igb_main.c 209.3 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2013 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
C
Carolyn Wyborny 已提交
60
#include <linux/i2c.h>
61 62
#include "igb.h"

C
Carolyn Wyborny 已提交
63 64 65
#define MAJ 5
#define MIN 0
#define BUILD 3
C
Carolyn Wyborny 已提交
66
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67
__stringify(BUILD) "-k"
68 69 70 71
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
72 73
static const char igb_copyright[] =
				"Copyright (c) 2007-2013 Intel Corporation.";
74 75 76 77 78

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

79
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 81 82
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 84 85 86 87
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
90 91 92 93
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
94 95
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
97 98 99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
100 101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
102 103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
105
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
106
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
107 108
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
109
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
110
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
111
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
112 113 114 115 116 117 118 119 120 121 122 123 124 125
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
126
static void igb_setup_mrqc(struct igb_adapter *);
127
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
128
static void igb_remove(struct pci_dev *pdev);
129 130 131
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
132
static void igb_configure(struct igb_adapter *);
133 134 135 136
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
137 138
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
139
static void igb_set_rx_mode(struct net_device *);
140 141 142
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
143
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
144 145
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
146 147
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
148
static void igb_set_uta(struct igb_adapter *adapter);
149 150 151
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
152
static irqreturn_t igb_msix_ring(int irq, void *);
153
#ifdef CONFIG_IGB_DCA
154
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
155
static void igb_setup_dca(struct igb_adapter *);
156
#endif /* CONFIG_IGB_DCA */
157
static int igb_poll(struct napi_struct *, int);
158
static bool igb_clean_tx_irq(struct igb_q_vector *);
159
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
160 161 162
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
163
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
164 165
static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
166
static void igb_restore_vlan(struct igb_adapter *);
167
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
168 169 170
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
171
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
172
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
173 174 175 176
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
L
Lior Levy 已提交
177 178
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting);
179 180
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
181
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
182 183

#ifdef CONFIG_PCI_IOV
184
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
R
RongQing Li 已提交
185
#endif
186 187

#ifdef CONFIG_PM
188
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
189
static int igb_suspend(struct device *);
190
#endif
Y
Yan, Zheng 已提交
191 192 193 194 195 196 197 198 199 200 201
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
202 203
#endif
static void igb_shutdown(struct pci_dev *);
204
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
206 207 208 209 210 211 212
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
213 214 215 216
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
217
#ifdef CONFIG_PCI_IOV
218 219 220 221 222 223
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

224 225 226 227 228
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

229
static const struct pci_error_handlers igb_err_handler = {
230 231 232 233 234
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

235
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236 237 238 239 240

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
241
	.remove   = igb_remove,
242
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
243
	.driver.pm = &igb_pm_ops,
244 245
#endif
	.shutdown = igb_shutdown,
246
	.sriov_configure = igb_pci_sriov_configure,
247 248 249 250 251 252 253 254
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

255 256 257 258 259
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

301
/* igb_regdump - register printout routine */
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
358
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359 360 361 362
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
363 364
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
365 366
}

367
/* igb_dump - Print registers, Tx-rings and Rx-rings */
368 369 370 371 372 373 374 375 376 377 378
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
379
	u16 i, n;
380 381 382 383 384 385 386

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
387 388 389 390
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
391 392 393 394
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
395
	pr_info(" Register Name   Value\n");
396 397 398 399 400 401 402 403 404 405
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
406
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
407
	for (n = 0; n < adapter->num_tx_queues; n++) {
408
		struct igb_tx_buffer *buffer_info;
409
		tx_ring = adapter->tx_ring[n];
410
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
411 412
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
413 414
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
415 416
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
438 439 440 441 442 443
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
444 445

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
446
			const char *next_desc;
447
			struct igb_tx_buffer *buffer_info;
448
			tx_desc = IGB_TX_DESC(tx_ring, i);
449
			buffer_info = &tx_ring->tx_buffer_info[i];
450
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
451 452 453 454 455 456 457 458 459 460 461 462
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
463 464
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
465 466
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
467 468
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
469
				buffer_info->skb, next_desc);
470

471
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
472 473
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
474
					16, 1, buffer_info->skb->data,
475 476
					dma_unmap_len(buffer_info, len),
					true);
477 478 479 480 481 482
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
483
	pr_info("Queue [NTU] [NTC]\n");
484 485
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
486 487
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
519 520 521 522 523 524 525
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526 527

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
528
			const char *next_desc;
529 530
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
531
			rx_desc = IGB_RX_DESC(rx_ring, i);
532 533
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
534 535 536 537 538 539 540 541

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

542 543
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
544 545
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
546 547
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
548
					next_desc);
549
			} else {
550 551
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
552 553 554
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
555
					next_desc);
556

557
				if (netif_msg_pktdata(adapter) &&
558
				    buffer_info->dma && buffer_info->page) {
559 560 561
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
562 563
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
564
					  IGB_RX_BUFSZ, true);
565 566 567 568 569 570 571 572 573
				}
			}
		}
	}

exit:
	return;
}

574 575
/**
 *  igb_get_i2c_data - Reads the I2C SDA data bit
C
Carolyn Wyborny 已提交
576 577 578 579
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
580
 **/
C
Carolyn Wyborny 已提交
581 582 583 584 585 586 587 588 589
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
}

590 591
/**
 *  igb_set_i2c_data - Sets the I2C data bit
C
Carolyn Wyborny 已提交
592 593 594 595
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
596
 **/
C
Carolyn Wyborny 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

615 616
/**
 *  igb_set_i2c_clk - Sets the I2C SCL clock
C
Carolyn Wyborny 已提交
617 618 619 620
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
621
 **/
C
Carolyn Wyborny 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

639 640
/**
 *  igb_get_i2c_clk - Gets the I2C SCL clock state
C
Carolyn Wyborny 已提交
641 642 643
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
644
 **/
C
Carolyn Wyborny 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

663
/**
664 665 666 667
 *  igb_get_hw_dev - return device
 *  @hw: pointer to hardware structure
 *
 *  used by hardware layer to print debugging information
668
 **/
669
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670 671
{
	struct igb_adapter *adapter = hw->back;
672
	return adapter->netdev;
673
}
P
Patrick Ohly 已提交
674

675
/**
676
 *  igb_init_module - Driver Registration Routine
677
 *
678 679
 *  igb_init_module is the first routine called when the driver is
 *  loaded. All it does is register with the PCI subsystem.
680 681 682 683
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
684
	pr_info("%s - version %s\n",
685 686
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
687
	pr_info("%s\n", igb_copyright);
688

689
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
690 691
	dca_register_notify(&dca_notifier);
#endif
692
	ret = pci_register_driver(&igb_driver);
693 694 695 696 697 698
	return ret;
}

module_init(igb_init_module);

/**
699
 *  igb_exit_module - Driver Exit Cleanup Routine
700
 *
701 702
 *  igb_exit_module is called just before the driver is removed
 *  from memory.
703 704 705
 **/
static void __exit igb_exit_module(void)
{
706
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
707 708
	dca_unregister_notify(&dca_notifier);
#endif
709 710 711 712 713
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

714 715
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
716 717
 *  igb_cache_ring_register - Descriptor ring to register mapping
 *  @adapter: board private structure to initialize
718
 *
719 720
 *  Once we know the feature-set enabled for the device, we'll cache
 *  the register offset the descriptor ring is assigned to.
721 722 723
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
724
	int i = 0, j = 0;
725
	u32 rbase_offset = adapter->vfs_allocated_count;
726 727 728 729 730 731 732 733

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
734
		if (adapter->vfs_allocated_count) {
735
			for (; i < adapter->rss_queues; i++)
736
				adapter->rx_ring[i]->reg_idx = rbase_offset +
737
							       Q_IDX_82576(i);
738
		}
739
	case e1000_82575:
740
	case e1000_82580:
741
	case e1000_i350:
742
	case e1000_i354:
743 744
	case e1000_i210:
	case e1000_i211:
745
	default:
746
		for (; i < adapter->num_rx_queues; i++)
747
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748
		for (; j < adapter->num_tx_queues; j++)
749
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750 751 752 753
		break;
	}
}

A
Alexander Duyck 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

780
#define IGB_N0_QUEUE -1
781
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782
{
783
	struct igb_adapter *adapter = q_vector->adapter;
784
	struct e1000_hw *hw = &adapter->hw;
785 786
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
787
	u32 msixbm = 0;
788

789 790 791 792
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
793 794 795

	switch (hw->mac.type) {
	case e1000_82575:
796
		/* The 82575 assigns vectors using a bitmask, which matches the
797 798 799 800
		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
		 * or more queues to a vector, we write the appropriate bits
		 * into the MSIXBM register for that vector.
		 */
801
		if (rx_queue > IGB_N0_QUEUE)
802
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803
		if (tx_queue > IGB_N0_QUEUE)
804
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 806
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
807
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
809 810
		break;
	case e1000_82576:
811
		/* 82576 uses a table that essentially consists of 2 columns
A
Alexander Duyck 已提交
812 813 814 815 816 817 818 819 820 821 822 823
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
824
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
825
		break;
826
	case e1000_82580:
827
	case e1000_i350:
828
	case e1000_i354:
829 830
	case e1000_i210:
	case e1000_i211:
831
		/* On 82580 and newer adapters the scheme is similar to 82576
A
Alexander Duyck 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
845 846
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
847 848 849 850
	default:
		BUG();
		break;
	}
851 852 853 854 855 856

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
857 858 859
}

/**
860 861
 *  igb_configure_msix - Configure MSI-X hardware
 *  @adapter: board private structure to initialize
862
 *
863 864
 *  igb_configure_msix sets up the hardware to properly
 *  generate MSI-X interrupts.
865 866 867 868 869 870 871 872 873 874
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
875 876
	switch (hw->mac.type) {
	case e1000_82575:
877 878 879 880 881 882 883 884 885
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
886 887

		/* enable msix_other interrupt */
888
		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
889
		adapter->eims_other = E1000_EIMS_OTHER;
890

A
Alexander Duyck 已提交
891 892 893
		break;

	case e1000_82576:
894
	case e1000_82580:
895
	case e1000_i350:
896
	case e1000_i354:
897 898
	case e1000_i210:
	case e1000_i211:
899
		/* Turn on MSI-X capability first, or our settings
900 901
		 * won't stick.  And it will take days to debug.
		 */
902
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 904
		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
		     E1000_GPIE_NSICR);
905 906 907

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
908 909
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

910
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
911 912 913 914 915
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
916 917 918

	adapter->eims_enable_mask |= adapter->eims_other;

919 920
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
921

922 923 924 925
	wrfl();
}

/**
926 927
 *  igb_request_msix - Initialize MSI-X interrupts
 *  @adapter: board private structure to initialize
928
 *
929 930
 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 *  kernel.
931 932 933 934
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
935
	struct e1000_hw *hw = &adapter->hw;
936
	int i, err = 0, vector = 0, free_vector = 0;
937

938
	err = request_irq(adapter->msix_entries[vector].vector,
939
			  igb_msix_other, 0, netdev->name, adapter);
940
	if (err)
941
		goto err_out;
942 943 944 945

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

946 947
		vector++;

948 949
		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

950
		if (q_vector->rx.ring && q_vector->tx.ring)
951
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
952 953
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
954
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
955 956
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
957
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
958
				q_vector->rx.ring->queue_index);
959
		else
960 961
			sprintf(q_vector->name, "%s-unused", netdev->name);

962
		err = request_irq(adapter->msix_entries[vector].vector,
963 964
				  igb_msix_ring, 0, q_vector->name,
				  q_vector);
965
		if (err)
966
			goto err_free;
967 968 969 970
	}

	igb_configure_msix(adapter);
	return 0;
971 972 973 974 975 976 977 978 979 980 981

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
982 983 984 985 986 987 988 989 990
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
991
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
992
		pci_disable_msi(adapter->pdev);
993
	}
994 995
}

996
/**
997 998 999
 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be freed
1000
 *
1001 1002 1003
 *  This function frees the memory allocated to the q_vector.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	adapter->q_vector[v_idx] = NULL;
	netif_napi_del(&q_vector->napi);

1018
	/* igb_get_stats64() might access the rings on this vector,
1019 1020 1021 1022 1023
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

1024
/**
1025 1026
 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 *  @adapter: board private structure to initialize
1027
 *
1028 1029 1030
 *  This function frees the memory allocated to the q_vectors.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1031 1032 1033
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
1034 1035 1036 1037
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
1038
	adapter->num_q_vectors = 0;
1039 1040 1041

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);
1042 1043 1044
}

/**
1045 1046
 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *  @adapter: board private structure to initialize
1047
 *
1048 1049
 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 *  MSI-X interrupts allocated.
1050 1051 1052 1053 1054 1055
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1056 1057

/**
1058 1059 1060
 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1061
 *
1062 1063
 *  Attempt to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1064
 **/
1065
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1066 1067 1068 1069
{
	int err;
	int numvecs, i;

1070 1071 1072
	if (!msix)
		goto msi_only;

1073
	/* Number of supported queues. */
1074
	adapter->num_rx_queues = adapter->rss_queues;
1075 1076 1077 1078
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1079

1080
	/* start with one vector for every Rx queue */
1081 1082
	numvecs = adapter->num_rx_queues;

1083
	/* if Tx handler is separate add 1 for every Tx queue */
1084 1085
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1086 1087 1088 1089 1090 1091

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1092 1093
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1105
		return;
1106 1107 1108 1109 1110

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1122
		wrfl();
1123 1124 1125 1126
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1127
	adapter->vfs_allocated_count = 0;
1128
	adapter->rss_queues = 1;
1129
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1130
	adapter->num_rx_queues = 1;
1131
	adapter->num_tx_queues = 1;
1132
	adapter->num_q_vectors = 1;
1133
	if (!pci_enable_msi(adapter->pdev))
1134
		adapter->flags |= IGB_FLAG_HAS_MSI;
1135 1136
}

