 3512 3513
}

/**
3514 3515
 *  igb_free_rx_resources - Free Rx Resources
 *  @rx_ring: ring to clean the resources from
3516
 *
3517
 *  Free all receive software resources
3518
 **/
3519
void igb_free_rx_resources(struct igb_ring *rx_ring)
3520
{
3521
	igb_clean_rx_ring(rx_ring);
3522

3523 3524
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3525

3526 3527 3528 3529
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3530 3531
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3532 3533 3534 3535 3536

	rx_ring->desc = NULL;
}

/**
3537 3538
 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 *  @adapter: board private structure
3539
 *
3540
 *  Free all receive software resources
3541 3542 3543 3544 3545 3546
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3547
		igb_free_rx_resources(adapter->rx_ring[i]);
3548 3549 3550
}

/**
3551 3552
 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 *  @rx_ring: ring to free buffers from
3553
 **/
3554
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3555 3556
{
	unsigned long size;
3557
	u16 i;
3558

3559 3560 3561 3562
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3563
	if (!rx_ring->rx_buffer_info)
3564
		return;
3565

3566 3567
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3568
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3569

3570 3571 3572 3573 3574 3575 3576 3577 3578
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3579
		buffer_info->page = NULL;
3580 3581
	}

3582 3583
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3584 3585 3586 3587

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3588
	rx_ring->next_to_alloc = 0;
3589 3590 3591 3592 3593
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
3594 3595
 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 *  @adapter: board private structure
3596 3597 3598 3599 3600 3601
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3602
		igb_clean_rx_ring(adapter->rx_ring[i]);
3603 3604 3605
}

/**
3606 3607 3608
 *  igb_set_mac - Change the Ethernet Address of the NIC
 *  @netdev: network interface device structure
 *  @p: pointer to an address structure
3609
 *
3610
 *  Returns 0 on success, negative on failure
3611 3612 3613 3614
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3615
	struct e1000_hw *hw = &adapter->hw;
3616 3617 3618 3619 3620 3621
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3622
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3623

3624 3625
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3626
			 adapter->vfs_allocated_count);
3627

3628 3629 3630 3631
	return 0;
}

/**
3632 3633
 *  igb_write_mc_addr_list - write multicast addresses to MTA
 *  @netdev: network interface device structure
3634
 *
3635 3636 3637 3638
 *  Writes multicast address list to the MTA hash table.
 *  Returns: -ENOMEM on failure
 *           0 on no addresses written
 *           X on writing X addresses to MTA
3639
 **/
3640
static int igb_write_mc_addr_list(struct net_device *netdev)
3641 3642 3643
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3644
	struct netdev_hw_addr *ha;
3645
	u8  *mta_list;
3646 3647
	int i;

3648
	if (netdev_mc_empty(netdev)) {
3649 3650 3651 3652 3653
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3654

3655
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3656 3657
	if (!mta_list)
		return -ENOMEM;
3658

3659
	/* The shared function expects a packed array of only addresses. */
3660
	i = 0;
3661 3662
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3663 3664 3665 3666

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3667
	return netdev_mc_count(netdev);
3668 3669 3670
}

/**
3671 3672
 *  igb_write_uc_addr_list - write unicast addresses to RAR table
 *  @netdev: network interface device structure
3673
 *
3674 3675 3676 3677
 *  Writes unicast address list to the RAR table.
 *  Returns: -ENOMEM on failure/insufficient address space
 *           0 on no addresses written
 *           X on writing X addresses to the RAR table
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3688
	if (netdev_uc_count(netdev) > rar_entries)
3689
		return -ENOMEM;
3690

3691
	if (!netdev_uc_empty(netdev) && rar_entries) {
3692
		struct netdev_hw_addr *ha;
3693 3694

		netdev_for_each_uc_addr(ha, netdev) {
3695 3696
			if (!rar_entries)
				break;
3697
			igb_rar_set_qsel(adapter, ha->addr,
3698 3699
					 rar_entries--,
					 vfn);
3700
			count++;
3701 3702 3703 3704 3705 3706 3707 3708 3709
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3710 3711 3712 3713
	return count;
}

/**
3714 3715
 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 *  @netdev: network interface device structure
3716
 *
3717 3718 3719 3720
 *  The set_rx_mode entry point is called whenever the unicast or multicast
 *  address lists or the network interface flags are updated.  This routine is
 *  responsible for configuring the hardware for proper unicast, multicast,
 *  promiscuous mode, and all-multi behavior.
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
3744
			/* Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3745
			 * then we should just turn on promiscuous mode so
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
3756
		/* Write addresses to available RAR registers, if there is not
3757
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3758
		 * unicast promiscuous mode
3759 3760 3761 3762 3763 3764 3765
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3766
	}
3767
	wr32(E1000_RCTL, rctl);
3768

3769
	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3770 3771 3772 3773
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
3774
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3775
		return;
3776

3777
	vmolr |= rd32(E1000_VMOLR(vfn)) &
3778
		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3779
	wr32(E1000_VMOLR(vfn), vmolr);
3780
	igb_restore_vf_multicasts(adapter);
3781 3782
}

G
Greg Rose 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3822
/* Need to wait a few seconds after link up to get diagnostic information from
3823 3824
 * the phy
 */
3825 3826 3827
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3828
	igb_get_phy_info(&adapter->hw);
3829 3830
}

A
Alexander Duyck 已提交
3831
/**
3832 3833
 *  igb_has_link - check shared code for link and determine up/down
 *  @adapter: pointer to driver private info
A
Alexander Duyck 已提交
3834
 **/
3835
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3867 3868 3869 3870 3871
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

3872
	/* check for thermal sensor event on i350 copper only */
3873 3874 3875 3876 3877
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
3878
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3879 3880 3881 3882 3883 3884
			ret = !!(thstat & event);
	}

	return ret;
}

3885
/**
3886 3887
 *  igb_watchdog - Timer Call-back
 *  @data: pointer to adapter cast into an unsigned long
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3899 3900
						   struct igb_adapter,
						   watchdog_task);
3901 3902
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3903
	u32 link;
3904
	int i;
3905

A
Alexander Duyck 已提交
3906
	link = igb_has_link(adapter);
3907
	if (link) {
Y
Yan, Zheng 已提交
3908 3909 3910
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3911 3912
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3913
			hw->mac.ops.get_speed_and_duplex(hw,
3914 3915
							 &adapter->link_speed,
							 &adapter->link_duplex);
3916 3917

			ctrl = rd32(E1000_CTRL);
3918
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3919 3920
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3921 3922 3923
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3924 3925 3926 3927 3928
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3929

3930
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3931 3932 3933 3934 3935
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3936
			}
3937

3938
			/* adjust timeout factor according to speed/duplex */
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3951
			igb_ping_all_vfs(adapter);
3952
			igb_check_vf_rate_limit(adapter);
3953

3954
			/* link state has changed, schedule phy info update */
3955 3956 3957 3958 3959 3960 3961 3962
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3963 3964

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3965 3966 3967 3968
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
3969
			}
3970

3971 3972 3973
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3974
			netif_carrier_off(netdev);
3975

3976 3977
			igb_ping_all_vfs(adapter);

3978
			/* link state has changed, schedule phy info update */
3979 3980 3981
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
3982 3983 3984

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
3985 3986 3987
		}
	}

E
Eric Dumazet 已提交
3988 3989 3990
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3991

