igb_main.c 206.3 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2013 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
C
Carolyn Wyborny 已提交
60
#include <linux/i2c.h>
61 62
#include "igb.h"

C
Carolyn Wyborny 已提交
63
#define MAJ 4
C
Carolyn Wyborny 已提交
64 65
#define MIN 1
#define BUILD 2
C
Carolyn Wyborny 已提交
66
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67
__stringify(BUILD) "-k"
68 69 70 71
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
72 73
static const char igb_copyright[] =
				"Copyright (c) 2007-2013 Intel Corporation.";
74 75 76 77 78

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

79
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 81 82
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 84 85 86 87
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 89 90 91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92 93
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95 96 97
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98 99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
100 101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
102
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
105 106
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110 111 112 113 114 115 116 117 118 119 120 121 122 123
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
124
static void igb_setup_mrqc(struct igb_adapter *);
125
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126
static void igb_remove(struct pci_dev *pdev);
127 128 129
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
130
static void igb_configure(struct igb_adapter *);
131 132 133 134
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
135 136
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
137
static void igb_set_rx_mode(struct net_device *);
138 139 140
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
141
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
142 143
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
144 145
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
146
static void igb_set_uta(struct igb_adapter *adapter);
147 148 149
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
150
static irqreturn_t igb_msix_ring(int irq, void *);
151
#ifdef CONFIG_IGB_DCA
152
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
153
static void igb_setup_dca(struct igb_adapter *);
154
#endif /* CONFIG_IGB_DCA */
155
static int igb_poll(struct napi_struct *, int);
156
static bool igb_clean_tx_irq(struct igb_q_vector *);
157
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158 159 160
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
161
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162 163
static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
164
static void igb_restore_vlan(struct igb_adapter *);
165
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166 167 168
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
169
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171 172 173 174
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
L
Lior Levy 已提交
175 176
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting);
177 178
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
179
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
180 181

#ifdef CONFIG_PCI_IOV
182
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
R
RongQing Li 已提交
183
#endif
184 185

#ifdef CONFIG_PM
186
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
187
static int igb_suspend(struct device *);
188
#endif
Y
Yan, Zheng 已提交
189 190 191 192 193 194 195 196 197 198 199
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
200 201
#endif
static void igb_shutdown(struct pci_dev *);
202
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
204 205 206 207 208 209 210
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
211 212 213 214
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
215
#ifdef CONFIG_PCI_IOV
216 217 218 219 220 221
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

222 223 224 225 226
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

227
static const struct pci_error_handlers igb_err_handler = {
228 229 230 231 232
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

233
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
234 235 236 237 238

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
239
	.remove   = igb_remove,
240
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
241
	.driver.pm = &igb_pm_ops,
242 243
#endif
	.shutdown = igb_shutdown,
244
	.sriov_configure = igb_pci_sriov_configure,
245 246 247 248 249 250 251 252
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

253 254 255 256 257
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

299
/* igb_regdump - register printout routine */
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
356
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
357 358 359 360
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
361 362
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
363 364
}

365
/* igb_dump - Print registers, Tx-rings and Rx-rings */
366 367 368 369 370 371 372 373 374 375 376
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
377
	u16 i, n;
378 379 380 381 382 383 384

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
385 386 387 388
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
389 390 391 392
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
393
	pr_info(" Register Name   Value\n");
394 395 396 397 398 399 400 401 402 403
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
404
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405
	for (n = 0; n < adapter->num_tx_queues; n++) {
406
		struct igb_tx_buffer *buffer_info;
407
		tx_ring = adapter->tx_ring[n];
408
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
409 410
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 412
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
413 414
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
436 437 438 439 440 441
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
442 443

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
444
			const char *next_desc;
445
			struct igb_tx_buffer *buffer_info;
446
			tx_desc = IGB_TX_DESC(tx_ring, i);
447
			buffer_info = &tx_ring->tx_buffer_info[i];
448
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
449 450 451 452 453 454 455 456 457 458 459 460
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
461 462
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
463 464
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
465 466
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
467
				buffer_info->skb, next_desc);
468

469
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470 471
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
472
					16, 1, buffer_info->skb->data,
473 474
					dma_unmap_len(buffer_info, len),
					true);
475 476 477 478 479 480
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
481
	pr_info("Queue [NTU] [NTC]\n");
482 483
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
484 485
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
517 518 519 520 521 522 523
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524 525