1137 1138 1139 1140 1141 1142 1143
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1144
/**
1145 1146 1147 1148 1149 1150 1151 1152
 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 *  @v_idx: index of vector in adapter struct
 *  @txr_count: total number of Tx rings to allocate
 *  @txr_idx: index of first Tx ring to allocate
 *  @rxr_count: total number of Rx rings to allocate
 *  @rxr_idx: index of first Rx ring to allocate
1153
 *
1154
 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1155
 **/
1156 1157 1158 1159
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1160 1161
{
	struct igb_q_vector *q_vector;
1162 1163
	struct igb_ring *ring;
	int ring_count, size;
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
	q_vector = kzalloc(size, GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	/* intialize ITR */
	if (rxr_count) {
		/* rx or rx/tx vector */
		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
			q_vector->itr_val = adapter->rx_itr_setting;
	} else {
		/* tx only vector */
		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
			q_vector->itr_val = adapter->tx_itr_setting;
	}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1231
	}
1232

1233 1234 1235 1236
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1237

1238 1239
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1240

1241 1242
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1243

1244 1245 1246
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1247

1248 1249
		/*
		 * On i350, i354, i210, and i211, loopback VLAN packets
1250
		 * have the tag byte-swapped.
1251
		 */
1252 1253
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1264 1265
}

1266

1267
/**
1268 1269
 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 *  @adapter: board private structure to initialize
1270
 *
1271 1272
 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 *  return -ENOMEM.
1273
 **/
1274
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1275
{
1276 1277 1278 1279 1280
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1281

1282 1283 1284 1285
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1286

1287 1288 1289 1290 1291 1292
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1293 1294
		}
	}
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1312
	return 0;
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1323 1324 1325
}

/**
1326 1327 1328
 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1329
 *
1330
 *  This function initializes the interrupts and allocates all of the queues.
1331
 **/
1332
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1333 1334 1335 1336
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1337
	igb_set_interrupt_capability(adapter, msix);
1338 1339 1340 1341 1342 1343 1344

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1345
	igb_cache_ring_register(adapter);
1346 1347

	return 0;
1348

1349 1350 1351 1352 1353
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1354
/**
1355 1356
 *  igb_request_irq - initialize interrupts
 *  @adapter: board private structure to initialize
1357
 *
1358 1359
 *  Attempts to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1360 1361 1362 1363
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1364
	struct pci_dev *pdev = adapter->pdev;
1365 1366 1367 1368
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1369
		if (!err)
1370 1371
			goto request_done;
		/* fall back to MSI */
1372 1373
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1374

1375
		igb_clear_interrupt_scheme(adapter);
1376 1377
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
1378
			goto request_done;
1379

1380 1381
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1382
		igb_configure(adapter);
1383
	}
P
PJ Waskiewicz 已提交
1384

1385 1386
	igb_assign_vector(adapter->q_vector[0], 0);

1387
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1388
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1389
				  netdev->name, adapter);
1390 1391
		if (!err)
			goto request_done;
1392

1393 1394
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1395
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1396 1397
	}

1398
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1399
			  netdev->name, adapter);
1400

A
Andy Gospodarek 已提交
1401
	if (err)
1402
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1414
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1415

1416
		for (i = 0; i < adapter->num_q_vectors; i++)
1417
			free_irq(adapter->msix_entries[vector++].vector,
1418
				 adapter->q_vector[i]);
1419 1420
	} else {
		free_irq(adapter->pdev->irq, adapter);
1421 1422 1423 1424
	}
}

/**
1425 1426
 *  igb_irq_disable - Mask off interrupt generation on the NIC
 *  @adapter: board private structure
1427 1428 1429 1430 1431
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1432
	/* we need to be careful when disabling interrupts.  The VFs are also
1433 1434 1435
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1436
	if (adapter->msix_entries) {
1437 1438 1439 1440 1441
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1442
	}
P
PJ Waskiewicz 已提交
1443 1444

	wr32(E1000_IAM, 0);
1445 1446
	wr32(E1000_IMC, ~0);
	wrfl();
1447 1448 1449 1450 1451 1452 1453
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1454 1455 1456
}

/**
1457 1458
 *  igb_irq_enable - Enable default interrupt generation settings
 *  @adapter: board private structure
1459 1460 1461 1462 1463 1464
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1465
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1466 1467 1468 1469
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1470
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1471
		if (adapter->vfs_allocated_count) {
1472
			wr32(E1000_MBVFIMR, 0xFF);
1473 1474 1475
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1476
	} else {
1477 1478 1479 1480
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1481
	}
1482 1483 1484 1485
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1486
	struct e1000_hw *hw = &adapter->hw;
1487 1488
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1500
	    !test_bit(old_vid, adapter->active_vlans)) {
1501 1502
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1503 1504 1505 1506
	}
}

/**
1507 1508
 *  igb_release_hw_control - release control of the h/w to f/w
 *  @adapter: address of board private structure
1509
 *
1510 1511 1512
 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that the
 *  driver is no longer loaded.
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
1526 1527
 *  igb_get_hw_control - get control of the h/w from f/w
 *  @adapter: address of board private structure
1528
 *
1529 1530 1531
 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that
 *  the driver is loaded.
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
1545 1546
 *  igb_configure - configure the hardware for RX and TX
 *  @adapter: private board structure
1547 1548 1549 1550 1551 1552 1553
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1554
	igb_set_rx_mode(netdev);
1555 1556 1557

	igb_restore_vlan(adapter);

1558
	igb_setup_tctl(adapter);
1559
	igb_setup_mrqc(adapter);
1560
	igb_setup_rctl(adapter);
1561 1562

	igb_configure_tx(adapter);
1563
	igb_configure_rx(adapter);
1564 1565 1566

	igb_rx_fifo_flush_82575(&adapter->hw);

1567
	/* call igb_desc_unused which always leaves
1568
	 * at least 1 descriptor unused to make sure
1569 1570
	 * next_to_use != next_to_clean
	 */
1571
	for (i = 0; i < adapter->num_rx_queues; i++) {
1572
		struct igb_ring *ring = adapter->rx_ring[i];
1573
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1574 1575 1576
	}
}

1577
/**
1578 1579
 *  igb_power_up_link - Power up the phy/serdes link
 *  @adapter: address of board private structure
1580 1581 1582
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1583 1584
	igb_reset_phy(&adapter->hw);

1585 1586 1587 1588 1589 1590 1591
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
1592 1593
 *  igb_power_down_link - Power down the phy/serdes link
 *  @adapter: address of board private structure
1594 1595 1596 1597 1598 1599 1600 1601
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1602 1603

/**
1604 1605
 *  igb_up - Open the interface and prepare it to handle traffic
 *  @adapter: board private structure
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1617 1618 1619
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1620
	if (adapter->msix_entries)
1621
		igb_configure_msix(adapter);
1622 1623
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1624 1625 1626 1627 1628

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1629 1630 1631 1632 1633 1634 1635
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1636 1637
	netif_tx_start_all_queues(adapter->netdev);

1638 1639 1640 1641
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1642 1643 1644 1645 1646 1647
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1648
	struct e1000_hw *hw = &adapter->hw;
1649 1650 1651 1652
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
1653 1654
	 * reschedule our watchdog timer
	 */
1655 1656 1657 1658 1659 1660 1661
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1662
	netif_tx_stop_all_queues(netdev);
1663 1664 1665 1666 1667 1668 1669 1670 1671

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1672 1673
	igb_irq_disable(adapter);

1674 1675
	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;

1676 1677
	for (i = 0; i < adapter->num_q_vectors; i++) {
		napi_synchronize(&(adapter->q_vector[i]->napi));
1678
		napi_disable(&(adapter->q_vector[i]->napi));
1679
	}
1680 1681 1682 1683 1684 1685


	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1686 1687

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1688 1689 1690
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1691

1692 1693 1694
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1695 1696
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1697 1698
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1699 1700 1701 1702 1703
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1718
	struct pci_dev *pdev = adapter->pdev;
1719
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1720 1721
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1722
	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1723 1724 1725 1726

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1727
	switch (mac->type) {
1728
	case e1000_i350:
1729
	case e1000_i354:
1730 1731 1732 1733
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1734
	case e1000_82576:
1735 1736
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1737 1738
		break;
	case e1000_82575:
1739 1740
	case e1000_i210:
	case e1000_i211:
1741 1742 1743
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1744
	}
1745

A
Alexander Duyck 已提交
1746 1747
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1748 1749 1750 1751 1752 1753 1754 1755
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
1756 1757
		 * expressed in KB.
		 */
1758 1759 1760 1761 1762
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
1763 1764 1765
		/* the Tx fifo also stores 16 bytes of information about the Tx
		 * but don't include ethernet FCS because hardware appends it
		 */
1766
		min_tx_space = (adapter->max_frame_size +
1767
				sizeof(union e1000_adv_tx_desc) -
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
1778 1779
		 * allocation, take space away from current Rx allocation
		 */
1780 1781 1782 1783
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

1784 1785 1786
			/* if short on Rx space, Rx wins and must trump Tx
			 * adjustment
			 */
1787 1788 1789
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1790
		wr32(E1000_PBA, pba);
1791 1792 1793 1794 1795 1796 1797
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
1798 1799
	 * - the full Rx FIFO size minus one full frame
	 */
1800
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1801
			((pba << 10) - 2 * adapter->max_frame_size));
1802

1803
	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1804
	fc->low_water = fc->high_water - 16;
1805 1806
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1807
	fc->current_mode = fc->requested_mode;
1808

1809 1810 1811 1812
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1813
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1814 1815

		/* ping all the active vfs to let them know we are going down */
1816
		igb_ping_all_vfs(adapter);
1817 1818 1819 1820 1821 1822

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1823
	/* Allow time for pending master requests to run */
1824
	hw->mac.ops.reset_hw(hw);
1825 1826
	wr32(E1000_WUC, 0);

1827
	if (hw->mac.ops.init_hw(hw))
1828
		dev_err(&pdev->dev, "Hardware Error\n");
1829

1830
	/* Flow control settings reset on hardware reset, so guarantee flow
1831 1832 1833 1834 1835
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1836
	igb_init_dmac(adapter, pba);
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
1849 1850 1851
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1852 1853 1854 1855 1856
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1857 1858 1859
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);

1860
	igb_get_phy_info(hw);
1861 1862
}

1863 1864
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1865
{
1866 1867
	/* Since there is no support for separate Rx/Tx vlan accel
	 * enable/disable make sure Tx flag is always in same state as Rx.
J
Jiri Pirko 已提交
1868
	 */
1869 1870
	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		features |= NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
1871
	else
1872
		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
1873 1874 1875 1876

	return features;
}

1877 1878
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1879
{
1880
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
1881
	struct igb_adapter *adapter = netdev_priv(netdev);
1882

1883
	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
J
Jiri Pirko 已提交
1884 1885
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

1896 1897 1898
	return 0;
}

S
Stephen Hemminger 已提交
1899
static const struct net_device_ops igb_netdev_ops = {
1900
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1901
	.ndo_stop		= igb_close,
1902
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1903
	.ndo_get_stats64	= igb_get_stats64,
1904
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1905 1906 1907 1908 1909 1910 1911
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1912 1913 1914
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
L
Lior Levy 已提交
1915
	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1916
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1917 1918 1919
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1920 1921
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1922 1923
};

1924 1925 1926 1927 1928 1929 1930
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1931 1932 1933 1934 1935
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
1936
	case e1000_i210:
1937
	case e1000_i211:
1938 1939 1940 1941 1942 1943 1944 1945 1946
		if (!(igb_get_flash_presence_i210(hw))) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%2d.%2d-%d",
				 fw.invm_major, fw.invm_minor,
				 fw.invm_img_type);
			break;
		}
		/* fall through */
1947 1948 1949 1950 1951 1952 1953 1954 1955
	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
1956
		} else if (fw.etrack_id != 0X0000) {
1957
			snprintf(adapter->fw_version,
1958 1959 1960 1961 1962 1963 1964 1965
			    sizeof(adapter->fw_version),
			    "%d.%d, 0x%08x",
			    fw.eep_major, fw.eep_minor, fw.etrack_id);
		} else {
		snprintf(adapter->fw_version,
		    sizeof(adapter->fw_version),
		    "%d.%d.%d",
		    fw.eep_major, fw.eep_minor, fw.eep_build);
1966 1967
		}
		break;
1968 1969 1970 1971
	}
	return;
}

1972 1973
/**
 *  igb_init_i2c - Init I2C interface
C
Carolyn Wyborny 已提交
1974
 *  @adapter: pointer to adapter structure
1975
 **/
C
Carolyn Wyborny 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
	s32 status = E1000_SUCCESS;

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
		return E1000_SUCCESS;

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structue that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

1999
/**
2000 2001 2002
 *  igb_probe - Device Initialization Routine
 *  @pdev: PCI device information struct
 *  @ent: entry in igb_pci_tbl
2003
 *
2004
 *  Returns 0 on success, negative on failure
2005
 *
2006 2007 2008
 *  igb_probe initializes an adapter identified by a pci_dev structure.
 *  The OS initialization, configuring of the adapter private structure,
 *  and a hardware reset occur.
2009
 **/
2010
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2011 2012 2013 2014
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
2015
	u16 eeprom_data = 0;
2016
	s32 ret_val;
2017
	static int global_quad_port_a; /* global quad port a indication */
2018 2019
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
2020
	int err, pci_using_dac;
2021
	u8 part_str[E1000_PBANUM_LENGTH];
2022

2023 2024 2025 2026 2027
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2028
			pci_name(pdev), pdev->vendor, pdev->device);
2029 2030 2031
		return -EINVAL;
	}

2032
	err = pci_enable_device_mem(pdev);
2033 2034 2035 2036
	if (err)
		return err;

	pci_using_dac = 0;
2037
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2038
	if (!err) {
2039
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2040 2041 2042
		if (!err)
			pci_using_dac = 1;
	} else {
2043
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2044
		if (err) {
2045 2046
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
2047
			if (err) {
2048 2049
				dev_err(&pdev->dev,
					"No usable DMA configuration, aborting\n");
2050 2051 2052 2053 2054
				goto err_dma;
			}
		}
	}

2055
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2056 2057
					   IORESOURCE_MEM),
					   igb_driver_name);
2058 2059 2060
	if (err)
		goto err_pci_reg;

2061
	pci_enable_pcie_error_reporting(pdev);
2062

2063
	pci_set_master(pdev);
2064
	pci_save_state(pdev);
2065 2066

	err = -ENOMEM;
2067
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2068
				   IGB_MAX_TX_QUEUES);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
2080
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2081 2082 2083 2084 2085