3992
	for (i = 0; i < adapter->num_tx_queues; i++) {
3993
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3994
		if (!netif_carrier_ok(netdev)) {
3995 3996 3997
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
3998 3999
			 * (Do the reset outside of interrupt context).
			 */
4000 4001 4002 4003 4004 4005
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
4006 4007
		}

4008
		/* Force detection of hung controller every watchdog period */
4009
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4010
	}
4011

4012
	/* Cause software interrupt to ensure Rx ring is cleaned */
4013
	if (adapter->msix_entries) {
4014
		u32 eics = 0;
4015 4016
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
4017 4018 4019 4020
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
4021

G
Greg Rose 已提交
4022
	igb_spoof_check(adapter);
4023
	igb_ptp_rx_hang(adapter);
G
Greg Rose 已提交
4024

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

4038
/**
4039 4040
 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 *  @q_vector: pointer to q_vector
4041
 *
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
 *  Stores a new ITR value based on strictly on packet size.  This
 *  algorithm is less sophisticated than that used in igb_update_itr,
 *  due to the difficulty of synchronizing statistics across multiple
 *  receive rings.  The divisors and thresholds used by this function
 *  were determined based on theoretical maximum wire speed and testing
 *  data, in order to minimize response time while increasing bulk
 *  throughput.
 *  This functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  This function is called only when operating in a multiqueue
 *         receive environment.
4053
 **/
4054
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4055
{
4056
	int new_val = q_vector->itr_val;
4057
	int avg_wire_size = 0;
4058
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
4059
	unsigned int packets;
4060

4061 4062 4063 4064
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
4065
		new_val = IGB_4K_ITR;
4066
		goto set_itr_val;
4067
	}
4068

4069 4070 4071
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
4072

4073 4074 4075 4076
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
4077 4078 4079 4080

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
4081

4082 4083 4084 4085 4086
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
4087

4088 4089 4090 4091 4092
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
4093

4094 4095 4096 4097 4098
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
4099

4100
set_itr_val:
4101 4102 4103
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
4104
	}
4105
clear_counts:
4106 4107 4108 4109
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
4110 4111 4112
}

/**
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
 *  igb_update_itr - update the dynamic ITR value based on statistics
 *  @q_vector: pointer to q_vector
 *  @ring_container: ring info to update the itr for
 *
 *  Stores a new ITR value based on packets and byte
 *  counts during the last interrupt.  The advantage of per interrupt
 *  computation is faster updates and more accurate ITR for the current
 *  traffic pattern.  Constants in this function were computed
 *  based on theoretical maximum wire speed and thresholds were set based
 *  on testing data as well as attempting to minimize response time
 *  while increasing bulk throughput.
 *  this functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  These calculations are only valid when operating in a single-
 *         queue environment.
4128
 **/
4129 4130
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
4131
{
4132 4133 4134
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
4135

4136
	/* no packets, exit with status unchanged */
4137
	if (packets == 0)
4138
		return;
4139

4140
	switch (itrval) {
4141 4142 4143
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
4144
			itrval = bulk_latency;
4145
		else if ((packets < 5) && (bytes > 512))
4146
			itrval = low_latency;
4147 4148 4149 4150 4151
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
4152
				itrval = bulk_latency;
4153
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4154
				itrval = bulk_latency;
4155
			} else if ((packets > 35)) {
4156
				itrval = lowest_latency;
4157 4158
			}
		} else if (bytes/packets > 2000) {
4159
			itrval = bulk_latency;
4160
		} else if (packets <= 2 && bytes < 512) {
4161
			itrval = lowest_latency;
4162 4163 4164 4165 4166
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
4167
				itrval = low_latency;
4168
		} else if (bytes < 1500) {
4169
			itrval = low_latency;
4170 4171 4172 4173
		}
		break;
	}

4174 4175 4176 4177 4178 4179
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
4180 4181
}

4182
static void igb_set_itr(struct igb_q_vector *q_vector)
4183
{
4184
	struct igb_adapter *adapter = q_vector->adapter;
4185
	u32 new_itr = q_vector->itr_val;
4186
	u8 current_itr = 0;
4187 4188 4189 4190

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
4191
		new_itr = IGB_4K_ITR;
4192 4193 4194
		goto set_itr_now;
	}

4195 4196
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
4197

4198
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4199

4200
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4201 4202 4203
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4204 4205
		current_itr = low_latency;

4206 4207 4208
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
4209
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4210 4211
		break;
	case low_latency:
4212
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4213 4214
		break;
	case bulk_latency:
4215
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4216 4217 4218 4219 4220 4221
		break;
	default:
		break;
	}

set_itr_now:
4222
	if (new_itr != q_vector->itr_val) {
4223 4224
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
4225 4226
		 * increasing
		 */
4227
		new_itr = new_itr > q_vector->itr_val ?
4228 4229 4230
			  max((new_itr * q_vector->itr_val) /
			  (new_itr + (q_vector->itr_val >> 2)),
			  new_itr) : new_itr;
4231 4232 4233 4234 4235 4236
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4237 4238
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4239 4240 4241
	}
}

4242 4243
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4257
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4258 4259 4260 4261 4262 4263 4264 4265
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4266 4267 4268
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4269
{
4270
	struct sk_buff *skb = first->skb;
4271 4272 4273
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

4274 4275 4276
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

4277 4278
	if (!skb_is_gso(skb))
		return 0;
4279 4280

	if (skb_header_cloned(skb)) {
4281
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4282 4283 4284 4285
		if (err)
			return err;
	}

4286 4287
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4288

4289
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4290 4291 4292 4293 4294 4295 4296
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4297
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4298 4299 4300
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4301
	} else if (skb_is_gso_v6(skb)) {
4302 4303 4304 4305
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4306 4307
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4308 4309
	}

4310
	/* compute header lengths */
4311 4312
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4313

4314 4315 4316 4317
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4318
	/* MSS L4LEN IDX */
4319 4320
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4321

4322 4323 4324
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4325
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4326

4327
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4328

4329
	return 1;
4330 4331
}

4332
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4333
{
4334
	struct sk_buff *skb = first->skb;
4335 4336 4337
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4338

4339
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4340 4341
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4342 4343
	} else {
		u8 l4_hdr = 0;
4344
		switch (first->protocol) {
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4357 4358
					 "partial checksum but proto=%x!\n",
					 first->protocol);
4359
			}
4360 4361
			break;
		}
4362

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4381 4382
					 "partial checksum but l4 proto=%x!\n",
					 l4_hdr);
4383
			}
4384
			break;
4385
		}
4386 4387 4388

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4389
	}
4390

4391
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4392
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4393

4394
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4395 4396
}

4397 4398 4399 4400 4401 4402
#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4403 4404
{
	/* set type for advanced descriptor with frame checksum insertion */
4405 4406 4407
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;
4408 4409

	/* set HW vlan bit if vlan is present */
4410 4411 4412 4413 4414 4415
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));
4416 4417

	/* set timestamp bit if present */
4418 4419
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));
4420

4421 4422
	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4423 4424 4425 4426

	return cmd_type;
}

4427 4428 4429
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4430 4431 4432
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

4433 4434
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4435 4436 4437
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
4438 4439 4440
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));
4441

4442 4443 4444 4445
	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));
4446

4447
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4448 4449
}

4450 4451
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4452
		       const u8 hdr_len)
4453
{
4454
	struct sk_buff *skb = first->skb;
4455
	struct igb_tx_buffer *tx_buffer;
4456
	union e1000_adv_tx_desc *tx_desc;
4457
	struct skb_frag_struct *frag;
4458
	dma_addr_t dma;
4459
	unsigned int data_len, size;
4460
	u32 tx_flags = first->tx_flags;
4461
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4462 4463 4464 4465
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4466 4467 4468 4469
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;
4470 4471