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
526
			const char *next_desc;
527 528
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
529
			rx_desc = IGB_RX_DESC(rx_ring, i);
530 531
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
532 533 534 535 536 537 538 539

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

540 541
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
542 543
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
544 545
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
546
					next_desc);
547
			} else {
548 549
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
550 551 552
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
553
					next_desc);
554

555
				if (netif_msg_pktdata(adapter) &&
556
				    buffer_info->dma && buffer_info->page) {
557 558 559
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
560 561
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
562
					  IGB_RX_BUFSZ, true);
563 564 565 566 567 568 569 570 571
				}
			}
		}
	}

exit:
	return;
}

572 573
/**
 *  igb_get_i2c_data - Reads the I2C SDA data bit
C
Carolyn Wyborny 已提交
574 575 576 577
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
578
 **/
C
Carolyn Wyborny 已提交
579 580 581 582 583 584 585 586 587
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
}

588 589
/**
 *  igb_set_i2c_data - Sets the I2C data bit
C
Carolyn Wyborny 已提交
590 591 592 593
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
594
 **/
C
Carolyn Wyborny 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

613 614
/**
 *  igb_set_i2c_clk - Sets the I2C SCL clock
C
Carolyn Wyborny 已提交
615 616 617 618
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
619
 **/
C
Carolyn Wyborny 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

637 638
/**
 *  igb_get_i2c_clk - Gets the I2C SCL clock state
C
Carolyn Wyborny 已提交
639 640 641
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
642
 **/
C
Carolyn Wyborny 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

661
/**
662 663 664 665
 *  igb_get_hw_dev - return device
 *  @hw: pointer to hardware structure
 *
 *  used by hardware layer to print debugging information
666
 **/
667
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
668 669
{
	struct igb_adapter *adapter = hw->back;
670
	return adapter->netdev;
671
}
P
Patrick Ohly 已提交
672

673
/**
674
 *  igb_init_module - Driver Registration Routine
675
 *
676 677
 *  igb_init_module is the first routine called when the driver is
 *  loaded. All it does is register with the PCI subsystem.
678 679 680 681
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
682
	pr_info("%s - version %s\n",
683 684
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
685
	pr_info("%s\n", igb_copyright);
686

687
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
688 689
	dca_register_notify(&dca_notifier);
#endif
690
	ret = pci_register_driver(&igb_driver);
691 692 693 694 695 696
	return ret;
}

module_init(igb_init_module);

/**
697
 *  igb_exit_module - Driver Exit Cleanup Routine
698
 *
699 700
 *  igb_exit_module is called just before the driver is removed
 *  from memory.
701 702 703
 **/
static void __exit igb_exit_module(void)
{
704
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
705 706
	dca_unregister_notify(&dca_notifier);
#endif
707 708 709 710 711
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

712 713
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
714 715
 *  igb_cache_ring_register - Descriptor ring to register mapping
 *  @adapter: board private structure to initialize
716
 *
717 718
 *  Once we know the feature-set enabled for the device, we'll cache
 *  the register offset the descriptor ring is assigned to.
719 720 721
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
722
	int i = 0, j = 0;
723
	u32 rbase_offset = adapter->vfs_allocated_count;
724 725 726 727 728 729 730 731

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
732
		if (adapter->vfs_allocated_count) {
733
			for (; i < adapter->rss_queues; i++)
734
				adapter->rx_ring[i]->reg_idx = rbase_offset +
735
							       Q_IDX_82576(i);
736
		}
737
	case e1000_82575:
738
	case e1000_82580:
739
	case e1000_i350:
740
	case e1000_i354:
741 742
	case e1000_i210:
	case e1000_i211:
743
	default:
744
		for (; i < adapter->num_rx_queues; i++)
745
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
746
		for (; j < adapter->num_tx_queues; j++)
747
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
748 749 750 751
		break;
	}
}

A
Alexander Duyck 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

778
#define IGB_N0_QUEUE -1
779
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780
{
781
	struct igb_adapter *adapter = q_vector->adapter;
782
	struct e1000_hw *hw = &adapter->hw;
783 784
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
785
	u32 msixbm = 0;
786