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
2086 2087
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
2088 2089
		goto err_ioremap;

S
Stephen Hemminger 已提交
2090
	netdev->netdev_ops = &igb_netdev_ops;
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
2113
		goto err_sw_init;
2114

2115
	/* setup the private structure */
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

2135
	/* features is initialized to 0 in allocation, it might have bits
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
2146 2147
			    NETIF_F_HW_VLAN_CTAG_RX |
			    NETIF_F_HW_VLAN_CTAG_TX;
2148 2149 2150

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
2151
	netdev->hw_features |= NETIF_F_RXALL;
2152 2153

	/* set this bit last since it cannot be part of hw_features */
2154
	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2155 2156 2157 2158 2159 2160

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2161

2162 2163
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2164
	if (pci_using_dac) {
2165
		netdev->features |= NETIF_F_HIGHDMA;
2166 2167
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2168

2169 2170
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2171
		netdev->features |= NETIF_F_SCTP_CSUM;
2172
	}
2173

2174 2175
	netdev->priv_flags |= IFF_UNICAST_FLT;

2176
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2177 2178

	/* before reading the NVM, reset the controller to put the device in a
2179 2180
	 * known good starting state
	 */
2181 2182
	hw->mac.ops.reset_hw(hw);

2183 2184
	/* make sure the NVM is good , i211/i210 parts can have special NVM
	 * that doesn't contain a checksum
2185
	 */
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
		if (igb_get_flash_presence_i210(hw)) {
			if (hw->nvm.ops.validate(hw) < 0) {
				dev_err(&pdev->dev,
					"The NVM Checksum Is Not Valid\n");
				err = -EIO;
				goto err_eeprom;
			}
		}
		break;
	default:
2199 2200 2201 2202 2203
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2204
		break;
2205 2206 2207 2208 2209 2210 2211 2212
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

2213
	if (!is_valid_ether_addr(netdev->dev_addr)) {
2214 2215 2216 2217 2218
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2219 2220 2221
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2222
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2223
		    (unsigned long) adapter);
2224
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2225
		    (unsigned long) adapter);
2226 2227 2228 2229

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2230
	/* Initialize link properties that are user-changeable */
2231 2232 2233 2234
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2235 2236
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2237 2238 2239

	igb_validate_mdi_setting(hw);

2240
	/* By default, support wake on port A */
2241
	if (hw->bus.func == 0)
2242 2243 2244 2245
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
2246
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2247 2248
				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				 &eeprom_data);
2249 2250
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2251

2252 2253
	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2254 2255 2256

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
2257 2258
	 * lan on a particular port
	 */
2259 2260
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2261
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2262 2263
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2264 2265
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2266
		/* Wake events only supported on port A for dual fiber
2267 2268
		 * regardless of eeprom setting
		 */
2269
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2270
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2271
		break;
2272
	case E1000_DEV_ID_82576_QUAD_COPPER:
2273
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2274 2275
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
2276
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2277 2278 2279 2280 2281 2282
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2283 2284 2285 2286
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2287 2288 2289
	}

	/* initialize the wol settings based on the eeprom settings */
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2302 2303 2304 2305

	/* reset the hardware with the new settings */
	igb_reset(adapter);

C
Carolyn Wyborny 已提交
2306 2307 2308 2309 2310 2311 2312
	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

2313 2314 2315 2316 2317 2318 2319 2320 2321
	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2322 2323 2324
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2325
#ifdef CONFIG_IGB_DCA
2326
	if (dca_add_requester(&pdev->dev) == 0) {
2327
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2328 2329 2330 2331
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2332
#endif
2333 2334 2335 2336
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;
2337

2338
		/* Read the NVM to determine if this i350 device supports an
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
A
Anders Berggren 已提交
2353
	/* do hw tstamp init after resetting */
2354
	igb_ptp_init(adapter);
A
Anders Berggren 已提交
2355

2356
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
	/* print bus type/speed/width info, not applicable to i354 */
	if (hw->mac.type != e1000_i354) {
		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
			 netdev->name,
			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
			   "unknown"),
			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
			  "Width x4" :
			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
			  "Width x2" :
			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
			  "Width x1" : "unknown"), netdev->dev_addr);
	}
2371

2372 2373 2374 2375 2376 2377 2378 2379
	if ((hw->mac.type >= e1000_i210 ||
	     igb_get_flash_presence_i210(hw))) {
		ret_val = igb_read_part_string(hw, part_str,
					       E1000_PBANUM_LENGTH);
	} else {
		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	}

2380 2381 2382
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2383 2384 2385
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2386
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2387
		adapter->num_rx_queues, adapter->num_tx_queues);
2388 2389
	switch (hw->mac.type) {
	case e1000_i350:
2390 2391
	case e1000_i210:
	case e1000_i211:
2392 2393
		igb_set_eee_i350(hw);
		break;
2394 2395 2396 2397 2398 2399 2400
	case e1000_i354:
		if (hw->phy.media_type == e1000_media_type_copper) {
			if ((rd32(E1000_CTRL_EXT) &
			    E1000_CTRL_EXT_LINK_MODE_SGMII))
				igb_set_eee_i354(hw);
		}
		break;
2401 2402 2403
	default:
		break;
	}
Y
Yan, Zheng 已提交
2404 2405

	pm_runtime_put_noidle(&pdev->dev);
2406 2407 2408 2409
	return 0;

err_register:
	igb_release_hw_control(adapter);
C
Carolyn Wyborny 已提交
2410
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2411 2412
err_eeprom:
	if (!igb_check_reset_block(hw))
2413
		igb_reset_phy(hw);
2414 2415 2416 2417

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2418
	igb_clear_interrupt_scheme(adapter);
2419 2420 2421 2422
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2423
	pci_release_selected_regions(pdev,
2424
				     pci_select_bars(pdev, IORESOURCE_MEM));
2425 2426 2427 2428 2429 2430
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
#ifdef CONFIG_PCI_IOV
static int  igb_disable_sriov(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
2441
		if (pci_vfs_assigned(pdev)) {
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	int err = 0;
	int i;

2473 2474 2475 2476 2477
	if (!adapter->msix_entries) {
		err = -EPERM;
		goto out;
	}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	if (!num_vfs)
		goto out;
	else if (old_vfs && old_vfs == num_vfs)
		goto out;
	else if (old_vfs && old_vfs != num_vfs)
		err = igb_disable_sriov(pdev);

	if (err)
		goto out;

	if (num_vfs > 7) {
		err = -EPERM;
		goto out;
	}

	adapter->vfs_allocated_count = num_vfs;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF Data Storage\n");
		err = -ENOMEM;
		goto out;
	}

	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
	if (err)
		goto err_out;

	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
2529
/**
C
Carolyn Wyborny 已提交
2530 2531
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
2532
 **/
C
Carolyn Wyborny 已提交
2533 2534 2535 2536 2537 2538
static void igb_remove_i2c(struct igb_adapter *adapter)
{
	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

2539
/**
2540 2541
 *  igb_remove - Device Removal Routine
 *  @pdev: PCI device information struct
2542
 *
2543 2544 2545 2546
 *  igb_remove is called by the PCI subsystem to alert the driver
 *  that it should release a PCI device.  The could be caused by a
 *  Hot-Plug event, or because the driver is going to be removed from
 *  memory.
2547
 **/
2548
static void igb_remove(struct pci_dev *pdev)
2549 2550 2551
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2552
	struct e1000_hw *hw = &adapter->hw;
2553

Y
Yan, Zheng 已提交
2554
	pm_runtime_get_noresume(&pdev->dev);
2555 2556 2557
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
C
Carolyn Wyborny 已提交
2558
	igb_remove_i2c(adapter);
2559
	igb_ptp_stop(adapter);
2560
	/* The watchdog timer may be rescheduled, so explicitly
2561 2562
	 * disable watchdog from being rescheduled.
	 */
2563 2564 2565 2566
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2567 2568
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2569

2570
#ifdef CONFIG_IGB_DCA
2571
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2572 2573
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2574
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2575
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2576 2577 2578
	}
#endif

2579
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2580 2581
	 * would have already happened in close and is redundant.
	 */
2582 2583 2584 2585
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2586
	igb_clear_interrupt_scheme(adapter);
2587

2588
#ifdef CONFIG_PCI_IOV
2589
	igb_disable_sriov(pdev);
2590
#endif
2591

2592 2593 2594
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2595
	pci_release_selected_regions(pdev,
2596
				     pci_select_bars(pdev, IORESOURCE_MEM));
2597

2598
	kfree(adapter->shadow_vfta);
2599 2600
	free_netdev(netdev);

2601
	pci_disable_pcie_error_reporting(pdev);
2602

2603 2604 2605
	pci_disable_device(pdev);
}

2606
/**
2607 2608
 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 *  @adapter: board private structure to initialize
2609
 *
2610 2611 2612 2613
 *  This function initializes the vf specific data storage and then attempts to
 *  allocate the VFs.  The reason for ordering it this way is because it is much
 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 *  the memory for the VFs.
2614
 **/
2615
static void igb_probe_vfs(struct igb_adapter *adapter)
2616 2617 2618
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2619
	struct e1000_hw *hw = &adapter->hw;
2620

2621 2622 2623 2624
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2625
	pci_sriov_set_totalvfs(pdev, 7);
A
Alex Williamson 已提交
2626
	igb_enable_sriov(pdev, max_vfs);
2627

2628 2629 2630
#endif /* CONFIG_PCI_IOV */
}

2631
static void igb_init_queue_configuration(struct igb_adapter *adapter)
2632 2633
{
	struct e1000_hw *hw = &adapter->hw;
2634
	u32 max_rss_queues;
2635

2636
	/* Determine the maximum number of RSS queues supported. */
2637
	switch (hw->mac.type) {
2638 2639 2640 2641
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2642
	case e1000_i210:
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
2659
	case e1000_i354:
2660 2661
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2662
		break;
2663 2664 2665 2666 2667 2668 2669
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2670
	case e1000_i211:
2671
		/* Device supports enough interrupts without queue pairing. */
2672
		break;
2673
	case e1000_82576:
2674
		/* If VFs are going to be allocated with RSS queues then we
2675 2676 2677 2678 2679 2680 2681 2682 2683
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
2684
	case e1000_i354:
2685
	case e1000_i210:
2686
	default:
2687
		/* If rss_queues > half of max_rss_queues, pair the queues in
2688 2689 2690 2691
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2692 2693
		break;
	}
2694 2695 2696
}

/**
2697 2698
 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 *  @adapter: board private structure to initialize
2699
 *
2700 2701 2702
 *  igb_sw_init initializes the Adapter private data structure.
 *  Fields are initialized based on PCI device information and
 *  OS network device settings (MTU size).
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
2735
			max_vfs = adapter->vfs_allocated_count = 7;
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	igb_init_queue_configuration(adapter);
2748

2749
	/* Setup and initialize a copy of the hw vlan table array */
2750 2751
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_ATOMIC);
2752

2753
	/* This call may decrease the number of queues */
2754
	if (igb_init_interrupt_scheme(adapter, true)) {
2755 2756 2757 2758
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2759 2760
	igb_probe_vfs(adapter);

2761 2762 2763
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2764
	if (hw->mac.type >= e1000_i350)
2765 2766
		adapter->flags &= ~IGB_FLAG_DMAC;

2767 2768 2769 2770 2771
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
2772 2773
 *  igb_open - Called when a network interface is made active
 *  @netdev: network interface device structure
2774
 *
2775
 *  Returns 0 on success, negative value on failure
2776
 *
2777 2778 2779 2780 2781
 *  The open entry point is called when a network interface is made
 *  active by the system (IFF_UP).  At this point all resources needed
 *  for transmit and receive operations are allocated, the interrupt
 *  handler is registered with the OS, the watchdog timer is started,
 *  and the stack is notified that the interface is ready.
2782
 **/
Y
Yan, Zheng 已提交
2783
static int __igb_open(struct net_device *netdev, bool resuming)
2784 2785 2786
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2787
	struct pci_dev *pdev = adapter->pdev;
2788 2789 2790 2791
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2792 2793
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2794
		return -EBUSY;
Y
Yan, Zheng 已提交
2795 2796 2797 2798
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2799

2800 2801
	netif_carrier_off(netdev);

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2812
	igb_power_up_link(adapter);
2813 2814 2815 2816

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
2817 2818
	 * clean_rx handler before we do so.
	 */
2819 2820 2821 2822 2823 2824
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

2836 2837 2838
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2839 2840
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2841 2842 2843

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2844 2845 2846

	igb_irq_enable(adapter);

2847 2848 2849 2850 2851 2852 2853
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2854 2855
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2856 2857 2858
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2859 2860 2861
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2862 2863 2864

	return 0;

2865 2866
err_set_queues:
	igb_free_irq(adapter);
2867 2868
err_req_irq:
	igb_release_hw_control(adapter);
2869
	igb_power_down_link(adapter);
2870 2871 2872 2873 2874
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2875 2876
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2877 2878 2879 2880

	return err;
}

Y
Yan, Zheng 已提交
2881 2882 2883 2884 2885
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2886
/**
2887 2888
 *  igb_close - Disables a network interface
 *  @netdev: network interface device structure
2889
 *
2890
 *  Returns 0, this is not allowed to fail
2891
 *
2892 2893 2894 2895
 *  The close entry point is called when an interface is de-activated
 *  by the OS.  The hardware is still under the driver's control, but
 *  needs to be disabled.  A global MAC reset is issued to stop the
 *  hardware, and all transmit and receive resources are freed.
2896
 **/
Y
Yan, Zheng 已提交
2897
static int __igb_close(struct net_device *netdev, bool suspending)
2898 2899
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2900
	struct pci_dev *pdev = adapter->pdev;
2901 2902 2903

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2904 2905 2906 2907
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2908 2909 2910 2911 2912
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2913 2914
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2915 2916 2917
	return 0;
}

Y
Yan, Zheng 已提交
2918 2919 2920 2921 2922
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2923
/**
2924 2925
 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2926
 *
2927
 *  Return 0 on success, negative on failure
2928
 **/
2929
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2930
{
2931
	struct device *dev = tx_ring->dev;
2932 2933
	int size;