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4472

4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4484 4485 4486

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
4487
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4488 4489 4490 4491 4492 4493 4494

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
4495
			tx_desc->read.olinfo_status = 0;
4496 4497 4498 4499 4500 4501 4502 4503 4504

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4505

4506
		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4507

4508
		i++;
4509 4510 4511
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4512
			i = 0;
4513
		}
4514
		tx_desc->read.olinfo_status = 0;
4515

E
Eric Dumazet 已提交
4516
		size = skb_frag_size(frag);
4517 4518 4519
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4520
				       size, DMA_TO_DEVICE);
4521

4522
		tx_buffer = &tx_ring->tx_buffer_info[i];
4523 4524
	}

4525
	/* write last descriptor with RS and EOP bits */
4526 4527
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4528

4529 4530
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4531 4532 4533
	/* set the timestamp */
	first->time_stamp = jiffies;

4534
	/* Force memory writes to complete before letting h/w know there
4535 4536 4537 4538 4539 4540 4541 4542
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4543
	/* set next_to_watch value indicating a packet is present */
4544
	first->next_to_watch = tx_desc;
4545

4546 4547 4548
	i++;
	if (i == tx_ring->count)
		i = 0;
4549

4550
	tx_ring->next_to_use = i;
4551

4552
	writel(i, tx_ring->tail);
4553

4554
	/* we need this if more than one processor can write to our tail
4555 4556
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4557 4558 4559 4560 4561 4562 4563 4564 4565
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4566 4567 4568
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4569
			break;
4570 4571
		if (i == 0)
			i = tx_ring->count;
4572 4573 4574
		i--;
	}

4575 4576 4577
	tx_ring->next_to_use = i;
}

4578
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4579
{
4580 4581
	struct net_device *netdev = tx_ring->netdev;

4582 4583
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4584 4585
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
4586 4587
	 * but since that doesn't exist yet, just open code it.
	 */
4588 4589 4590
	smp_mb();

	/* We need to check again in a case another CPU has just
4591 4592
	 * made room available.
	 */
4593
	if (igb_desc_unused(tx_ring) < size)
4594 4595 4596
		return -EBUSY;

	/* A reprieve! */
4597
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4598 4599 4600 4601 4602

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4603 4604 4605
	return 0;
}

4606
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4607
{
4608
	if (igb_desc_unused(tx_ring) >= size)
4609
		return 0;
4610
	return __igb_maybe_stop_tx(tx_ring, size);
4611 4612
}

4613 4614
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4615
{
4616
	struct igb_tx_buffer *first;
4617
	int tso;
N
Nick Nunley 已提交
4618
	u32 tx_flags = 0;
4619
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4620
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4621
	u8 hdr_len = 0;
4622

4623 4624
	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4625 4626
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for context descriptor,
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
	 * otherwise try next time
	 */
	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
		unsigned short f;
		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
	} else {
		count += skb_shinfo(skb)->nr_frags;
	}

	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4638 4639 4640
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4641

4642 4643 4644 4645 4646 4647
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4648 4649
	skb_tx_timestamp(skb);

4650 4651
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4652

4653 4654 4655 4656 4657 4658 4659 4660 4661
		if (!(adapter->ptp_tx_skb)) {
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
			tx_flags |= IGB_TX_FLAGS_TSTAMP;

			adapter->ptp_tx_skb = skb_get(skb);
			adapter->ptp_tx_start = jiffies;
			if (adapter->hw.mac.type == e1000_82576)
				schedule_work(&adapter->ptp_tx_work);
		}
4662
	}
4663

4664
	if (vlan_tx_tag_present(skb)) {
4665 4666 4667 4668
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4669 4670 4671
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4672

4673 4674
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4675
		goto out_drop;
4676 4677
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4678

4679
	igb_tx_map(tx_ring, first, hdr_len);
4680 4681

	/* Make sure there is space in the ring for the next send. */
4682
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4683

4684
	return NETDEV_TX_OK;
4685 4686

out_drop:
4687 4688
	igb_unmap_and_free_tx_resource(tx_ring, first);

4689
	return NETDEV_TX_OK;
4690 4691
}

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4703 4704
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4705 4706
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4718
	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4719 4720
	 * in order to meet this minimum size requirement.
	 */
4721 4722
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
4723 4724
			return NETDEV_TX_OK;
		skb->len = 17;
4725
		skb_set_tail_pointer(skb, 17);
4726
	}
4727

4728
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4729 4730 4731
}

/**
4732 4733
 *  igb_tx_timeout - Respond to a Tx Hang
 *  @netdev: network interface device structure
4734 4735 4736 4737 4738 4739 4740 4741
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4742

4743
	if (hw->mac.type >= e1000_82580)
4744 4745
		hw->dev_spec._82575.global_device_reset = true;

4746
	schedule_work(&adapter->reset_task);
4747 4748
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4749 4750 4751 4752 4753 4754 4755
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4756 4757
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4758 4759 4760 4761
	igb_reinit_locked(adapter);
}

/**
4762 4763 4764
 *  igb_get_stats64 - Get System Network Statistics
 *  @netdev: network interface device structure
 *  @stats: rtnl_link_stats64 pointer
4765
 **/
E
Eric Dumazet 已提交
4766
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4767
						struct rtnl_link_stats64 *stats)
4768
{
E
Eric Dumazet 已提交
4769 4770 4771 4772 4773 4774 4775 4776
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4777 4778 4779
}

/**
4780 4781 4782
 *  igb_change_mtu - Change the Maximum Transfer Unit
 *  @netdev: network interface device structure
 *  @new_mtu: new value for maximum frame size
4783
 *
4784
 *  Returns 0 on success, negative on failure
4785 4786 4787 4788
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4789
	struct pci_dev *pdev = adapter->pdev;
4790
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4791

4792
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4793
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4794 4795 4796
		return -EINVAL;
	}

4797
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4798
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4799
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4800 4801 4802 4803 4804
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4805

4806 4807
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4808

4809 4810
	if (netif_running(netdev))
		igb_down(adapter);
4811

4812
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
4827 4828
 *  igb_update_stats - Update the board statistics counters
 *  @adapter: board private structure
4829
 **/
E
Eric Dumazet 已提交
4830 4831
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4832 4833 4834
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4835
	u32 reg, mpc;
4836
	u16 phy_tmp;
4837 4838
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4839 4840
	unsigned int start;
	u64 _bytes, _packets;
4841 4842 4843

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

4844
	/* Prevent stats update while adapter is being reset, or if the pci
4845 4846 4847 4848 4849 4850 4851
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4852 4853 4854
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
4855
		u32 rqdpc = rd32(E1000_RQDPC(i));
4856
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4857

4858 4859 4860 4861
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
4862 4863 4864 4865 4866 4867 4868 4869

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4870 4871
	}

4872 4873
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4874 4875 4876 4877

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4878
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4879 4880 4881 4882 4883 4884 4885
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4886
	}
4887 4888
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4889 4890

	/* read stats registers */
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4908 4909 4910
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4925
	adapter->stats.rnbc += rd32(E1000_RNBC);
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4943 4944
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4945 4946

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4947 4948 4949 4950
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4951 4952 4953 4954 4955

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
4956 4957
	}

4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4972 4973
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4974 4975 4976 4977

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4978 4979
	 * our own version based on RUC and ROC
	 */
4980
	net_stats->rx_errors = adapter->stats.rxerrc +
4981 4982 4983
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4984 4985 4986 4987 4988
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4989 4990