787 788 789 790
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
791 792 793

	switch (hw->mac.type) {
	case e1000_82575:
794
		/* The 82575 assigns vectors using a bitmask, which matches the
795 796 797 798
		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
		 * or more queues to a vector, we write the appropriate bits
		 * into the MSIXBM register for that vector.
		 */
799
		if (rx_queue > IGB_N0_QUEUE)
800
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801
		if (tx_queue > IGB_N0_QUEUE)
802
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 804
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
805
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
807 808
		break;
	case e1000_82576:
809
		/* 82576 uses a table that essentially consists of 2 columns
A
Alexander Duyck 已提交
810 811 812 813 814 815 816 817 818 819 820 821
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
822
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
823
		break;
824
	case e1000_82580:
825
	case e1000_i350:
826
	case e1000_i354:
827 828
	case e1000_i210:
	case e1000_i211:
829
		/* On 82580 and newer adapters the scheme is similar to 82576
A
Alexander Duyck 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
843 844
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
845 846 847 848
	default:
		BUG();
		break;
	}
849 850 851 852 853 854

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
855 856 857
}

/**
858 859
 *  igb_configure_msix - Configure MSI-X hardware
 *  @adapter: board private structure to initialize
860
 *
861 862
 *  igb_configure_msix sets up the hardware to properly
 *  generate MSI-X interrupts.
863 864 865 866 867 868 869 870 871 872
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
873 874
	switch (hw->mac.type) {
	case e1000_82575:
875 876 877 878 879 880 881 882 883
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
884 885

		/* enable msix_other interrupt */
886
		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
887
		adapter->eims_other = E1000_EIMS_OTHER;
888

A
Alexander Duyck 已提交
889 890 891
		break;

	case e1000_82576:
892
	case e1000_82580:
893
	case e1000_i350:
894
	case e1000_i354:
895 896
	case e1000_i210:
	case e1000_i211:
897
		/* Turn on MSI-X capability first, or our settings
898 899
		 * won't stick.  And it will take days to debug.
		 */
900
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 902
		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
		     E1000_GPIE_NSICR);
903 904 905

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
906 907
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

908
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
909 910 911 912 913
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
914 915 916

	adapter->eims_enable_mask |= adapter->eims_other;

917 918
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
919

920 921 922 923
	wrfl();
}

/**
924 925
 *  igb_request_msix - Initialize MSI-X interrupts
 *  @adapter: board private structure to initialize
926
 *
927 928
 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 *  kernel.
929 930 931 932
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
933
	struct e1000_hw *hw = &adapter->hw;
934
	int i, err = 0, vector = 0, free_vector = 0;
935

936
	err = request_irq(adapter->msix_entries[vector].vector,
937
			  igb_msix_other, 0, netdev->name, adapter);
938
	if (err)
939
		goto err_out;
940 941 942 943

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

944 945
		vector++;

946 947
		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

948
		if (q_vector->rx.ring && q_vector->tx.ring)
949
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950 951
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
952
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953 954
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
955
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956
				q_vector->rx.ring->queue_index);
957
		else
958 959
			sprintf(q_vector->name, "%s-unused", netdev->name);

960
		err = request_irq(adapter->msix_entries[vector].vector,
961 962
				  igb_msix_ring, 0, q_vector->name,
				  q_vector);
963
		if (err)
964
			goto err_free;
965 966 967 968
	}

	igb_configure_msix(adapter);
	return 0;
969 970 971 972 973 974 975 976 977 978 979

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
980 981 982 983 984 985 986 987 988
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
989
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
990
		pci_disable_msi(adapter->pdev);
991
	}
992 993
}

994
/**
995 996 997
 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be freed
998
 *
999 1000 1001
 *  This function frees the memory allocated to the q_vector.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	adapter->q_vector[v_idx] = NULL;
	netif_napi_del(&q_vector->napi);

1016
	/* ixgbe_get_stats64() might access the rings on this vector,
1017 1018 1019 1020 1021
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

1022
/**
1023 1024
 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 *  @adapter: board private structure to initialize
1025
 *
1026 1027 1028
 *  This function frees the memory allocated to the q_vectors.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1029 1030 1031
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
1032 1033 1034 1035
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
1036
	adapter->num_q_vectors = 0;
1037 1038 1039

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);
1040 1041 1042
}

/**
1043 1044
 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *  @adapter: board private structure to initialize
1045
 *
1046 1047
 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 *  MSI-X interrupts allocated.
1048 1049 1050 1051 1052 1053
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1054 1055

/**
1056 1057 1058
 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1059
 *
1060 1061
 *  Attempt to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1062
 **/
1063
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1064 1065 1066 1067
{
	int err;
	int numvecs, i;

1068 1069 1070
	if (!msix)
		goto msi_only;

1071
	/* Number of supported queues. */
1072
	adapter->num_rx_queues = adapter->rss_queues;
1073 1074 1075 1076
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1077