2934
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2935 2936

	tx_ring->tx_buffer_info = vzalloc(size);
2937
	if (!tx_ring->tx_buffer_info)
2938 2939 2940
		goto err;

	/* round up to nearest 4K */
2941
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2942 2943
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2944 2945
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
2946 2947 2948 2949 2950
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2951

2952 2953 2954
	return 0;

err:
2955
	vfree(tx_ring->tx_buffer_info);
2956 2957
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2958 2959 2960 2961
	return -ENOMEM;
}

/**
2962 2963 2964
 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
2965
 *
2966
 *  Return 0 on success, negative on failure
2967 2968 2969
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2970
	struct pci_dev *pdev = adapter->pdev;
2971 2972 2973
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2974
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2975
		if (err) {
2976
			dev_err(&pdev->dev,
2977 2978
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2979
				igb_free_tx_resources(adapter->tx_ring[i]);
2980 2981 2982 2983 2984 2985 2986 2987
			break;
		}
	}

	return err;
}

/**
2988 2989
 *  igb_setup_tctl - configure the transmit control registers
 *  @adapter: Board private structure
2990
 **/
2991
void igb_setup_tctl(struct igb_adapter *adapter)
2992 2993 2994 2995
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2996 2997
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

3013
/**
3014 3015 3016
 *  igb_configure_tx_ring - Configure transmit ring after Reset
 *  @adapter: board private structure
 *  @ring: tx ring to configure
3017
 *
3018
 *  Configure a transmit ring after a reset.
3019
 **/
3020 3021
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3022 3023
{
	struct e1000_hw *hw = &adapter->hw;
3024
	u32 txdctl = 0;
3025 3026 3027 3028
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
3029
	wr32(E1000_TXDCTL(reg_idx), 0);
3030 3031 3032 3033
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
3034
	     ring->count * sizeof(union e1000_adv_tx_desc));
3035
	wr32(E1000_TDBAL(reg_idx),
3036
	     tdba & 0x00000000ffffffffULL);
3037 3038
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

3039
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3040
	wr32(E1000_TDH(reg_idx), 0);
3041
	writel(0, ring->tail);
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
3052 3053
 *  igb_configure_tx - Configure transmit Unit after Reset
 *  @adapter: board private structure
3054
 *
3055
 *  Configure the Tx unit of the MAC after a reset.
3056 3057 3058 3059 3060 3061
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3062
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3063 3064
}

3065
/**
3066 3067
 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3068
 *
3069
 *  Returns 0 on success, negative on failure
3070
 **/
3071
int igb_setup_rx_resources(struct igb_ring *rx_ring)
3072
{
3073
	struct device *dev = rx_ring->dev;
3074
	int size;
3075

3076
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3077 3078

	rx_ring->rx_buffer_info = vzalloc(size);
3079
	if (!rx_ring->rx_buffer_info)
3080 3081 3082
		goto err;

	/* Round up to nearest 4K */
3083
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3084 3085
	rx_ring->size = ALIGN(rx_ring->size, 4096);

3086 3087
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
3088 3089 3090
	if (!rx_ring->desc)
		goto err;

3091
	rx_ring->next_to_alloc = 0;
3092 3093 3094 3095 3096 3097
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
3098 3099
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3100
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3101 3102 3103 3104
	return -ENOMEM;
}

/**
3105 3106 3107
 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
3108
 *
3109
 *  Return 0 on success, negative on failure
3110 3111 3112
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
3113
	struct pci_dev *pdev = adapter->pdev;
3114 3115 3116
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
3117
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3118
		if (err) {
3119
			dev_err(&pdev->dev,
3120 3121
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3122
				igb_free_rx_resources(adapter->rx_ring[i]);
3123 3124 3125 3126 3127 3128 3129
			break;
		}
	}

	return err;
}

3130
/**
3131 3132
 *  igb_setup_mrqc - configure the multiple receive queue control registers
 *  @adapter: Board private structure
3133 3134 3135 3136 3137
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
3138
	u32 j, num_rx_queues;
3139 3140 3141 3142
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
3143 3144

	/* Fill out hash function seeds */
3145 3146
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
3147

3148
	num_rx_queues = adapter->rss_queues;
3149

3150 3151 3152
	switch (hw->mac.type) {
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
3153
		if (adapter->vfs_allocated_count)
3154
			num_rx_queues = 2;
3155 3156 3157
		break;
	default:
		break;
3158 3159
	}

3160 3161 3162 3163
	if (adapter->rss_indir_tbl_init != num_rx_queues) {
		for (j = 0; j < IGB_RETA_SIZE; j++)
			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
		adapter->rss_indir_tbl_init = num_rx_queues;
3164
	}
3165
	igb_write_rss_indir_tbl(adapter);
3166

3167
	/* Disable raw packet checksumming so that RSS hash is placed in
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
3180

3181 3182 3183
	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
3184 3185 3186 3187 3188
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3189

3190 3191 3192 3193 3194
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

3195 3196
	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
3197 3198
	 * if we are only using one queue
	 */
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
3209
		if (adapter->rss_queues > 1)
3210
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3211
		else
3212
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3213
	} else {
3214 3215
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3216 3217 3218 3219 3220 3221
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

3222
/**
3223 3224
 *  igb_setup_rctl - configure the receive control registers
 *  @adapter: Board private structure
3225
 **/
3226
void igb_setup_rctl(struct igb_adapter *adapter)
3227 3228 3229 3230 3231 3232 3233
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3234
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3235

3236
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3237
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3238

3239
	/* enable stripping of CRC. It's unlikely this will break BMC
3240 3241
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
3242
	 */
3243
	rctl |= E1000_RCTL_SECRC;
3244

3245
	/* disable store bad packets and clear size bits. */
3246
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3247

A
Alexander Duyck 已提交
3248 3249
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
3250

3251 3252
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
3253

3254 3255 3256 3257 3258 3259 3260 3261 3262
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
3263 3264 3265
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
3266 3267
		 * in e1000e_set_rx_mode
		 */
B
Ben Greear 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3280 3281 3282
	wr32(E1000_RCTL, rctl);
}

3283 3284 3285 3286 3287 3288 3289
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
3290 3291
	 * increase the size to support vlan tags
	 */
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3304
/**
3305 3306
 *  igb_rlpml_set - set maximum receive packet size
 *  @adapter: board private structure
3307
 *
3308
 *  Configure maximum receivable packet size.
3309 3310 3311
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3312
	u32 max_frame_size = adapter->max_frame_size;
3313 3314 3315 3316 3317
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3318
		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3319 3320 3321 3322 3323
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3324
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3325 3326 3327 3328 3329
	}

	wr32(E1000_RLPML, max_frame_size);
}

3330 3331
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3332 3333 3334 3335
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

3336
	/* This register exists only on 82576 and newer so if we are older then
3337 3338 3339 3340 3341 3342
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3343
	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3344
	if (aupe)
3345
		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3346 3347
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3348 3349 3350 3351

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3352
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3353
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3354
	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3355 3356 3357
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
3358
		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3359 3360 3361 3362

	wr32(E1000_VMOLR(vfn), vmolr);
}

3363
/**
3364 3365 3366
 *  igb_configure_rx_ring - Configure a receive ring after Reset
 *  @adapter: board private structure
 *  @ring: receive ring to be configured
3367
 *
3368
 *  Configure the Rx unit of the MAC after a reset.
3369
 **/
3370
void igb_configure_rx_ring(struct igb_adapter *adapter,
3371
			   struct igb_ring *ring)
3372 3373 3374 3375
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3376
	u32 srrctl = 0, rxdctl = 0;
3377 3378

	/* disable the queue */
3379
	wr32(E1000_RXDCTL(reg_idx), 0);
3380 3381 3382 3383 3384 3385

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
3386
	     ring->count * sizeof(union e1000_adv_rx_desc));
3387 3388

	/* initialize head and tail */
3389
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3390
	wr32(E1000_RDH(reg_idx), 0);
3391
	writel(0, ring->tail);
3392

3393
	/* set descriptor configuration */
3394
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3395
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3396
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3397
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3398
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3399 3400 3401
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3402 3403 3404

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3405
	/* set filtering for VMDQ pools */
3406
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3407

3408 3409 3410
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3411 3412 3413

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3414 3415 3416
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3417
/**
3418 3419
 *  igb_configure_rx - Configure receive Unit after Reset
 *  @adapter: board private structure
3420
 *
3421
 *  Configure the Rx unit of the MAC after a reset.
3422 3423 3424
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3425
	int i;
3426

3427 3428 3429
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3430 3431
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3432
			 adapter->vfs_allocated_count);
3433

3434
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3435 3436
	 * the Base and Length of the Rx Descriptor Ring
	 */
3437 3438
	for (i = 0; i < adapter->num_rx_queues; i++)
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3439 3440 3441
}

/**
3442 3443
 *  igb_free_tx_resources - Free Tx Resources per Queue
 *  @tx_ring: Tx descriptor ring for a specific queue
3444
 *
3445
 *  Free all transmit software resources
3446
 **/
3447
void igb_free_tx_resources(struct igb_ring *tx_ring)
3448
{
3449
	igb_clean_tx_ring(tx_ring);
3450

3451 3452
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3453

3454 3455 3456 3457
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3458 3459
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3460 3461 3462 3463 3464

	tx_ring->desc = NULL;
}

/**
3465 3466
 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 *  @adapter: board private structure
3467
 *
3468
 *  Free all transmit software resources
3469 3470 3471 3472 3473 3474
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3475
		igb_free_tx_resources(adapter->tx_ring[i]);
3476 3477
}

3478 3479 3480 3481 3482
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3483
		if (dma_unmap_len(tx_buffer, len))
3484
			dma_unmap_single(ring->dev,
3485 3486
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3487
					 DMA_TO_DEVICE);
3488
	} else if (dma_unmap_len(tx_buffer, len)) {
3489
		dma_unmap_page(ring->dev,
3490 3491
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3492 3493 3494 3495
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3496
	dma_unmap_len_set(tx_buffer, len, 0);
3497
	/* buffer_info must be completely set up in the transmit path */
3498 3499 3500
}

/**
3501 3502
 *  igb_clean_tx_ring - Free Tx Buffers
 *  @tx_ring: ring to be cleaned
3503
 **/
3504
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3505
{
3506
	struct igb_tx_buffer *buffer_info;
3507
	unsigned long size;
3508
	u16 i;
3509

3510
	if (!tx_ring->tx_buffer_info)
3511 3512 3513 3514
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3515
		buffer_info = &tx_ring->tx_buffer_info[i];
3516
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3517 3518
	}

3519 3520
	netdev_tx_reset_queue(txring_txq(tx_ring));

3521 3522
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3523 3524 3525 3526 3527 3528 3529 3530 3531

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
3532 3533
 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 *  @adapter: board private structure
3534 3535 3536 3537 3538 3539
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3540
		igb_clean_tx_ring(adapter->tx_ring[i]);
3541 3542 3543
}

/**
3544 3545
 *  igb_free_rx_resources - Free Rx Resources
 *  @rx_ring: ring to clean the resources from
3546
 *
3547
 *  Free all receive software resources
3548
 **/
3549
void igb_free_rx_resources(struct igb_ring *rx_ring)
3550
{
3551
	igb_clean_rx_ring(rx_ring);
3552

3553 3554
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3555

3556 3557 3558 3559
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3560 3561
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3562 3563 3564 3565 3566

	rx_ring->desc = NULL;
}

/**
3567 3568
 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 *  @adapter: board private structure
3569
 *
3570
 *  Free all receive software resources
3571 3572 3573 3574 3575 3576
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3577
		igb_free_rx_resources(adapter->rx_ring[i]);
3578 3579 3580
}

/**
3581 3582
 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 *  @rx_ring: ring to free buffers from
3583
 **/
3584
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3585 3586
{
	unsigned long size;
3587
	u16 i;
3588

3589 3590 3591 3592
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3593
	if (!rx_ring->rx_buffer_info)
3594
		return;
3595

3596 3597
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3598
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3599

3600 3601 3602 3603 3604 3605 3606 3607 3608
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3609
		buffer_info->page = NULL;
3610 3611
	}

3612 3613
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3614 3615 3616 3617

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3618
	rx_ring->next_to_alloc = 0;
3619 3620 3621 3622 3623
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
3624 3625
 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 *  @adapter: board private structure
3626 3627 3628 3629 3630 3631
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3632
		igb_clean_rx_ring(adapter->rx_ring[i]);
3633 3634 3635
}

/**
3636 3637 3638
 *  igb_set_mac - Change the Ethernet Address of the NIC
 *  @netdev: network interface device structure
 *  @p: pointer to an address structure
3639
 *
3640
 *  Returns 0 on success, negative on failure
3641 3642 3643 3644
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3645
	struct e1000_hw *hw = &adapter->hw;
3646 3647 3648 3649 3650 3651
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3652
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3653

3654 3655
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3656
			 adapter->vfs_allocated_count);
3657

3658 3659 3660 3661
	return 0;
}

/**
3662 3663
 *  igb_write_mc_addr_list - write multicast addresses to MTA
 *  @netdev: network interface device structure
3664
 *
3665 3666 3667 3668
 *  Writes multicast address list to the MTA hash table.
 *  Returns: -ENOMEM on failure
 *           0 on no addresses written
 *           X on writing X addresses to MTA
3669
 **/
3670
static int igb_write_mc_addr_list(struct net_device *netdev)
3671 3672 3673
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3674
	struct netdev_hw_addr *ha;
3675
	u8  *mta_list;
3676 3677
	int i;

3678
	if (netdev_mc_empty(netdev)) {
3679 3680 3681 3682 3683
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3684

3685
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3686 3687
	if (!mta_list)
		return -ENOMEM;
3688

3689
	/* The shared function expects a packed array of only addresses. */
3690
	i = 0;
3691 3692
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3693 3694 3695 3696

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3697
	return netdev_mc_count(netdev);
3698 3699 3700
}

/**
3701 3702
 *  igb_write_uc_addr_list - write unicast addresses to RAR table
 *  @netdev: network interface device structure
3703
 *
3704 3705 3706 3707
 *  Writes unicast address list to the RAR table.
 *  Returns: -ENOMEM on failure/insufficient address space
 *           0 on no addresses written
 *           X on writing X addresses to the RAR table
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3718
	if (netdev_uc_count(netdev) > rar_entries)
3719
		return -ENOMEM;
3720