	/* Tx Errors */
4991 4992 4993 4994 4995
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4996 4997 4998 4999 5000 5001

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
5002
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5003 5004 5005 5006 5007 5008 5009 5010 5011
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5012 5013 5014 5015 5016 5017 5018 5019 5020

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
5021 5022 5023 5024
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
5025
	struct igb_adapter *adapter = data;
5026
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
5027 5028
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
5029

5030 5031 5032
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5033
	if (icr & E1000_ICR_DOUTSYNC) {
5034 5035
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
5036 5037
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
5038 5039
		 * see if it is really a spoof event.
		 */
G
Greg Rose 已提交
5040
		igb_check_wvbr(adapter);
5041
	}
5042

5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

P
PJ Waskiewicz 已提交
5065
	wr32(E1000_EIMS, adapter->eims_other);
5066 5067 5068 5069

	return IRQ_HANDLED;
}

5070
static void igb_write_itr(struct igb_q_vector *q_vector)
5071
{
5072
	struct igb_adapter *adapter = q_vector->adapter;
5073
	u32 itr_val = q_vector->itr_val & 0x7FFC;
5074

5075 5076
	if (!q_vector->set_itr)
		return;
5077

5078 5079
	if (!itr_val)
		itr_val = 0x4;
5080

5081 5082
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
5083
	else
5084
		itr_val |= E1000_EITR_CNT_IGNR;
5085

5086 5087
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
5088 5089
}

5090
static irqreturn_t igb_msix_ring(int irq, void *data)
5091
{
5092
	struct igb_q_vector *q_vector = data;
5093

5094 5095
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
5096

5097
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
5098

5099
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
5100 5101
}

5102
#ifdef CONFIG_IGB_DCA
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

5113
	/* We can enable relaxed ordering for reads, but not writes when
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

5134
	/* We can enable relaxed ordering for reads, but not writes when
5135 5136 5137 5138 5139 5140 5141 5142 5143
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

5144
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
5145
{
5146
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
5147 5148
	int cpu = get_cpu();

5149 5150 5151
	if (q_vector->cpu == cpu)
		goto out_no_update;

5152 5153 5154 5155 5156 5157
	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

5158 5159
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
5160 5161 5162 5163 5164
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
5165
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
5166 5167
	int i;

5168
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
5169 5170
		return;

5171 5172 5173
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

5174
	for (i = 0; i < adapter->num_q_vectors; i++) {
5175 5176
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
5177 5178 5179 5180 5181 5182 5183
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
5184
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
5185 5186 5187 5188 5189 5190
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
5191
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
5192 5193
			break;
		if (dca_add_requester(dev) == 0) {
5194
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5195
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
5196 5197 5198 5199 5200
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
5201
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
5202
			/* without this a class_device is left
5203 5204
			 * hanging around in the sysfs model
			 */
J
Jeb Cramer 已提交
5205
			dca_remove_requester(dev);
5206
			dev_info(&pdev->dev, "DCA disabled\n");
5207
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
5208
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
5209 5210 5211
		}
		break;
	}
5212

J
Jeb Cramer 已提交
5213
	return 0;
5214 5215
}

J
Jeb Cramer 已提交
5216
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5217
			  void *p)
J
Jeb Cramer 已提交
5218 5219 5220 5221
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5222
					 __igb_notify_dca);
J
Jeb Cramer 已提交
5223 5224 5225

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
5226
#endif /* CONFIG_IGB_DCA */
5227

5228 5229 5230 5231 5232
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

5233
	eth_zero_addr(mac_addr);
5234 5235
	igb_set_vf_mac(adapter, vf, mac_addr);

L
Lior Levy 已提交
5236 5237 5238
	/* By default spoof check is enabled for all VFs */
	adapter->vf_data[vf].spoofchk_enabled = true;

5239
	return 0;
5240 5241
}

5242
static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5243 5244
{
	struct pci_dev *pdev = adapter->pdev;
5245 5246
	struct pci_dev *vfdev;
	int dev_id;
5247 5248 5249

	switch (adapter->hw.mac.type) {
	case e1000_82576:
5250
		dev_id = IGB_82576_VF_DEV_ID;
5251 5252
		break;
	case e1000_i350:
5253
		dev_id = IGB_I350_VF_DEV_ID;
5254 5255
		break;
	default:
5256
		return false;
5257 5258
	}

5259 5260 5261 5262 5263 5264 5265
	/* loop through all the VFs to see if we own any that are assigned */
	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
	while (vfdev) {
		/* if we don't own it we don't care */
		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
			/* if it is assigned we cannot release it */
			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5266 5267
				return true;
		}
5268 5269

		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5270
	}
5271

5272 5273 5274 5275
	return false;
}

#endif
5276 5277 5278 5279 5280 5281 5282 5283
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5284
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5285 5286 5287 5288 5289
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5290 5291 5292 5293 5294 5295
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5296
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5297
			    IGB_VF_FLAG_MULTI_PROMISC);
5298 5299 5300 5301
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5302
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5303 5304
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
5305
		/* if we have hashes and we are clearing a multicast promisc
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;
}

5328 5329 5330 5331 5332 5333 5334 5335
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5336
	/* salt away the number of multicast addresses assigned
5337 5338 5339 5340 5341
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5342 5343 5344 5345 5346
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5347
	for (i = 0; i < n; i++)
5348
		vf_data->vf_mc_hashes[i] = hash_list[i];
5349 5350

	/* Flush and reset the mta with the new values */
5351
	igb_set_rx_mode(adapter->netdev);
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5363 5364 5365
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5366
		vf_data = &adapter->vf_data[i];
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5405 5406

	adapter->vf_data[vf].vlans_enabled = 0;
5407 5408 5409 5410 5411 5412 5413
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5414 5415 5416 5417 5418
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5448 5449
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5450 5451
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5452 5453
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5454
			wr32(E1000_VLVF(i), reg);
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5470
			adapter->vf_data[vf].vlans_enabled++;
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5497 5498
		}
	}
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
5532
				 "The VF VLAN has been set, but the PF device is not up.\n");
5533
			dev_warn(&adapter->pdev->dev,
5534
				 "Bring the PF device up before attempting to use the VF device.\n");
5535 5536 5537
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5538
			     false, vf);
5539 5540 5541 5542
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
5543
	}
5544
out:
5545
	return err;
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5556
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5557
{
G
Greg Rose 已提交
5558 5559
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5560
	adapter->vf_data[vf].last_nack = jiffies;
5561 5562

	/* reset offloads to defaults */
5563
	igb_set_vmolr(adapter, vf, true);
5564 5565 5566

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5567 5568 5569 5570 5571 5572
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5573 5574 5575 5576 5577

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5578
	igb_set_rx_mode(adapter->netdev);
5579 5580
}

5581 5582 5583 5584
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

5585
	/* clear mac address as we were hotplug removed/added */
5586
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5587
		eth_zero_addr(vf_mac);
5588 5589 5590 5591 5592 5593

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5594 5595 5596
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5597
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5598 5599 5600 5601
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5602
	igb_vf_reset(adapter, vf);
5603 5604

	/* set vf mac address */
5605
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5606 5607 5608 5609 5610 5611 5612

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5613
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5614 5615 5616 5617 5618 5619 5620 5621 5622

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
5623
	/* The VF MAC Address is stored in a packed array of bytes
G
Greg Rose 已提交
5624 5625
	 * starting at the second 32 bit word of the msg array
	 */
5626 5627
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5628