1078
	/* start with one vector for every Rx queue */
1079 1080
	numvecs = adapter->num_rx_queues;

1081
	/* if Tx handler is separate add 1 for every Tx queue */
1082 1083
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1084 1085 1086 1087 1088 1089

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1090 1091
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1103
		return;
1104 1105 1106 1107 1108

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1120
		wrfl();
1121 1122 1123 1124
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1125
	adapter->vfs_allocated_count = 0;
1126
	adapter->rss_queues = 1;
1127
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1128
	adapter->num_rx_queues = 1;
1129
	adapter->num_tx_queues = 1;
1130
	adapter->num_q_vectors = 1;
1131
	if (!pci_enable_msi(adapter->pdev))
1132
		adapter->flags |= IGB_FLAG_HAS_MSI;
1133 1134
}

1135 1136 1137 1138 1139 1140 1141
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1142
/**
1143 1144 1145 1146 1147 1148 1149 1150
 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 *  @v_idx: index of vector in adapter struct
 *  @txr_count: total number of Tx rings to allocate
 *  @txr_idx: index of first Tx ring to allocate
 *  @rxr_count: total number of Rx rings to allocate
 *  @rxr_idx: index of first Rx ring to allocate
1151
 *
1152
 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1153
 **/
1154 1155 1156 1157
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1158 1159
{
	struct igb_q_vector *q_vector;
1160 1161
	struct igb_ring *ring;
	int ring_count, size;
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
	q_vector = kzalloc(size, GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	/* intialize ITR */
	if (rxr_count) {
		/* rx or rx/tx vector */
		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
			q_vector->itr_val = adapter->rx_itr_setting;
	} else {
		/* tx only vector */
		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
			q_vector->itr_val = adapter->tx_itr_setting;
	}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1229
	}
1230

1231 1232 1233 1234
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1235

1236 1237
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1238

1239 1240
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1241

1242 1243 1244
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1245

1246 1247
		/*
		 * On i350, i354, i210, and i211, loopback VLAN packets
1248
		 * have the tag byte-swapped.
1249
		 */
1250 1251
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1252

1253 1254 1255 1256 1257 1258 1259 1260 1261
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1262 1263
}

1264

1265
/**
1266 1267
 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 *  @adapter: board private structure to initialize
1268
 *
1269 1270
 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 *  return -ENOMEM.
1271
 **/
1272
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1273
{
1274 1275 1276 1277 1278
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1279

1280 1281 1282 1283
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1284

1285 1286 1287 1288 1289 1290
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1291 1292
		}
	}
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1310
	return 0;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1321 1322 1323
}

/**
1324 1325 1326
 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1327
 *
1328
 *  This function initializes the interrupts and allocates all of the queues.
1329
 **/
1330
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1331 1332 1333 1334
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1335
	igb_set_interrupt_capability(adapter, msix);
1336 1337 1338 1339 1340 1341 1342

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1343
	igb_cache_ring_register(adapter);
1344 1345

	return 0;
1346

1347 1348 1349 1350 1351
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1352
/**
1353 1354
 *  igb_request_irq - initialize interrupts
 *  @adapter: board private structure to initialize
1355
 *
1356 1357
 *  Attempts to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1358 1359 1360 1361
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1362
	struct pci_dev *pdev = adapter->pdev;
1363 1364 1365 1366
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1367
		if (!err)
1368 1369
			goto request_done;
		/* fall back to MSI */
1370 1371
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1372

1373
		igb_clear_interrupt_scheme(adapter);
1374 1375
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
1376
			goto request_done;
1377

1378 1379
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1380
		igb_configure(adapter);
1381
	}
P
PJ Waskiewicz 已提交
1382

1383 1384
	igb_assign_vector(adapter->q_vector[0], 0);

1385
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1386
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1387
				  netdev->name, adapter);
1388 1389
		if (!err)
			goto request_done;
1390

1391 1392
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1393
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1394 1395
	}

1396
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1397
			  netdev->name, adapter);
1398

A
Andy Gospodarek 已提交
1399
	if (err)
1400
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1412
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1413

1414
		for (i = 0; i < adapter->num_q_vectors; i++)
1415
			free_irq(adapter->msix_entries[vector++].vector,
1416
				 adapter->q_vector[i]);
1417 1418
	} else {
		free_irq(adapter->pdev->irq, adapter);
1419 1420 1421 1422
	}
}