3721
	if (!netdev_uc_empty(netdev) && rar_entries) {
3722
		struct netdev_hw_addr *ha;
3723 3724

		netdev_for_each_uc_addr(ha, netdev) {
3725 3726
			if (!rar_entries)
				break;
3727
			igb_rar_set_qsel(adapter, ha->addr,
3728 3729
					 rar_entries--,
					 vfn);
3730
			count++;
3731 3732 3733 3734 3735 3736 3737 3738 3739
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3740 3741 3742 3743
	return count;
}

/**
3744 3745
 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 *  @netdev: network interface device structure
3746
 *
3747 3748 3749 3750
 *  The set_rx_mode entry point is called whenever the unicast or multicast
 *  address lists or the network interface flags are updated.  This routine is
 *  responsible for configuring the hardware for proper unicast, multicast,
 *  promiscuous mode, and all-multi behavior.
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
3767
		/* retain VLAN HW filtering if in VT mode */
3768
		if (adapter->vfs_allocated_count)
3769
			rctl |= E1000_RCTL_VFE;
3770 3771 3772 3773 3774 3775 3776
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
3777
			/* Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3778
			 * then we should just turn on promiscuous mode so
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
3789
		/* Write addresses to available RAR registers, if there is not
3790
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3791
		 * unicast promiscuous mode
3792 3793 3794 3795 3796 3797 3798
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3799
	}
3800
	wr32(E1000_RCTL, rctl);
3801

3802
	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3803 3804 3805 3806
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
3807
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3808
		return;
3809

3810
	vmolr |= rd32(E1000_VMOLR(vfn)) &
3811
		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3812
	wr32(E1000_VMOLR(vfn), vmolr);
3813
	igb_restore_vf_multicasts(adapter);
3814 3815
}

G
Greg Rose 已提交
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3855
/* Need to wait a few seconds after link up to get diagnostic information from
3856 3857
 * the phy
 */
3858 3859 3860
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3861
	igb_get_phy_info(&adapter->hw);
3862 3863
}

A
Alexander Duyck 已提交
3864
/**
3865 3866
 *  igb_has_link - check shared code for link and determine up/down
 *  @adapter: pointer to driver private info
A
Alexander Duyck 已提交
3867
 **/
3868
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
3880 3881
		if (!hw->mac.get_link_status)
			return true;
A
Alexander Duyck 已提交
3882
	case e1000_media_type_internal_serdes:
3883 3884
		hw->mac.ops.check_for_link(hw);
		link_active = !hw->mac.get_link_status;
A
Alexander Duyck 已提交
3885 3886 3887 3888 3889 3890
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
	if (((hw->mac.type == e1000_i210) ||
	     (hw->mac.type == e1000_i211)) &&
	     (hw->phy.id == I210_I_PHY_ID)) {
		if (!netif_carrier_ok(adapter->netdev)) {
			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
			adapter->link_check_timeout = jiffies;
		}
	}

A
Alexander Duyck 已提交
3902 3903 3904
	return link_active;
}

3905 3906 3907 3908 3909
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

3910
	/* check for thermal sensor event on i350 copper only */
3911 3912 3913 3914 3915
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
3916
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3917 3918 3919 3920 3921 3922
			ret = !!(thstat & event);
	}

	return ret;
}

3923
/**
3924 3925
 *  igb_watchdog - Timer Call-back
 *  @data: pointer to adapter cast into an unsigned long
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3937 3938
						   struct igb_adapter,
						   watchdog_task);
3939
	struct e1000_hw *hw = &adapter->hw;
3940
	struct e1000_phy_info *phy = &hw->phy;
3941
	struct net_device *netdev = adapter->netdev;
3942
	u32 link;
3943
	int i;
3944

A
Alexander Duyck 已提交
3945
	link = igb_has_link(adapter);
3946 3947 3948 3949 3950 3951 3952 3953

	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
		else
			link = false;
	}

3954
	if (link) {
Y
Yan, Zheng 已提交
3955 3956 3957
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3958 3959
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3960
			hw->mac.ops.get_speed_and_duplex(hw,
3961 3962
							 &adapter->link_speed,
							 &adapter->link_duplex);
3963 3964

			ctrl = rd32(E1000_CTRL);
3965
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3966 3967
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3968 3969 3970
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3971 3972 3973 3974 3975
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3976

3977 3978 3979 3980 3981
			/* check if SmartSpeed worked */
			igb_check_downshift(hw);
			if (phy->speed_downgraded)
				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");

3982
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3983 3984 3985 3986 3987
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3988
			}
3989

3990
			/* adjust timeout factor according to speed/duplex */
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

4003
			igb_ping_all_vfs(adapter);
4004
			igb_check_vf_rate_limit(adapter);
4005

4006
			/* link state has changed, schedule phy info update */
4007 4008 4009 4010 4011 4012 4013 4014
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4015 4016

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
4017 4018 4019 4020
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
4021
			}
4022

4023 4024 4025
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
4026
			netif_carrier_off(netdev);
4027

4028 4029
			igb_ping_all_vfs(adapter);

4030
			/* link state has changed, schedule phy info update */
4031 4032 4033
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
4034 4035 4036

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
4037 4038 4039
		}
	}

E
Eric Dumazet 已提交
4040 4041 4042
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
4043

4044
	for (i = 0; i < adapter->num_tx_queues; i++) {
4045
		struct igb_ring *tx_ring = adapter->tx_ring[i];
4046
		if (!netif_carrier_ok(netdev)) {
4047 4048 4049
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
4050 4051
			 * (Do the reset outside of interrupt context).
			 */
4052 4053 4054 4055 4056 4057
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
4058 4059
		}

4060
		/* Force detection of hung controller every watchdog period */
4061
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4062
	}
4063

4064
	/* Cause software interrupt to ensure Rx ring is cleaned */
4065
	if (adapter->msix_entries) {
4066
		u32 eics = 0;
4067 4068
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
4069 4070 4071 4072
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
4073

G
Greg Rose 已提交
4074
	igb_spoof_check(adapter);
4075
	igb_ptp_rx_hang(adapter);
G
Greg Rose 已提交
4076

4077
	/* Reset the timer */
4078 4079 4080 4081 4082 4083 4084 4085
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
			mod_timer(&adapter->watchdog_timer,
				  round_jiffies(jiffies +  HZ));
		else
			mod_timer(&adapter->watchdog_timer,
				  round_jiffies(jiffies + 2 * HZ));
	}
4086 4087 4088 4089 4090 4091 4092 4093 4094
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

4095
/**
4096 4097
 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 *  @q_vector: pointer to q_vector
4098
 *
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
 *  Stores a new ITR value based on strictly on packet size.  This
 *  algorithm is less sophisticated than that used in igb_update_itr,
 *  due to the difficulty of synchronizing statistics across multiple
 *  receive rings.  The divisors and thresholds used by this function
 *  were determined based on theoretical maximum wire speed and testing
 *  data, in order to minimize response time while increasing bulk
 *  throughput.
 *  This functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  This function is called only when operating in a multiqueue
 *         receive environment.
4110
 **/
4111
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4112
{
4113
	int new_val = q_vector->itr_val;
4114
	int avg_wire_size = 0;
4115
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
4116
	unsigned int packets;
4117

4118 4119 4120 4121
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
4122
		new_val = IGB_4K_ITR;
4123
		goto set_itr_val;
4124
	}
4125

4126 4127 4128
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
4129

4130 4131 4132 4133
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
4134 4135 4136 4137

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
4138

4139 4140 4141 4142 4143
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
4144

4145 4146 4147 4148 4149
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
4150

4151 4152 4153 4154 4155
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
4156

4157
set_itr_val:
4158 4159 4160
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
4161
	}
4162
clear_counts:
4163 4164 4165 4166
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
4167 4168 4169
}

/**
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
 *  igb_update_itr - update the dynamic ITR value based on statistics
 *  @q_vector: pointer to q_vector
 *  @ring_container: ring info to update the itr for
 *
 *  Stores a new ITR value based on packets and byte
 *  counts during the last interrupt.  The advantage of per interrupt
 *  computation is faster updates and more accurate ITR for the current
 *  traffic pattern.  Constants in this function were computed
 *  based on theoretical maximum wire speed and thresholds were set based
 *  on testing data as well as attempting to minimize response time
 *  while increasing bulk throughput.
 *  this functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  These calculations are only valid when operating in a single-
 *         queue environment.
4185
 **/
4186 4187
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
4188
{
4189 4190 4191
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
4192

4193
	/* no packets, exit with status unchanged */
4194
	if (packets == 0)
4195
		return;
4196

4197
	switch (itrval) {
4198 4199 4200
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
4201
			itrval = bulk_latency;
4202
		else if ((packets < 5) && (bytes > 512))
4203
			itrval = low_latency;
4204 4205 4206 4207 4208
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
4209
				itrval = bulk_latency;
4210
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4211
				itrval = bulk_latency;
4212
			} else if ((packets > 35)) {
4213
				itrval = lowest_latency;
4214 4215
			}
		} else if (bytes/packets > 2000) {
4216
			itrval = bulk_latency;
4217
		} else if (packets <= 2 && bytes < 512) {
4218
			itrval = lowest_latency;
4219 4220 4221 4222 4223
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
4224
				itrval = low_latency;
4225
		} else if (bytes < 1500) {
4226
			itrval = low_latency;
4227 4228 4229 4230
		}
		break;
	}

4231 4232 4233 4234 4235 4236
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
4237 4238
}

4239
static void igb_set_itr(struct igb_q_vector *q_vector)
4240
{
4241
	struct igb_adapter *adapter = q_vector->adapter;
4242
	u32 new_itr = q_vector->itr_val;
4243
	u8 current_itr = 0;
4244 4245 4246 4247

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
4248
		new_itr = IGB_4K_ITR;
4249 4250 4251
		goto set_itr_now;
	}

4252 4253
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
4254

4255
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4256

4257
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4258 4259 4260
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4261 4262
		current_itr = low_latency;

4263 4264 4265
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
4266
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4267 4268
		break;
	case low_latency:
4269
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4270 4271
		break;
	case bulk_latency:
4272
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4273 4274 4275 4276 4277 4278
		break;
	default:
		break;
	}

set_itr_now:
4279
	if (new_itr != q_vector->itr_val) {
4280 4281
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
4282 4283
		 * increasing
		 */
4284
		new_itr = new_itr > q_vector->itr_val ?
4285 4286 4287
			  max((new_itr * q_vector->itr_val) /
			  (new_itr + (q_vector->itr_val >> 2)),
			  new_itr) : new_itr;
4288 4289 4290 4291 4292 4293
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4294 4295
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4296 4297 4298
	}
}

4299 4300
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4314
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4315 4316 4317 4318 4319 4320 4321 4322
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4323 4324 4325
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4326
{
4327
	struct sk_buff *skb = first->skb;
4328 4329 4330
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

4331 4332 4333
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

4334 4335
	if (!skb_is_gso(skb))
		return 0;
4336 4337

	if (skb_header_cloned(skb)) {
4338
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4339 4340 4341 4342
		if (err)
			return err;
	}

4343 4344
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4345

4346
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4347 4348 4349 4350 4351 4352 4353
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4354
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4355 4356 4357
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4358
	} else if (skb_is_gso_v6(skb)) {
4359 4360 4361 4362
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4363 4364
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4365 4366
	}

4367
	/* compute header lengths */
4368 4369
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4370

4371 4372 4373 4374
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4375
	/* MSS L4LEN IDX */
4376 4377
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4378

4379 4380 4381
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4382
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4383

4384
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4385

4386
	return 1;
4387 4388
}

4389
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4390
{
4391
	struct sk_buff *skb = first->skb;
4392 4393 4394
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4395

4396
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4397 4398
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4399 4400
	} else {
		u8 l4_hdr = 0;
4401
		switch (first->protocol) {
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4414 4415
					 "partial checksum but proto=%x!\n",
					 first->protocol);
4416
			}
4417 4418
			break;
		}
4419

4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4438 4439
					 "partial checksum but l4 proto=%x!\n",
					 l4_hdr);
4440
			}
4441
			break;
4442
		}
4443 4444 4445

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4446
	}
4447

4448
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4449
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4450

4451
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4452 4453
}

4454 4455 4456 4457 4458 4459
#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4460 4461
{
	/* set type for advanced descriptor with frame checksum insertion */
4462 4463 4464
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;
4465 4466

	/* set HW vlan bit if vlan is present */
4467 4468 4469 4470 4471 4472
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));
4473 4474

	/* set timestamp bit if present */
4475 4476
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));
4477

4478 4479
	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4480 4481 4482 4483

	return cmd_type;
}

4484 4485 4486
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4487 4488 4489
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

4490 4491
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4492 4493 4494
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
4495 4496 4497
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));
4498

4499 4500 4501 4502
	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));
4503

4504
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4505 4506
}

4507 4508
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4509
		       const u8 hdr_len)
4510
{
4511
	struct sk_buff *skb = first->skb;
4512
	struct igb_tx_buffer *tx_buffer;
4513
	union e1000_adv_tx_desc *tx_desc;
4514
	struct skb_frag_struct *frag;
4515
	dma_addr_t dma;
4516
	unsigned int data_len, size;
4517
	u32 tx_flags = first->tx_flags;
4518
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4519 4520 4521 4522
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4523 4524 4525 4526
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;
4527 4528

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4529

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4541 4542 4543

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
4544
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4545 4546 4547 4548 4549 4550 4551

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
4552
			tx_desc->read.olinfo_status = 0;
4553 4554 4555 4556 4557 4558 4559 4560 4561

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4562

4563
		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4564

4565
		i++;
4566 4567 4568
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4569
			i = 0;
4570
		}
4571
		tx_desc->read.olinfo_status = 0;
4572

E
Eric Dumazet 已提交
4573
		size = skb_frag_size(frag);
4574 4575 4576
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4577
				       size, DMA_TO_DEVICE);
4578

4579
		tx_buffer = &tx_ring->tx_buffer_info[i];
4580 4581
	}

4582
	/* write last descriptor with RS and EOP bits */
4583 4584
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4585