5629 5630
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5631

5632
	return err;
5633 5634 5635 5636 5637
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5638
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5639 5640 5641
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5642 5643
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5644
		igb_write_mbx(hw, &msg, 1, vf);
5645
		vf_data->last_nack = jiffies;
5646 5647 5648
	}
}

5649
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5650
{
5651 5652
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5653
	struct e1000_hw *hw = &adapter->hw;
5654
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5655 5656
	s32 retval;

5657
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5658

5659 5660
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5661
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5662 5663 5664 5665 5666
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5667 5668 5669

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5670
		return;
5671

5672
	/* until the vf completes a reset it should not be
5673 5674 5675 5676
	 * allowed to start any configuration.
	 */
	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5677
		return;
5678 5679
	}

5680
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5681 5682 5683 5684
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5685 5686 5687 5688
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5689 5690 5691 5692 5693
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
5694 5695
				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
				 vf);
5696
		break;
5697 5698 5699
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5700 5701 5702 5703 5704 5705 5706
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5707 5708 5709
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
5710 5711
				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
				 vf);
5712 5713
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5714 5715
		break;
	default:
5716
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5717 5718 5719 5720
		retval = -1;
		break;
	}

5721 5722
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5723 5724 5725 5726 5727 5728 5729
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5730
}
5731

5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5750 5751
}

5752 5753 5754 5755 5756 5757 5758
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5759 5760
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5779
/**
5780 5781 5782
 *  igb_intr_msi - Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5783 5784 5785
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5786 5787
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5788 5789 5790 5791
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5792
	igb_write_itr(q_vector);
5793

5794 5795 5796
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5797
	if (icr & E1000_ICR_DOUTSYNC) {
5798 5799 5800 5801
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5802 5803 5804 5805 5806 5807
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5819
	napi_schedule(&q_vector->napi);
5820 5821 5822 5823 5824

	return IRQ_HANDLED;
}

/**
5825 5826 5827
 *  igb_intr - Legacy Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5828 5829 5830
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5831 5832
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5833 5834
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5835 5836
	 * need for the IMC write
	 */
5837 5838 5839
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5840 5841
	 * not set, then the adapter didn't send an interrupt
	 */
5842 5843 5844
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5845 5846
	igb_write_itr(q_vector);

5847 5848 5849
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5850
	if (icr & E1000_ICR_DOUTSYNC) {
5851 5852 5853 5854
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5855 5856 5857 5858 5859 5860 5861
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5873
	napi_schedule(&q_vector->napi);
5874 5875 5876 5877

	return IRQ_HANDLED;
}

5878
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5879
{
5880
	struct igb_adapter *adapter = q_vector->adapter;
5881
	struct e1000_hw *hw = &adapter->hw;
5882

5883 5884 5885 5886
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5887
		else
5888
			igb_update_ring_itr(q_vector);
5889 5890
	}

5891 5892
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5893
			wr32(E1000_EIMS, q_vector->eims_value);
5894 5895 5896
		else
			igb_irq_enable(adapter);
	}
5897 5898
}

5899
/**
5900 5901 5902
 *  igb_poll - NAPI Rx polling callback
 *  @napi: napi polling structure
 *  @budget: count of how many packets we should handle
5903 5904
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5905
{
5906
	struct igb_q_vector *q_vector = container_of(napi,
5907 5908
						     struct igb_q_vector,
						     napi);
5909
	bool clean_complete = true;
5910

5911
#ifdef CONFIG_IGB_DCA
5912 5913
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5914
#endif
5915
	if (q_vector->tx.ring)
5916
		clean_complete = igb_clean_tx_irq(q_vector);
5917

5918
	if (q_vector->rx.ring)
5919
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5920

5921 5922 5923
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5924

5925
	/* If not enough Rx work done, exit the polling mode */
5926 5927
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5928

5929
	return 0;
5930
}
A
Al Viro 已提交
5931

5932
/**
5933 5934
 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 *  @q_vector: pointer to q_vector containing needed info
5935
 *
5936
 *  returns true if ring is completely cleaned
5937
 **/
5938
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5939
{
5940
	struct igb_adapter *adapter = q_vector->adapter;
5941
	struct igb_ring *tx_ring = q_vector->tx.ring;
5942
	struct igb_tx_buffer *tx_buffer;
5943
	union e1000_adv_tx_desc *tx_desc;
5944
	unsigned int total_bytes = 0, total_packets = 0;
5945
	unsigned int budget = q_vector->tx.work_limit;
5946
	unsigned int i = tx_ring->next_to_clean;
5947

5948 5949
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5950

5951
	tx_buffer = &tx_ring->tx_buffer_info[i];
5952
	tx_desc = IGB_TX_DESC(tx_ring, i);
5953
	i -= tx_ring->count;
5954

5955 5956
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5957 5958 5959 5960

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5961

5962
		/* prevent any other reads prior to eop_desc */
5963
		read_barrier_depends();
5964

5965 5966 5967 5968
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5969 5970
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5971

5972 5973 5974
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5975

5976 5977
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
5978

5979 5980
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
5981 5982
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
5983 5984
				 DMA_TO_DEVICE);

5985 5986 5987 5988
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

5989 5990
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
5991 5992
			tx_buffer++;
			tx_desc++;
5993
			i++;
5994 5995
			if (unlikely(!i)) {
				i -= tx_ring->count;
5996
				tx_buffer = tx_ring->tx_buffer_info;
5997 5998
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5999 6000

			/* unmap any remaining paged data */
6001
			if (dma_unmap_len(tx_buffer, len)) {
6002
				dma_unmap_page(tx_ring->dev,
6003 6004
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
6005
					       DMA_TO_DEVICE);
6006
				dma_unmap_len_set(tx_buffer, len, 0);
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
6019 6020 6021 6022 6023 6024 6025

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
6026

6027 6028
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
6029
	i += tx_ring->count;
6030
	tx_ring->next_to_clean = i;
6031 6032 6033 6034
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
6035 6036
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
6037

6038
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6039
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
6040

6041
		/* Detect a transmit hang in hardware, this serializes the
6042 6043
		 * check with the clearing of time_stamp and movement of i
		 */
6044
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6045
		if (tx_buffer->next_to_watch &&
6046
		    time_after(jiffies, tx_buffer->time_stamp +
6047 6048
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6049 6050

			/* detected Tx unit hang */
6051
			dev_err(tx_ring->dev,
6052
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
6053
				"  Tx Queue             <%d>\n"
6054 6055 6056 6057 6058 6059
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
6060
				"  next_to_watch        <%p>\n"
6061 6062
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
6063
				tx_ring->queue_index,
6064
				rd32(E1000_TDH(tx_ring->reg_idx)),
6065
				readl(tx_ring->tail),
6066 6067
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
6068
				tx_buffer->time_stamp,
6069
				tx_buffer->next_to_watch,
6070
				jiffies,
6071
				tx_buffer->next_to_watch->wb.status);
6072 6073 6074 6075 6076
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
6077 6078
		}
	}
6079

6080
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6081
	if (unlikely(total_packets &&
6082 6083
	    netif_carrier_ok(tx_ring->netdev) &&
	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
6101 6102
}

6103
/**
6104 6105 6106
 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 *  @rx_ring: rx descriptor ring to store buffers on
 *  @old_buff: donor buffer to have page reused
6107
 *
6108
 *  Synchronizes page for reuse by the adapter
6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
6128
					 IGB_RX_BUFSZ,
6129 6130 6131
					 DMA_FROM_DEVICE);
}

6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
				  struct page *page,
				  unsigned int truesize)
{
	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;

	/* since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif

	return true;
}

6167
/**
6168 6169 6170 6171 6172
 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 *  @rx_ring: rx descriptor ring to transact packets on
 *  @rx_buffer: buffer containing page to add
 *  @rx_desc: descriptor containing length of buffer written by hardware
 *  @skb: sk_buff to place the data into
6173
 *
6174 6175 6176 6177
 *  This function will add the data contained in rx_buffer->page to the skb.
 *  This is done either through a direct copy if the data in the buffer is
 *  less than the skb header size, otherwise it will just attach the page as
 *  a frag to the skb.
6178
 *
6179 6180
 *  The function will then update the page offset if necessary and return
 *  true if the buffer can be reused by the adapter.
6181 6182 6183 6184 6185 6186 6187 6188
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6189 6190 6191 6192 6193
#if (PAGE_SIZE < 8192)
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6216
			rx_buffer->page_offset, size, truesize);
6217

6218 6219
	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
}
6220

6221 6222 6223 6224 6225 6226 6227 6228
static struct sk_buff *igb_build_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc)
{
	struct igb_rx_buffer *rx_buffer;
	struct sk_buff *skb;
	struct page *page;
	void *page_addr;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6229
#if (PAGE_SIZE < 8192)
6230 6231 6232 6233 6234 6235 6236
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
				SKB_DATA_ALIGN(NET_SKB_PAD +
					       NET_IP_ALIGN +
					       size);
#endif
6237

6238 6239
	/* If we spanned a buffer we have a huge mess so test for it */
	BUG_ON(unlikely(!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)));
6240

6241 6242 6243
	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
	page = rx_buffer->page;
	prefetchw(page);
6244

6245 6246 6247 6248 6249 6250
	page_addr = page_address(page) + rx_buffer->page_offset;

	/* prefetch first cache line of first page */
	prefetch(page_addr + NET_SKB_PAD + NET_IP_ALIGN);
#if L1_CACHE_BYTES < 128
	prefetch(page_addr + L1_CACHE_BYTES + NET_SKB_PAD + NET_IP_ALIGN);
6251
#endif
6252

6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
	/* build an skb to around the page buffer */
	skb = build_skb(page_addr, truesize);
	if (unlikely(!skb)) {
		rx_ring->rx_stats.alloc_failed++;
		return NULL;
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      IGB_RX_BUFSZ,
				      DMA_FROM_DEVICE);

	/* update pointers within the skb to store the data */
	skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD);
	__skb_put(skb, size);

	/* pull timestamp out of packet data */
	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
		__skb_pull(skb, IGB_TS_HDR_LEN);
	}

	if (igb_can_reuse_rx_page(rx_buffer, page, truesize)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of buffer_info */
	rx_buffer->dma = 0;
	rx_buffer->page = NULL;

	return skb;
6291 6292
}

6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

6323
		/* we will be copying header into skb->data in
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6334
				      IGB_RX_BUFSZ,
6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6353
static inline void igb_rx_checksum(struct igb_ring *ring,
6354 6355
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6356
{
6357
	skb_checksum_none_assert(skb);
6358

6359
	/* Ignore Checksum bit is set */
6360
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6361 6362 6363 6364
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6365
		return;
6366

6367
	/* TCP/UDP checksum error bit is set */
6368 6369 6370
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6371
		/* work around errata with sctp packets where the TCPE aka
6372 6373 6374
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6375 6376
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6377
			u64_stats_update_begin(&ring->rx_syncp);
6378
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6379 6380
			u64_stats_update_end(&ring->rx_syncp);
		}
6381 6382 6383 6384
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6385 6386
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6387 6388
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6389 6390
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6391 6392
}

6393 6394 6395 6396 6397 6398 6399 6400
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

6401
/**
6402 6403 6404 6405
 *  igb_is_non_eop - process handling of non-EOP buffers
 *  @rx_ring: Rx ring being processed
 *  @rx_desc: Rx descriptor for current buffer
 *  @skb: current socket buffer containing buffer in progress
6406
 *
6407 6408 6409 6410
 *  This function updates next to clean.  If the buffer is an EOP buffer
 *  this function exits returning false, otherwise it will place the
 *  sk_buff in the next buffer to be chained and return true indicating
 *  that this is in fact a non-EOP buffer.
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6429
/**
6430 6431 6432
 *  igb_get_headlen - determine size of header for LRO/GRO
 *  @data: pointer to the start of the headers
 *  @max_len: total length of section to find headers in
6433
 *
6434 6435 6436 6437 6438
 *  This function is meant to determine the length of headers that will
 *  be recognized by hardware for LRO, and GRO offloads.  The main
 *  motivation of doing this is to only perform one pull for IPv4 TCP
 *  packets so that we can do basic things like calculating the gso_size
 *  based on the average data per packet.
6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

6488
		/* record next protocol if header is present */
6489
		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6490
			nexthdr = hdr.ipv4->protocol;
6491 6492 6493 6494 6495 6496
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
6497
		hlen = sizeof(struct ipv6hdr);
6498 6499 6500 6501
	} else {
		return hdr.network - data;
	}

6502 6503 6504
	/* relocate pointer to start of L4 header */
	hdr.network += hlen;

6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524
	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

6525
	/* If everything has gone correctly hdr.network should be the
6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
6537 6538 6539 6540
 *  igb_pull_tail - igb specific version of skb_pull_tail
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being adjusted
6541
 *
6542 6543 6544 6545 6546 6547
 *  This function is an igb specific version of __pskb_pull_tail.  The
 *  main difference between this version and the original function is that
 *  this function can make several assumptions about the state of things
 *  that allow for significant optimizations versus the standard function.
 *  As a result we can do things like drop a frag and maintain an accurate
 *  truesize for the skb.
6548 6549 6550 6551
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6552
{
6553 6554 6555 6556
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

6557
	/* it is valid to use page_address instead of kmap since we are
6558 6559
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6560
	 */
6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
	va = skb_frag_address(frag);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

6577
	/* we need the header to contain the greater of either ETH_HLEN or
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
6593 6594 6595 6596
 *  igb_cleanup_headers - Correct corrupted or empty headers
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being fixed
6597
 *
6598 6599
 *  Address the case where we are pulling data in on pages only
 *  and as such no data is present in the skb header.
6600
 *
6601 6602
 *  In addition if skb is not at least 60 bytes we need to pad it so that
 *  it is large enough to qualify as a valid Ethernet frame.
6603
 *
6604
 *  Returns true if an error was encountered and skb was freed.
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{
	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6633 6634
}

6635
/**
6636 6637 6638 6639
 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being populated
6640
 *
6641 6642 6643
 *  This function checks the ring, descriptor, and packet information in
 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 *  other fields within the skb.
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);

	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, vid);
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6674
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6675
{
6676
	struct igb_ring *rx_ring = q_vector->rx.ring;
6677
	struct sk_buff *skb = rx_ring->skb;
6678
	unsigned int total_bytes = 0, total_packets = 0;
6679
	u16 cleaned_count = igb_desc_unused(rx_ring);
6680

6681 6682
	do {
		union e1000_adv_rx_desc *rx_desc;
6683

6684 6685 6686 6687 6688
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6689

6690
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6691

6692 6693
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6694

6695 6696 6697 6698 6699 6700
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();

6701
		/* retrieve a buffer from the ring */
6702 6703 6704 6705
		if (ring_uses_build_skb(rx_ring))
			skb = igb_build_rx_buffer(rx_ring, rx_desc);
		else
			skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6706