4586 4587
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4588 4589 4590
	/* set the timestamp */
	first->time_stamp = jiffies;

4591
	/* Force memory writes to complete before letting h/w know there
4592 4593 4594 4595 4596 4597 4598 4599
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4600
	/* set next_to_watch value indicating a packet is present */
4601
	first->next_to_watch = tx_desc;
4602

4603 4604 4605
	i++;
	if (i == tx_ring->count)
		i = 0;
4606

4607
	tx_ring->next_to_use = i;
4608

4609
	writel(i, tx_ring->tail);
4610

4611
	/* we need this if more than one processor can write to our tail
4612 4613
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4614 4615 4616 4617 4618 4619 4620 4621 4622
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4623 4624 4625
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4626
			break;
4627 4628
		if (i == 0)
			i = tx_ring->count;
4629 4630 4631
		i--;
	}

4632 4633 4634
	tx_ring->next_to_use = i;
}

4635
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4636
{
4637 4638
	struct net_device *netdev = tx_ring->netdev;

4639 4640
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4641 4642
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
4643 4644
	 * but since that doesn't exist yet, just open code it.
	 */
4645 4646 4647
	smp_mb();

	/* We need to check again in a case another CPU has just
4648 4649
	 * made room available.
	 */
4650
	if (igb_desc_unused(tx_ring) < size)
4651 4652 4653
		return -EBUSY;

	/* A reprieve! */
4654
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4655 4656 4657 4658 4659

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4660 4661 4662
	return 0;
}

4663
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4664
{
4665
	if (igb_desc_unused(tx_ring) >= size)
4666
		return 0;
4667
	return __igb_maybe_stop_tx(tx_ring, size);
4668 4669
}

4670 4671
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4672
{
4673
	struct igb_tx_buffer *first;
4674
	int tso;
N
Nick Nunley 已提交
4675
	u32 tx_flags = 0;
4676
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4677
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4678
	u8 hdr_len = 0;
4679

4680 4681
	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4682 4683
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for context descriptor,
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
	 * otherwise try next time
	 */
	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
		unsigned short f;
		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
	} else {
		count += skb_shinfo(skb)->nr_frags;
	}

	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4695 4696 4697
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4698

4699 4700 4701 4702 4703 4704
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4705 4706
	skb_tx_timestamp(skb);

4707 4708
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4709

4710 4711 4712 4713 4714 4715 4716 4717 4718
		if (!(adapter->ptp_tx_skb)) {
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
			tx_flags |= IGB_TX_FLAGS_TSTAMP;

			adapter->ptp_tx_skb = skb_get(skb);
			adapter->ptp_tx_start = jiffies;
			if (adapter->hw.mac.type == e1000_82576)
				schedule_work(&adapter->ptp_tx_work);
		}
4719
	}
4720

4721
	if (vlan_tx_tag_present(skb)) {
4722 4723 4724 4725
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4726 4727 4728
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4729

4730 4731
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4732
		goto out_drop;
4733 4734
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4735

4736
	igb_tx_map(tx_ring, first, hdr_len);
4737 4738

	/* Make sure there is space in the ring for the next send. */
4739
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4740

4741
	return NETDEV_TX_OK;
4742 4743

out_drop:
4744 4745
	igb_unmap_and_free_tx_resource(tx_ring, first);

4746
	return NETDEV_TX_OK;
4747 4748
}

4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4760 4761
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4762 4763
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4775
	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4776 4777
	 * in order to meet this minimum size requirement.
	 */
4778 4779
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
4780 4781
			return NETDEV_TX_OK;
		skb->len = 17;
4782
		skb_set_tail_pointer(skb, 17);
4783
	}
4784

4785
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4786 4787 4788
}

/**
4789 4790
 *  igb_tx_timeout - Respond to a Tx Hang
 *  @netdev: network interface device structure
4791 4792 4793 4794 4795 4796 4797 4798
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4799

4800
	if (hw->mac.type >= e1000_82580)
4801 4802
		hw->dev_spec._82575.global_device_reset = true;

4803
	schedule_work(&adapter->reset_task);
4804 4805
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4806 4807 4808 4809 4810 4811 4812
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4813 4814
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4815 4816 4817 4818
	igb_reinit_locked(adapter);
}

/**
4819 4820 4821
 *  igb_get_stats64 - Get System Network Statistics
 *  @netdev: network interface device structure
 *  @stats: rtnl_link_stats64 pointer
4822
 **/
E
Eric Dumazet 已提交
4823
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4824
						struct rtnl_link_stats64 *stats)
4825
{
E
Eric Dumazet 已提交
4826 4827 4828 4829 4830 4831 4832 4833
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4834 4835 4836
}

/**
4837 4838 4839
 *  igb_change_mtu - Change the Maximum Transfer Unit
 *  @netdev: network interface device structure
 *  @new_mtu: new value for maximum frame size
4840
 *
4841
 *  Returns 0 on success, negative on failure
4842 4843 4844 4845
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4846
	struct pci_dev *pdev = adapter->pdev;
4847
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4848

4849
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4850
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4851 4852 4853
		return -EINVAL;
	}

4854
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4855
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4856
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4857 4858 4859
		return -EINVAL;
	}

4860 4861 4862 4863
	/* adjust max frame to be at least the size of a standard frame */
	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;

4864 4865
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4866

4867 4868
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4869

4870 4871
	if (netif_running(netdev))
		igb_down(adapter);
4872

4873
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
4888 4889
 *  igb_update_stats - Update the board statistics counters
 *  @adapter: board private structure
4890
 **/
E
Eric Dumazet 已提交
4891 4892
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4893 4894 4895
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4896
	u32 reg, mpc;
4897
	u16 phy_tmp;
4898 4899
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4900 4901
	unsigned int start;
	u64 _bytes, _packets;
4902 4903 4904

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

4905
	/* Prevent stats update while adapter is being reset, or if the pci
4906 4907 4908 4909 4910 4911 4912
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4913 4914
	bytes = 0;
	packets = 0;
4915 4916

	rcu_read_lock();
4917
	for (i = 0; i < adapter->num_rx_queues; i++) {
4918
		u32 rqdpc = rd32(E1000_RQDPC(i));
4919
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4920

4921 4922 4923 4924
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
4925 4926 4927 4928 4929 4930 4931 4932

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4933 4934
	}

4935 4936
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4937 4938 4939 4940

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4941
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4942 4943 4944 4945 4946 4947 4948
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4949
	}
4950 4951
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4952
	rcu_read_unlock();
4953 4954

	/* read stats registers */
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4972 4973 4974
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4989
	adapter->stats.rnbc += rd32(E1000_RNBC);
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

5007 5008
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
5009 5010

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5011 5012 5013 5014
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5015 5016 5017 5018 5019

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
5020 5021
	}

5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
5036 5037
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
5038 5039 5040 5041

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
5042 5043
	 * our own version based on RUC and ROC
	 */
5044
	net_stats->rx_errors = adapter->stats.rxerrc +
5045 5046 5047
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
5048 5049 5050 5051 5052
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
5053 5054

	/* Tx Errors */
5055 5056 5057 5058 5059
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5060 5061 5062 5063 5064 5065

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
5066
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5067 5068 5069 5070 5071 5072 5073 5074 5075
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5076 5077 5078 5079 5080 5081 5082 5083 5084

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
5085 5086 5087 5088
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
5089
	struct igb_adapter *adapter = data;
5090
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
5091 5092
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
5093

5094 5095 5096
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5097
	if (icr & E1000_ICR_DOUTSYNC) {
5098 5099
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
5100 5101
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
5102 5103
		 * see if it is really a spoof event.
		 */
G
Greg Rose 已提交
5104
		igb_check_wvbr(adapter);
5105
	}
5106

5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

P
PJ Waskiewicz 已提交
5129
	wr32(E1000_EIMS, adapter->eims_other);
5130 5131 5132 5133

	return IRQ_HANDLED;
}

5134
static void igb_write_itr(struct igb_q_vector *q_vector)
5135
{
5136
	struct igb_adapter *adapter = q_vector->adapter;
5137
	u32 itr_val = q_vector->itr_val & 0x7FFC;
5138

5139 5140
	if (!q_vector->set_itr)
		return;
5141

5142 5143
	if (!itr_val)
		itr_val = 0x4;
5144

5145 5146
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
5147
	else
5148
		itr_val |= E1000_EITR_CNT_IGNR;
5149

5150 5151
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
5152 5153
}

5154
static irqreturn_t igb_msix_ring(int irq, void *data)
5155
{
5156
	struct igb_q_vector *q_vector = data;
5157

5158 5159
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
5160

5161
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
5162

5163
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
5164 5165
}

5166
#ifdef CONFIG_IGB_DCA
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

5177
	/* We can enable relaxed ordering for reads, but not writes when
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

5198
	/* We can enable relaxed ordering for reads, but not writes when
5199 5200 5201 5202 5203 5204 5205 5206 5207
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

5208
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
5209
{
5210
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
5211 5212
	int cpu = get_cpu();

5213 5214 5215
	if (q_vector->cpu == cpu)
		goto out_no_update;

5216 5217 5218 5219 5220 5221
	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

5222 5223
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
5224 5225 5226 5227 5228
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
5229
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
5230 5231
	int i;

5232
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
5233 5234
		return;

5235 5236 5237
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

5238
	for (i = 0; i < adapter->num_q_vectors; i++) {
5239 5240
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
5241 5242 5243 5244 5245 5246 5247
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
5248
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
5249 5250 5251 5252 5253 5254
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
5255
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
5256 5257
			break;
		if (dca_add_requester(dev) == 0) {
5258
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5259
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
5260 5261 5262 5263 5264
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
5265
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
5266
			/* without this a class_device is left
5267 5268
			 * hanging around in the sysfs model
			 */
J
Jeb Cramer 已提交
5269
			dca_remove_requester(dev);
5270
			dev_info(&pdev->dev, "DCA disabled\n");
5271
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
5272
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
5273 5274 5275
		}
		break;
	}
5276

J
Jeb Cramer 已提交
5277
	return 0;
5278 5279
}

J
Jeb Cramer 已提交
5280
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5281
			  void *p)
J
Jeb Cramer 已提交
5282 5283 5284 5285
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5286
					 __igb_notify_dca);
J
Jeb Cramer 已提交
5287 5288 5289

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
5290
#endif /* CONFIG_IGB_DCA */
5291

5292 5293 5294 5295 5296
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

5297
	eth_zero_addr(mac_addr);
5298 5299
	igb_set_vf_mac(adapter, vf, mac_addr);

L
Lior Levy 已提交
5300 5301 5302
	/* By default spoof check is enabled for all VFs */
	adapter->vf_data[vf].spoofchk_enabled = true;

5303
	return 0;
5304 5305 5306
}

#endif
5307 5308 5309 5310 5311 5312 5313 5314
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5315
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5316 5317 5318 5319 5320
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5321 5322 5323 5324 5325 5326
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5327
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5328
			    IGB_VF_FLAG_MULTI_PROMISC);
5329 5330 5331 5332
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5333
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5334 5335
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
5336
		/* if we have hashes and we are clearing a multicast promisc
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;
}

5359 5360 5361 5362 5363 5364 5365 5366
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5367
	/* salt away the number of multicast addresses assigned
5368 5369 5370 5371 5372
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5373 5374 5375 5376 5377
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5378
	for (i = 0; i < n; i++)
5379
		vf_data->vf_mc_hashes[i] = hash_list[i];
5380 5381

	/* Flush and reset the mta with the new values */
5382
	igb_set_rx_mode(adapter->netdev);
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5394 5395 5396
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5397
		vf_data = &adapter->vf_data[i];
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5436 5437

	adapter->vf_data[vf].vlans_enabled = 0;
5438 5439 5440 5441 5442 5443 5444
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5445 5446 5447 5448 5449
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5479 5480
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5481 5482
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5483 5484
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5485
			wr32(E1000_VLVF(i), reg);
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5501
			adapter->vf_data[vf].vlans_enabled++;
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5528 5529
		}
	}
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
5563
				 "The VF VLAN has been set, but the PF device is not up.\n");
5564
			dev_warn(&adapter->pdev->dev,
5565
				 "Bring the PF device up before attempting to use the VF device.\n");
5566 5567 5568
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5569
			     false, vf);
5570 5571 5572 5573
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
5574
	}
5575
out:
5576
	return err;
5577 5578
}

5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;
	u32 reg;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (i >= E1000_VLVF_ARRAY_SIZE)
		i = -1;

	return i;
}

5599 5600
static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
5601
	struct e1000_hw *hw = &adapter->hw;
5602 5603
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5604
	int err = 0;
5605

5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
	/* If in promiscuous mode we need to make sure the PF also has
	 * the VLAN filter set.
	 */
	if (add && (adapter->netdev->flags & IFF_PROMISC))
		err = igb_vlvf_set(adapter, vid, add,
				   adapter->vfs_allocated_count);
	if (err)
		goto out;

	err = igb_vlvf_set(adapter, vid, add, vf);

	if (err)
		goto out;

	/* Go through all the checks to see if the VLAN filter should
	 * be wiped completely.
	 */
	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
		u32 vlvf, bits;

		int regndx = igb_find_vlvf_entry(adapter, vid);
		if (regndx < 0)
			goto out;
		/* See if any other pools are set for this VLAN filter
		 * entry other than the PF.
		 */
		vlvf = bits = rd32(E1000_VLVF(regndx));
		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
			      adapter->vfs_allocated_count);
		/* If the filter was removed then ensure PF pool bit
		 * is cleared if the PF only added itself to the pool
		 * because the PF is in promiscuous mode.
		 */
		if ((vlvf & VLAN_VID_MASK) == vid &&
		    !test_bit(vid, adapter->active_vlans) &&
		    !bits)
			igb_vlvf_set(adapter, vid, add,
				     adapter->vfs_allocated_count);
	}

out:
	return err;
5648 5649
}

5650
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5651
{
G
Greg Rose 已提交
5652 5653
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5654
	adapter->vf_data[vf].last_nack = jiffies;
5655 5656

	/* reset offloads to defaults */
5657
	igb_set_vmolr(adapter, vf, true);
5658 5659 5660

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5661 5662 5663 5664 5665 5666
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5667 5668 5669 5670 5671