6707 6708 6709
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6710

6711
		cleaned_count++;
6712

6713 6714 6715
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6716 6717 6718 6719 6720

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6721 6722
		}

6723
		/* probably a little skewed due to removing CRC */
6724 6725
		total_bytes += skb->len;

6726 6727
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6728

J
Jiri Pirko 已提交
6729
		napi_gro_receive(&q_vector->napi, skb);
6730

6731 6732 6733
		/* reset skb pointer */
		skb = NULL;

6734 6735 6736
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
6737

6738 6739 6740
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
6741
	u64_stats_update_begin(&rx_ring->rx_syncp);
6742 6743
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6744
	u64_stats_update_end(&rx_ring->rx_syncp);
6745 6746
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6747 6748

	if (cleaned_count)
6749
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6750

6751
	return (total_packets < budget);
6752 6753
}

6754
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6755
				  struct igb_rx_buffer *bi)
6756 6757
{
	struct page *page = bi->page;
6758
	dma_addr_t dma;
6759

6760 6761
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
6762 6763
		return true;

6764 6765 6766 6767 6768
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
6769 6770
	}

6771 6772
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6773

6774
	/* if mapping failed free memory back to system since
6775 6776
	 * there isn't much point in holding memory we can't use
	 */
6777
	if (dma_mapping_error(rx_ring->dev, dma)) {
6778 6779
		__free_page(page);

6780 6781 6782 6783
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

6784
	bi->dma = dma;
6785 6786
	bi->page = page;
	bi->page_offset = 0;
6787

6788 6789 6790
	return true;
}

6791 6792 6793 6794 6795 6796 6797 6798
static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
{
	if (ring_uses_build_skb(rx_ring))
		return NET_SKB_PAD + NET_IP_ALIGN;
	else
		return 0;
}

6799
/**
6800 6801
 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
 *  @adapter: address of board private structure
6802
 **/
6803
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6804 6805
{
	union e1000_adv_rx_desc *rx_desc;
6806
	struct igb_rx_buffer *bi;
6807
	u16 i = rx_ring->next_to_use;
6808

6809 6810 6811 6812
	/* nothing to do */
	if (!cleaned_count)
		return;

6813
	rx_desc = IGB_RX_DESC(rx_ring, i);
6814
	bi = &rx_ring->rx_buffer_info[i];
6815
	i -= rx_ring->count;
6816

6817
	do {
6818
		if (!igb_alloc_mapped_page(rx_ring, bi))
6819
			break;
6820

6821
		/* Refresh the desc even if buffer_addrs didn't change
6822 6823
		 * because each write-back erases this info.
		 */
6824 6825 6826
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma +
						     bi->page_offset +
						     igb_rx_offset(rx_ring));
6827

6828 6829
		rx_desc++;
		bi++;
6830
		i++;
6831
		if (unlikely(!i)) {
6832
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6833
			bi = rx_ring->rx_buffer_info;
6834 6835 6836 6837 6838
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6839 6840 6841

		cleaned_count--;
	} while (cleaned_count);
6842

6843 6844
	i += rx_ring->count;

6845
	if (rx_ring->next_to_use != i) {
6846
		/* record the next descriptor to use */
6847 6848
		rx_ring->next_to_use = i;

6849 6850 6851
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

6852
		/* Force memory writes to complete before letting h/w
6853 6854
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
6855 6856
		 * such as IA-64).
		 */
6857
		wmb();
6858
		writel(i, rx_ring->tail);
6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6881 6882
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6905
	case SIOCSHWTSTAMP:
6906
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6907 6908 6909 6910 6911
	default:
		return -EOPNOTSUPP;
	}
}

6912 6913 6914 6915
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6916
	if (pcie_capability_read_word(adapter->pdev, reg, value))
6917 6918 6919 6920 6921 6922 6923 6924 6925
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6926
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6927 6928 6929 6930 6931
		return -E1000_ERR_CONFIG;

	return 0;
}

6932
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6933 6934 6935 6936
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6937
	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6938

6939
	if (enable) {
6940 6941 6942 6943 6944
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6945
		/* Disable CFI check */
6946 6947 6948 6949 6950 6951 6952 6953 6954 6955
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6956
	igb_rlpml_set(adapter);
6957 6958
}

6959
static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6960 6961 6962
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6963
	int pf_id = adapter->vfs_allocated_count;
6964

6965 6966
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6967

6968 6969
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6970 6971

	set_bit(vid, adapter->active_vlans);
6972 6973

	return 0;
6974 6975
}

6976
static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6977 6978 6979
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6980
	int pf_id = adapter->vfs_allocated_count;
6981
	s32 err;
6982

6983 6984
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6985

6986 6987
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6988
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6989 6990

	clear_bit(vid, adapter->active_vlans);
6991 6992

	return 0;
6993 6994 6995 6996
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6997
	u16 vid;
6998

6999 7000
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
7001 7002
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
7003 7004
}

7005
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7006
{
7007
	struct pci_dev *pdev = adapter->pdev;
7008 7009 7010 7011
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

7012
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7013 7014
	 * for the switch() below to work
	 */
7015 7016 7017
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
	/* Fiber NIC's only allow 1000 gbps Full duplex
	 * and 100Mbps Full duplex for 100baseFx sfp
	 */
	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
		switch (spd + dplx) {
		case SPEED_10 + DUPLEX_HALF:
		case SPEED_10 + DUPLEX_FULL:
		case SPEED_100 + DUPLEX_HALF:
			goto err_inval;
		default:
			break;
		}
	}
7031

7032
	switch (spd + dplx) {
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
7051
		goto err_inval;
7052
	}
7053 7054 7055 7056

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

7057
	return 0;
7058 7059 7060 7061

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
7062 7063
}

Y
Yan, Zheng 已提交
7064 7065
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
7066 7067 7068 7069
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
7070
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
7071
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7072 7073 7074 7075 7076 7077
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
7078
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
7079
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
7080

7081
	igb_clear_interrupt_scheme(adapter);
7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
7095
		igb_set_rx_mode(netdev);
7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
7113
		igb_disable_pcie_master(hw);
7114 7115 7116 7117 7118 7119 7120 7121

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

7122 7123
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
7124 7125 7126
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
7127 7128

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7129 7130
	 * would have already happened in close and is redundant.
	 */
7131 7132 7133 7134 7135 7136 7137 7138
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
7139
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
7140
static int igb_suspend(struct device *dev)
7141 7142 7143
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
7144
	struct pci_dev *pdev = to_pci_dev(dev);
7145

Y
Yan, Zheng 已提交
7146
	retval = __igb_shutdown(pdev, &wake, 0);
7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
7159
#endif /* CONFIG_PM_SLEEP */
7160

Y
Yan, Zheng 已提交
7161
static int igb_resume(struct device *dev)
7162
{
Y
Yan, Zheng 已提交
7163
	struct pci_dev *pdev = to_pci_dev(dev);
7164 7165 7166 7167 7168 7169 7170
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
7171
	pci_save_state(pdev);
T
Taku Izumi 已提交
7172

7173
	err = pci_enable_device_mem(pdev);
7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

7184
	if (igb_init_interrupt_scheme(adapter, true)) {
A
Alexander Duyck 已提交
7185 7186
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
7187 7188 7189
	}

	igb_reset(adapter);
7190 7191

	/* let the f/w know that the h/w is now under the control of the
7192 7193
	 * driver.
	 */
7194 7195
	igb_get_hw_control(adapter);

7196 7197
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
7198
	if (netdev->flags & IFF_UP) {
7199
		rtnl_lock();
Y
Yan, Zheng 已提交
7200
		err = __igb_open(netdev, true);
7201
		rtnl_unlock();
A
Alexander Duyck 已提交
7202 7203 7204
		if (err)
			return err;
	}
7205 7206

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7239 7240 7241

	return 0;
}
Y
Yan, Zheng 已提交
7242 7243 7244 7245 7246 7247

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
7248 7249 7250 7251
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
7252 7253
	bool wake;

Y
Yan, Zheng 已提交
7254
	__igb_shutdown(pdev, &wake, 0);
7255 7256 7257 7258 7259

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7260 7261
}

7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

7328
#ifdef CONFIG_NET_POLL_CONTROLLER
7329
/* Polling 'interrupt' - used by things like netconsole to send skbs
7330 7331 7332 7333 7334 7335
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
7336
	struct e1000_hw *hw = &adapter->hw;
7337
	struct igb_q_vector *q_vector;
7338 7339
	int i;

7340
	for (i = 0; i < adapter->num_q_vectors; i++) {
7341 7342 7343 7344 7345
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
7346
		napi_schedule(&q_vector->napi);
7347
	}
7348 7349 7350 7351
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
7352 7353 7354
 *  igb_io_error_detected - called when PCI error is detected
 *  @pdev: Pointer to PCI device
 *  @state: The current pci connection state
7355
 *
7356 7357 7358
 *  This function is called after a PCI bus error affecting
 *  this device has been detected.
 **/
7359 7360 7361 7362 7363 7364 7365 7366
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

7367 7368 7369
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

7370 7371 7372 7373 7374 7375 7376 7377 7378
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
7379 7380
 *  igb_io_slot_reset - called after the pci bus has been reset.
 *  @pdev: Pointer to PCI device
7381
 *
7382 7383 7384
 *  Restart the card from scratch, as if from a cold-boot. Implementation
 *  resembles the first-half of the igb_resume routine.
 **/
7385 7386 7387 7388 7389
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7390
	pci_ers_result_t result;
T
Taku Izumi 已提交
7391
	int err;
7392

7393
	if (pci_enable_device_mem(pdev)) {
7394 7395
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
7396 7397 7398 7399
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
7400
		pci_save_state(pdev);
7401

7402 7403
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
7404

7405 7406 7407 7408
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
7409

7410 7411
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
7412 7413 7414
		dev_err(&pdev->dev,
			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
			err);
7415 7416
		/* non-fatal, continue */
	}
7417 7418

	return result;
7419 7420 7421
}

/**
7422 7423
 *  igb_io_resume - called when traffic can start flowing again.
 *  @pdev: Pointer to PCI device
7424
 *
7425 7426 7427
 *  This callback is called when the error recovery driver tells us that
 *  its OK to resume normal operation. Implementation resembles the
 *  second-half of the igb_resume routine.
7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
7444 7445
	 * driver.
	 */
7446 7447 7448
	igb_get_hw_control(adapter);
}

7449
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7450
			     u8 qsel)
7451 7452 7453 7454 7455 7456 7457 7458
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7459
		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7476
static int igb_set_vf_mac(struct igb_adapter *adapter,
7477
			  int vf, unsigned char *mac_addr)
7478 7479
{
	struct e1000_hw *hw = &adapter->hw;
7480
	/* VF MAC addresses start at end of receive addresses and moves
7481 7482
	 * towards the first, as a result a collision should not be possible
	 */
7483
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7484

7485
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7486

7487
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7488 7489 7490 7491

	return 0;
}

7492 7493 7494 7495 7496 7497 7498
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7499 7500
	dev_info(&adapter->pdev->dev,
		 "Reload the VF driver to make this change effective.");
7501
	if (test_bit(__IGB_DOWN, &adapter->state)) {
7502 7503 7504 7505
		dev_warn(&adapter->pdev->dev,
			 "The VF MAC address has been set, but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev,
			 "Bring the PF device up before attempting to use the VF device.\n");
7506 7507 7508 7509
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
7532 7533
		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
			 tx_rate;
7534 7535

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7536 7537
		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
			      E1000_RTTBCNRC_RF_INT_MASK);
7538 7539 7540 7541 7542 7543
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7544
	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
L
Lior Levy 已提交
7545 7546 7547
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
7566
			 "Link speed has been changed. VF Transmit rate is disabled\n");
7567 7568 7569 7570 7571 7572 7573
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
7574 7575
				      adapter->vf_data[i].tx_rate,
				      actual_link_speed);
7576 7577 7578
	}
}

7579 7580
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7599 7600
}

L
Lior Levy 已提交
7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 reg_val, reg_offset;

	if (!adapter->vfs_allocated_count)
		return -EOPNOTSUPP;

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;

	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
	reg_val = rd32(reg_offset);
	if (setting)
		reg_val |= ((1 << vf) |
			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	else
		reg_val &= ~((1 << vf) |
			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	wr32(reg_offset, reg_val);

	adapter->vf_data[vf].spoofchk_enabled = setting;
	return E1000_SUCCESS;
}

7628 7629 7630 7631 7632 7633 7634 7635
static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7636
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7637 7638
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
L
Lior Levy 已提交
7639
	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7640 7641 7642
	return 0;
}

7643 7644 7645
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7646
	u32 reg;
7647

7648 7649
	switch (hw->mac.type) {
	case e1000_82575:
7650 7651
	case e1000_i210:
	case e1000_i211:
7652 7653
	default:
		/* replication is not supported for 82575 */
7654
		return;
7655 7656 7657 7658 7659 7660 7661 7662 7663 7664
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7665 7666
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7667 7668
		break;
	}
7669

7670 7671 7672
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7673
		igb_vmdq_set_anti_spoofing_pf(hw, true,
7674
					      adapter->vfs_allocated_count);
7675 7676 7677 7678
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7679 7680
}

7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

7694
			/* DMA Coalescing high water mark needs to be greater
7695 7696
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7697
			 */
7698 7699 7700 7701 7702 7703 7704 7705 7706
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

7707
			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7708 7709 7710 7711 7712
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7713 7714 7715 7716 7717 7718 7719 7720 7721 7722
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7723 7724 7725

			/* Disable BMC-to-OS Watchdog Enable */
			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7726 7727
			wr32(E1000_DMACR, reg);

7728
			/* no lower threshold to disable
7729 7730 7731 7732 7733 7734 7735 7736
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

7737
			/* free space in tx packet buffer to wake from
7738 7739 7740 7741 7742
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

7743
			/* make low power state decision controlled
7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

7757 7758
/**
 *  igb_read_i2c_byte - Reads 8 bit word over I2C
C
Carolyn Wyborny 已提交
7759 7760 7761 7762 7763 7764 7765
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
7766
 **/
C
Carolyn Wyborny 已提交
7767
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7768
		      u8 dev_addr, u8 *data)
C
Carolyn Wyborny 已提交
7769 7770
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7771
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
	    != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
		return E1000_SUCCESS;
	}
}

7795 7796
/**
 *  igb_write_i2c_byte - Writes 8 bit word over I2C
C
Carolyn Wyborny 已提交
7797 7798 7799 7800 7801 7802 7803
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
7804
 **/
C
Carolyn Wyborny 已提交
7805
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7806
		       u8 dev_addr, u8 data)
C
Carolyn Wyborny 已提交
7807 7808
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7809
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
		return E1000_SUCCESS;

}
7827
/* igb_main.c */