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5672
	igb_set_rx_mode(adapter->netdev);
5673 5674
}

5675 5676 5677 5678
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

5679
	/* clear mac address as we were hotplug removed/added */
5680
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5681
		eth_zero_addr(vf_mac);
5682 5683 5684 5685 5686 5687

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5688 5689 5690
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5691
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5692 5693 5694 5695
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5696
	igb_vf_reset(adapter, vf);
5697 5698

	/* set vf mac address */
5699
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5700 5701 5702 5703 5704 5705 5706

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5707
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5708 5709 5710 5711 5712 5713 5714 5715 5716

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
5717
	/* The VF MAC Address is stored in a packed array of bytes
G
Greg Rose 已提交
5718 5719
	 * starting at the second 32 bit word of the msg array
	 */
5720 5721
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5722

5723 5724
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5725

5726
	return err;
5727 5728 5729 5730 5731
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5732
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5733 5734 5735
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5736 5737
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5738
		igb_write_mbx(hw, &msg, 1, vf);
5739
		vf_data->last_nack = jiffies;
5740 5741 5742
	}
}

5743
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5744
{
5745 5746
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5747
	struct e1000_hw *hw = &adapter->hw;
5748
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5749 5750
	s32 retval;

5751
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5752

5753 5754
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5755
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5756 5757 5758 5759 5760
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5761 5762 5763

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5764
		return;
5765

5766
	/* until the vf completes a reset it should not be
5767 5768 5769 5770
	 * allowed to start any configuration.
	 */
	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5771
		return;
5772 5773
	}

5774
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5775 5776 5777 5778
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5779 5780 5781 5782
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5783 5784 5785 5786 5787
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
5788 5789
				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
				 vf);
5790
		break;
5791 5792 5793
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5794 5795 5796 5797 5798 5799 5800
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5801 5802 5803
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
5804 5805
				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
				 vf);
5806 5807
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5808 5809
		break;
	default:
5810
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5811 5812 5813 5814
		retval = -1;
		break;
	}

5815 5816
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5817 5818 5819 5820 5821 5822 5823
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5824
}
5825

5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5844 5845
}

5846 5847 5848 5849 5850 5851 5852
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5853 5854
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5873
/**
5874 5875 5876
 *  igb_intr_msi - Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5877 5878 5879
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5880 5881
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5882 5883 5884 5885
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5886
	igb_write_itr(q_vector);
5887

5888 5889 5890
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5891
	if (icr & E1000_ICR_DOUTSYNC) {
5892 5893 5894 5895
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5896 5897 5898 5899 5900 5901
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5913
	napi_schedule(&q_vector->napi);
5914 5915 5916 5917 5918

	return IRQ_HANDLED;
}

/**
5919 5920 5921
 *  igb_intr - Legacy Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5922 5923 5924
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5925 5926
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5927 5928
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5929 5930
	 * need for the IMC write
	 */
5931 5932 5933
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5934 5935
	 * not set, then the adapter didn't send an interrupt
	 */
5936 5937 5938
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5939 5940
	igb_write_itr(q_vector);

5941 5942 5943
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5944
	if (icr & E1000_ICR_DOUTSYNC) {
5945 5946 5947 5948
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5949 5950 5951 5952 5953 5954 5955
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5967
	napi_schedule(&q_vector->napi);
5968 5969 5970 5971

	return IRQ_HANDLED;
}

5972
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5973
{
5974
	struct igb_adapter *adapter = q_vector->adapter;
5975
	struct e1000_hw *hw = &adapter->hw;
5976

5977 5978 5979 5980
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5981
		else
5982
			igb_update_ring_itr(q_vector);
5983 5984
	}

5985 5986
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5987
			wr32(E1000_EIMS, q_vector->eims_value);
5988 5989 5990
		else
			igb_irq_enable(adapter);
	}
5991 5992
}

5993
/**
5994 5995 5996
 *  igb_poll - NAPI Rx polling callback
 *  @napi: napi polling structure
 *  @budget: count of how many packets we should handle
5997 5998
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5999
{
6000
	struct igb_q_vector *q_vector = container_of(napi,
6001 6002
						     struct igb_q_vector,
						     napi);
6003
	bool clean_complete = true;
6004

6005
#ifdef CONFIG_IGB_DCA
6006 6007
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
6008
#endif
6009
	if (q_vector->tx.ring)
6010
		clean_complete = igb_clean_tx_irq(q_vector);
6011

6012
	if (q_vector->rx.ring)
6013
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6014

6015 6016 6017
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
6018

6019
	/* If not enough Rx work done, exit the polling mode */
6020 6021
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
6022

6023
	return 0;
6024
}
A
Al Viro 已提交
6025

6026
/**
6027 6028
 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 *  @q_vector: pointer to q_vector containing needed info
6029
 *
6030
 *  returns true if ring is completely cleaned
6031
 **/
6032
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6033
{
6034
	struct igb_adapter *adapter = q_vector->adapter;
6035
	struct igb_ring *tx_ring = q_vector->tx.ring;
6036
	struct igb_tx_buffer *tx_buffer;
6037
	union e1000_adv_tx_desc *tx_desc;
6038
	unsigned int total_bytes = 0, total_packets = 0;
6039
	unsigned int budget = q_vector->tx.work_limit;
6040
	unsigned int i = tx_ring->next_to_clean;
6041

6042 6043
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
6044

6045
	tx_buffer = &tx_ring->tx_buffer_info[i];
6046
	tx_desc = IGB_TX_DESC(tx_ring, i);
6047
	i -= tx_ring->count;
6048

6049 6050
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6051 6052 6053 6054

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
6055

6056
		/* prevent any other reads prior to eop_desc */
6057
		read_barrier_depends();
6058

6059 6060 6061 6062
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

6063 6064
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
6065

6066 6067 6068
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
6069

6070 6071
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
6072

6073 6074
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
6075 6076
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
6077 6078
				 DMA_TO_DEVICE);

6079 6080 6081 6082
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

6083 6084
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
6085 6086
			tx_buffer++;
			tx_desc++;
6087
			i++;
6088 6089
			if (unlikely(!i)) {
				i -= tx_ring->count;
6090
				tx_buffer = tx_ring->tx_buffer_info;
6091 6092
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
6093 6094

			/* unmap any remaining paged data */
6095
			if (dma_unmap_len(tx_buffer, len)) {
6096
				dma_unmap_page(tx_ring->dev,
6097 6098
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
6099
					       DMA_TO_DEVICE);
6100
				dma_unmap_len_set(tx_buffer, len, 0);
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
6113 6114 6115 6116 6117 6118 6119

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
6120

6121 6122
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
6123
	i += tx_ring->count;
6124
	tx_ring->next_to_clean = i;
6125 6126 6127 6128
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
6129 6130
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
6131

6132
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6133
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
6134

6135
		/* Detect a transmit hang in hardware, this serializes the
6136 6137
		 * check with the clearing of time_stamp and movement of i
		 */
6138
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6139
		if (tx_buffer->next_to_watch &&
6140
		    time_after(jiffies, tx_buffer->time_stamp +
6141 6142
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6143 6144

			/* detected Tx unit hang */
6145
			dev_err(tx_ring->dev,
6146
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
6147
				"  Tx Queue             <%d>\n"
6148 6149 6150 6151 6152 6153
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
6154
				"  next_to_watch        <%p>\n"
6155 6156
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
6157
				tx_ring->queue_index,
6158
				rd32(E1000_TDH(tx_ring->reg_idx)),
6159
				readl(tx_ring->tail),
6160 6161
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
6162
				tx_buffer->time_stamp,
6163
				tx_buffer->next_to_watch,
6164
				jiffies,
6165
				tx_buffer->next_to_watch->wb.status);
6166 6167 6168 6169 6170
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
6171 6172
		}
	}
6173

6174
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6175
	if (unlikely(total_packets &&
6176 6177
	    netif_carrier_ok(tx_ring->netdev) &&
	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
6195 6196
}

6197
/**
6198 6199 6200
 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 *  @rx_ring: rx descriptor ring to store buffers on
 *  @old_buff: donor buffer to have page reused
6201
 *
6202
 *  Synchronizes page for reuse by the adapter
6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
6222
					 IGB_RX_BUFSZ,
6223 6224 6225
					 DMA_FROM_DEVICE);
}

6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
				  struct page *page,
				  unsigned int truesize)
{
	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;

	/* since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif

	return true;
}

6261
/**
6262 6263 6264 6265 6266
 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 *  @rx_ring: rx descriptor ring to transact packets on
 *  @rx_buffer: buffer containing page to add
 *  @rx_desc: descriptor containing length of buffer written by hardware
 *  @skb: sk_buff to place the data into
6267
 *
6268 6269 6270 6271
 *  This function will add the data contained in rx_buffer->page to the skb.
 *  This is done either through a direct copy if the data in the buffer is
 *  less than the skb header size, otherwise it will just attach the page as
 *  a frag to the skb.
6272
 *
6273 6274
 *  The function will then update the page offset if necessary and return
 *  true if the buffer can be reused by the adapter.
6275 6276 6277 6278 6279 6280 6281 6282
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6283 6284 6285 6286 6287
#if (PAGE_SIZE < 8192)
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6310
			rx_buffer->page_offset, size, truesize);
6311

6312 6313
	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
}
6314

6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

6345
		/* we will be copying header into skb->data in
6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6356
				      IGB_RX_BUFSZ,
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6375
static inline void igb_rx_checksum(struct igb_ring *ring,
6376 6377
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6378
{
6379
	skb_checksum_none_assert(skb);
6380

6381
	/* Ignore Checksum bit is set */
6382
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6383 6384 6385 6386
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6387
		return;
6388

6389
	/* TCP/UDP checksum error bit is set */
6390 6391 6392
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6393
		/* work around errata with sctp packets where the TCPE aka
6394 6395 6396
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6397 6398
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6399
			u64_stats_update_begin(&ring->rx_syncp);
6400
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6401 6402
			u64_stats_update_end(&ring->rx_syncp);
		}
6403 6404 6405 6406
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6407 6408
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6409 6410
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6411 6412
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6413 6414
}

6415 6416 6417 6418 6419 6420 6421 6422
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

6423
/**
6424 6425 6426 6427
 *  igb_is_non_eop - process handling of non-EOP buffers
 *  @rx_ring: Rx ring being processed
 *  @rx_desc: Rx descriptor for current buffer
 *  @skb: current socket buffer containing buffer in progress
6428
 *
6429 6430 6431 6432
 *  This function updates next to clean.  If the buffer is an EOP buffer
 *  this function exits returning false, otherwise it will place the
 *  sk_buff in the next buffer to be chained and return true indicating
 *  that this is in fact a non-EOP buffer.
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6451
/**
6452 6453 6454
 *  igb_get_headlen - determine size of header for LRO/GRO
 *  @data: pointer to the start of the headers
 *  @max_len: total length of section to find headers in
6455
 *
6456 6457 6458 6459 6460
 *  This function is meant to determine the length of headers that will
 *  be recognized by hardware for LRO, and GRO offloads.  The main
 *  motivation of doing this is to only perform one pull for IPv4 TCP
 *  packets so that we can do basic things like calculating the gso_size
 *  based on the average data per packet.
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

6510
		/* record next protocol if header is present */
6511
		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6512
			nexthdr = hdr.ipv4->protocol;
6513 6514 6515 6516 6517 6518
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
6519
		hlen = sizeof(struct ipv6hdr);
6520 6521 6522 6523
	} else {
		return hdr.network - data;
	}

6524 6525 6526
	/* relocate pointer to start of L4 header */
	hdr.network += hlen;

6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

6547
	/* If everything has gone correctly hdr.network should be the
6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
6559 6560 6561 6562
 *  igb_pull_tail - igb specific version of skb_pull_tail
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being adjusted
6563
 *
6564 6565 6566 6567 6568 6569
 *  This function is an igb specific version of __pskb_pull_tail.  The
 *  main difference between this version and the original function is that
 *  this function can make several assumptions about the state of things
 *  that allow for significant optimizations versus the standard function.
 *  As a result we can do things like drop a frag and maintain an accurate
 *  truesize for the skb.
6570 6571 6572 6573
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6574
{
6575 6576 6577 6578
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

6579
	/* it is valid to use page_address instead of kmap since we are
6580 6581
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6582
	 */
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
	va = skb_frag_address(frag);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

6599
	/* we need the header to contain the greater of either ETH_HLEN or
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
6615 6616 6617 6618
 *  igb_cleanup_headers - Correct corrupted or empty headers
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being fixed
6619
 *
6620 6621
 *  Address the case where we are pulling data in on pages only
 *  and as such no data is present in the skb header.
6622
 *
6623 6624
 *  In addition if skb is not at least 60 bytes we need to pad it so that
 *  it is large enough to qualify as a valid Ethernet frame.
6625
 *
6626
 *  Returns true if an error was encountered and skb was freed.
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{
	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6655 6656
}

6657
/**
6658 6659 6660 6661
 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being populated
6662
 *
6663 6664 6665
 *  This function checks the ring, descriptor, and packet information in
 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 *  other fields within the skb.
6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

6677
	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6678

6679
	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6680 6681 6682 6683 6684 6685 6686 6687
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

6688
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6689 6690 6691 6692 6693 6694 6695
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6696
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6697
{
6698
	struct igb_ring *rx_ring = q_vector->rx.ring;
6699
	struct sk_buff *skb = rx_ring->skb;
6700
	unsigned int total_bytes = 0, total_packets = 0;
6701
	u16 cleaned_count = igb_desc_unused(rx_ring);
6702

6703 6704
	do {
		union e1000_adv_rx_desc *rx_desc;
6705

6706 6707 6708 6709 6710
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6711

6712
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6713

6714 6715
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6716

6717 6718 6719 6720 6721 6722
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();

6723
		/* retrieve a buffer from the ring */
6724
		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6725

6726 6727 6728
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6729

6730
		cleaned_count++;
6731

6732 6733 6734
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6735 6736 6737 6738 6739

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6740 6741
		}

6742
		/* probably a little skewed due to removing CRC */
6743 6744
		total_bytes += skb->len;

6745 6746
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6747

J
Jiri Pirko 已提交
6748
		napi_gro_receive(&q_vector->napi, skb);
6749

6750 6751 6752
		/* reset skb pointer */
		skb = NULL;

6753 6754 6755
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
6756

6757 6758 6759
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
6760
	u64_stats_update_begin(&rx_ring->rx_syncp);
6761 6762
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6763
	u64_stats_update_end(&rx_ring->rx_syncp);
6764 6765
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6766 6767

	if (cleaned_count)
6768
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6769

6770
	return (total_packets < budget);
6771 6772
}

6773
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6774
				  struct igb_rx_buffer *bi)
6775 6776
{
	struct page *page = bi->page;
6777
	dma_addr_t dma;
6778

6779 6780
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
6781 6782
		return true;

6783 6784 6785 6786 6787
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
6788 6789
	}

6790 6791
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6792

6793
	/* if mapping failed free memory back to system since
6794 6795
	 * there isn't much point in holding memory we can't use
	 */
6796
	if (dma_mapping_error(rx_ring->dev, dma)) {
6797 6798
		__free_page(page);

6799 6800 6801 6802
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

6803
	bi->dma = dma;
6804 6805
	bi->page = page;
	bi->page_offset = 0;
6806

6807 6808 6809
	return true;
}

6810
/**
6811 6812
 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
 *  @adapter: address of board private structure
6813
 **/
6814
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6815 6816
{
	union e1000_adv_rx_desc *rx_desc;
6817
	struct igb_rx_buffer *bi;
6818
	u16 i = rx_ring->next_to_use;
6819

6820 6821 6822 6823
	/* nothing to do */
	if (!cleaned_count)
		return;

6824
	rx_desc = IGB_RX_DESC(rx_ring, i);
6825
	bi = &rx_ring->rx_buffer_info[i];
6826
	i -= rx_ring->count;
6827

6828
	do {
6829
		if (!igb_alloc_mapped_page(rx_ring, bi))
6830
			break;
6831

6832
		/* Refresh the desc even if buffer_addrs didn't change
6833 6834
		 * because each write-back erases this info.
		 */
6835
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6836

6837 6838
		rx_desc++;
		bi++;
6839
		i++;
6840
		if (unlikely(!i)) {
6841
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6842
			bi = rx_ring->rx_buffer_info;
6843 6844 6845 6846 6847
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6848 6849 6850

		cleaned_count--;
	} while (cleaned_count);
6851

6852 6853
	i += rx_ring->count;

6854
	if (rx_ring->next_to_use != i) {
6855
		/* record the next descriptor to use */
6856 6857
		rx_ring->next_to_use = i;

6858 6859 6860
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

6861
		/* Force memory writes to complete before letting h/w
6862 6863
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
6864 6865
		 * such as IA-64).
		 */
6866
		wmb();
6867
		writel(i, rx_ring->tail);
6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6890 6891
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6914
	case SIOCSHWTSTAMP:
6915
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6916 6917 6918 6919 6920
	default:
		return -EOPNOTSUPP;
	}
}

6921 6922 6923 6924
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6925
	if (pcie_capability_read_word(adapter->pdev, reg, value))
6926 6927 6928 6929 6930 6931 6932 6933 6934
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6935
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6936 6937 6938 6939 6940
		return -E1000_ERR_CONFIG;

	return 0;
}

6941
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6942 6943 6944 6945
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6946
	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6947

6948
	if (enable) {
6949 6950 6951 6952 6953
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6954
		/* Disable CFI check */
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6965
	igb_rlpml_set(adapter);
6966 6967
}

6968 6969
static int igb_vlan_rx_add_vid(struct net_device *netdev,
			       __be16 proto, u16 vid)
6970 6971 6972
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6973
	int pf_id = adapter->vfs_allocated_count;
6974

6975 6976
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6977

6978 6979
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6980 6981

	set_bit(vid, adapter->active_vlans);
6982 6983

	return 0;
6984 6985
}

6986 6987
static int igb_vlan_rx_kill_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
6988 6989 6990
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6991
	int pf_id = adapter->vfs_allocated_count;
6992
	s32 err;
6993

6994 6995
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6996

6997 6998
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6999
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
7000 7001

	clear_bit(vid, adapter->active_vlans);
7002 7003

	return 0;
7004 7005 7006 7007
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
7008
	u16 vid;
7009

7010 7011
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
7012
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7013
		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7014 7015
}

7016
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7017
{
7018
	struct pci_dev *pdev = adapter->pdev;
7019 7020 7021 7022
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

7023
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7024 7025
	 * for the switch() below to work
	 */
7026 7027 7028
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
	/* Fiber NIC's only allow 1000 gbps Full duplex
	 * and 100Mbps Full duplex for 100baseFx sfp
	 */
	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
		switch (spd + dplx) {
		case SPEED_10 + DUPLEX_HALF:
		case SPEED_10 + DUPLEX_FULL:
		case SPEED_100 + DUPLEX_HALF:
			goto err_inval;
		default:
			break;
		}
	}
7042

7043
	switch (spd + dplx) {
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
7062
		goto err_inval;
7063
	}
7064 7065 7066 7067

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

7068
	return 0;
7069 7070 7071 7072

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
7073 7074
}

Y
Yan, Zheng 已提交
7075 7076
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
7077 7078 7079 7080
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
7081
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
7082
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7083 7084 7085 7086 7087 7088
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
7089
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
7090
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
7091

7092
	igb_clear_interrupt_scheme(adapter);
7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
7106
		igb_set_rx_mode(netdev);
7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
7124
		igb_disable_pcie_master(hw);
7125 7126 7127 7128 7129 7130 7131 7132

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

7133 7134
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
7135 7136 7137
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
7138 7139

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7140 7141
	 * would have already happened in close and is redundant.
	 */
7142 7143 7144 7145 7146 7147 7148 7149
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
7150
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
7151
static int igb_suspend(struct device *dev)
7152 7153 7154
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
7155
	struct pci_dev *pdev = to_pci_dev(dev);
7156

Y
Yan, Zheng 已提交
7157
	retval = __igb_shutdown(pdev, &wake, 0);
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
7170
#endif /* CONFIG_PM_SLEEP */
7171

Y
Yan, Zheng 已提交
7172
static int igb_resume(struct device *dev)
7173
{
Y
Yan, Zheng 已提交
7174
	struct pci_dev *pdev = to_pci_dev(dev);
7175 7176 7177 7178 7179 7180 7181
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
7182
	pci_save_state(pdev);
T
Taku Izumi 已提交
7183

7184
	err = pci_enable_device_mem(pdev);
7185 7186 7187 7188 7189 7190 7191 7192 7193 7194
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

7195
	if (igb_init_interrupt_scheme(adapter, true)) {
A
Alexander Duyck 已提交
7196 7197
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
7198 7199 7200
	}

	igb_reset(adapter);
7201 7202

	/* let the f/w know that the h/w is now under the control of the
7203 7204
	 * driver.
	 */
7205 7206
	igb_get_hw_control(adapter);

7207 7208
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
7209
	if (netdev->flags & IFF_UP) {
7210
		rtnl_lock();
Y
Yan, Zheng 已提交
7211
		err = __igb_open(netdev, true);
7212
		rtnl_unlock();
A
Alexander Duyck 已提交
7213 7214 7215
		if (err)
			return err;
	}
7216 7217

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7250 7251 7252

	return 0;
}
Y
Yan, Zheng 已提交
7253 7254 7255 7256 7257 7258

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
7259 7260 7261 7262
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
7263 7264
	bool wake;

Y
Yan, Zheng 已提交
7265
	__igb_shutdown(pdev, &wake, 0);
7266 7267 7268 7269 7270

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7271 7272
}

7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

7339
#ifdef CONFIG_NET_POLL_CONTROLLER
7340
/* Polling 'interrupt' - used by things like netconsole to send skbs
7341 7342 7343 7344 7345 7346
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
7347
	struct e1000_hw *hw = &adapter->hw;
7348
	struct igb_q_vector *q_vector;
7349 7350
	int i;

7351
	for (i = 0; i < adapter->num_q_vectors; i++) {
7352 7353 7354 7355 7356
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
7357
		napi_schedule(&q_vector->napi);
7358
	}
7359 7360 7361 7362
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
7363 7364 7365
 *  igb_io_error_detected - called when PCI error is detected
 *  @pdev: Pointer to PCI device
 *  @state: The current pci connection state
7366
 *
7367 7368 7369
 *  This function is called after a PCI bus error affecting
 *  this device has been detected.
 **/
7370 7371 7372 7373 7374 7375 7376 7377
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

7378 7379 7380
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

7381 7382 7383 7384 7385 7386 7387 7388 7389
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
7390 7391
 *  igb_io_slot_reset - called after the pci bus has been reset.
 *  @pdev: Pointer to PCI device
7392
 *
7393 7394 7395
 *  Restart the card from scratch, as if from a cold-boot. Implementation
 *  resembles the first-half of the igb_resume routine.
 **/
7396 7397 7398 7399 7400
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7401
	pci_ers_result_t result;
T
Taku Izumi 已提交
7402
	int err;
7403

7404
	if (pci_enable_device_mem(pdev)) {
7405 7406
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
7407 7408 7409 7410
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
7411
		pci_save_state(pdev);
7412

7413 7414
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
7415

7416 7417 7418 7419
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
7420

7421 7422
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
7423 7424 7425
		dev_err(&pdev->dev,
			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
			err);
7426 7427
		/* non-fatal, continue */
	}
7428 7429

	return result;
7430 7431 7432
}

/**
7433 7434
 *  igb_io_resume - called when traffic can start flowing again.
 *  @pdev: Pointer to PCI device
7435
 *
7436 7437 7438
 *  This callback is called when the error recovery driver tells us that
 *  its OK to resume normal operation. Implementation resembles the
 *  second-half of the igb_resume routine.
7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
7455 7456
	 * driver.
	 */
7457 7458 7459
	igb_get_hw_control(adapter);
}

7460
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7461
			     u8 qsel)
7462 7463 7464 7465 7466 7467 7468 7469
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7470
		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7487
static int igb_set_vf_mac(struct igb_adapter *adapter,
7488
			  int vf, unsigned char *mac_addr)
7489 7490
{
	struct e1000_hw *hw = &adapter->hw;
7491
	/* VF MAC addresses start at end of receive addresses and moves
7492 7493
	 * towards the first, as a result a collision should not be possible
	 */
7494
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7495

7496
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7497

7498
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7499 7500 7501 7502

	return 0;
}

7503 7504 7505 7506 7507 7508 7509
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7510 7511
	dev_info(&adapter->pdev->dev,
		 "Reload the VF driver to make this change effective.");
7512
	if (test_bit(__IGB_DOWN, &adapter->state)) {
7513 7514 7515 7516
		dev_warn(&adapter->pdev->dev,
			 "The VF MAC address has been set, but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev,
			 "Bring the PF device up before attempting to use the VF device.\n");
7517 7518 7519 7520
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
7543 7544
		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
			 tx_rate;
7545 7546

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7547 7548
		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
			      E1000_RTTBCNRC_RF_INT_MASK);
7549 7550 7551 7552 7553 7554
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7555
	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
L
Lior Levy 已提交
7556 7557 7558
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
7577
			 "Link speed has been changed. VF Transmit rate is disabled\n");
7578 7579 7580 7581 7582 7583 7584
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
7585 7586
				      adapter->vf_data[i].tx_rate,
				      actual_link_speed);
7587 7588 7589
	}
}

7590 7591
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7610 7611
}

L
Lior Levy 已提交
7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 reg_val, reg_offset;

	if (!adapter->vfs_allocated_count)
		return -EOPNOTSUPP;

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;

	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
	reg_val = rd32(reg_offset);
	if (setting)
		reg_val |= ((1 << vf) |
			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	else
		reg_val &= ~((1 << vf) |
			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	wr32(reg_offset, reg_val);

	adapter->vf_data[vf].spoofchk_enabled = setting;
	return E1000_SUCCESS;
}

7639 7640 7641 7642 7643 7644 7645 7646
static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7647
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7648 7649
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
L
Lior Levy 已提交
7650
	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7651 7652 7653
	return 0;
}

7654 7655 7656
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7657
	u32 reg;
7658

7659 7660
	switch (hw->mac.type) {
	case e1000_82575:
7661 7662
	case e1000_i210:
	case e1000_i211:
7663
	case e1000_i354:
7664 7665
	default:
		/* replication is not supported for 82575 */
7666
		return;
7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7677 7678
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7679 7680
		break;
	}
7681

7682 7683 7684
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7685
		igb_vmdq_set_anti_spoofing_pf(hw, true,
7686
					      adapter->vfs_allocated_count);
7687 7688 7689 7690
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7691 7692
}

7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

7706
			/* DMA Coalescing high water mark needs to be greater
7707 7708
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7709
			 */
7710 7711 7712 7713 7714 7715 7716 7717 7718
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

7719
			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7720 7721 7722 7723 7724
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7725 7726 7727 7728 7729 7730 7731 7732 7733 7734
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7735 7736

			/* Disable BMC-to-OS Watchdog Enable */
7737 7738 7739
			if (hw->mac.type != e1000_i354)
				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;

7740 7741
			wr32(E1000_DMACR, reg);

7742
			/* no lower threshold to disable
7743 7744 7745 7746 7747 7748 7749 7750
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

7751
			/* free space in tx packet buffer to wake from
7752 7753 7754 7755 7756
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

7757
			/* make low power state decision controlled
7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

7771 7772
/**
 *  igb_read_i2c_byte - Reads 8 bit word over I2C
C
Carolyn Wyborny 已提交
7773 7774 7775 7776 7777 7778 7779
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
7780
 **/
C
Carolyn Wyborny 已提交
7781
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7782
		      u8 dev_addr, u8 *data)
C
Carolyn Wyborny 已提交
7783 7784
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7785
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
	    != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
		return E1000_SUCCESS;
	}
}

7809 7810
/**
 *  igb_write_i2c_byte - Writes 8 bit word over I2C
C
Carolyn Wyborny 已提交
7811 7812 7813 7814 7815 7816 7817
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
7818
 **/
C
Carolyn Wyborny 已提交
7819
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7820
		       u8 dev_addr, u8 data)
C
Carolyn Wyborny 已提交
7821 7822
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7823
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
		return E1000_SUCCESS;

}
7841
/* igb_main.c */