/**
1423 1424
 *  igb_irq_disable - Mask off interrupt generation on the NIC
 *  @adapter: board private structure
1425 1426 1427 1428 1429
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1430
	/* we need to be careful when disabling interrupts.  The VFs are also
1431 1432 1433
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1434
	if (adapter->msix_entries) {
1435 1436 1437 1438 1439
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1440
	}
P
PJ Waskiewicz 已提交
1441 1442

	wr32(E1000_IAM, 0);
1443 1444
	wr32(E1000_IMC, ~0);
	wrfl();
1445 1446 1447 1448 1449 1450 1451
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1452 1453 1454
}

/**
1455 1456
 *  igb_irq_enable - Enable default interrupt generation settings
 *  @adapter: board private structure
1457 1458 1459 1460 1461 1462
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1463
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1464 1465 1466 1467
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1468
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1469
		if (adapter->vfs_allocated_count) {
1470
			wr32(E1000_MBVFIMR, 0xFF);
1471 1472 1473
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1474
	} else {
1475 1476 1477 1478
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1479
	}
1480 1481 1482 1483
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1484
	struct e1000_hw *hw = &adapter->hw;
1485 1486
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1498
	    !test_bit(old_vid, adapter->active_vlans)) {
1499 1500
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1501 1502 1503 1504
	}
}

/**
1505 1506
 *  igb_release_hw_control - release control of the h/w to f/w
 *  @adapter: address of board private structure
1507
 *
1508 1509 1510
 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that the
 *  driver is no longer loaded.
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
1524 1525
 *  igb_get_hw_control - get control of the h/w from f/w
 *  @adapter: address of board private structure
1526
 *
1527 1528 1529
 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that
 *  the driver is loaded.
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
1543 1544
 *  igb_configure - configure the hardware for RX and TX
 *  @adapter: private board structure
1545 1546 1547 1548 1549 1550 1551
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1552
	igb_set_rx_mode(netdev);
1553 1554 1555

	igb_restore_vlan(adapter);

1556
	igb_setup_tctl(adapter);
1557
	igb_setup_mrqc(adapter);
1558
	igb_setup_rctl(adapter);
1559 1560

	igb_configure_tx(adapter);
1561
	igb_configure_rx(adapter);
1562 1563 1564

	igb_rx_fifo_flush_82575(&adapter->hw);

1565
	/* call igb_desc_unused which always leaves
1566
	 * at least 1 descriptor unused to make sure
1567 1568
	 * next_to_use != next_to_clean
	 */
1569
	for (i = 0; i < adapter->num_rx_queues; i++) {
1570
		struct igb_ring *ring = adapter->rx_ring[i];
1571
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1572 1573 1574
	}
}

1575
/**
1576 1577
 *  igb_power_up_link - Power up the phy/serdes link
 *  @adapter: address of board private structure
1578 1579 1580
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1581 1582
	igb_reset_phy(&adapter->hw);

1583 1584 1585 1586 1587 1588 1589
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
1590 1591
 *  igb_power_down_link - Power down the phy/serdes link
 *  @adapter: address of board private structure
1592 1593 1594 1595 1596 1597 1598 1599
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1600 1601

/**
1602 1603
 *  igb_up - Open the interface and prepare it to handle traffic
 *  @adapter: board private structure
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1615 1616 1617
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1618
	if (adapter->msix_entries)
1619
		igb_configure_msix(adapter);
1620 1621
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1622 1623 1624 1625 1626

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1627 1628 1629 1630 1631 1632 1633
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1634 1635
	netif_tx_start_all_queues(adapter->netdev);

1636 1637 1638 1639
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1640 1641 1642 1643 1644 1645
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1646
	struct e1000_hw *hw = &adapter->hw;
1647 1648 1649 1650
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
1651 1652
	 * reschedule our watchdog timer
	 */
1653 1654 1655 1656 1657 1658 1659
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1660
	netif_tx_stop_all_queues(netdev);
1661 1662 1663 1664 1665 1666 1667 1668 1669

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1670 1671
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_disable(&(adapter->q_vector[i]->napi));
1672 1673 1674 1675 1676 1677 1678

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1679 1680

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1681 1682 1683
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1684

1685 1686 1687
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1688 1689
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1690 1691
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1692 1693 1694 1695 1696
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1711
	struct pci_dev *pdev = adapter->pdev;
1712
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1713 1714
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1715
	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1716 1717 1718 1719

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1720
	switch (mac->type) {
1721
	case e1000_i350:
1722
	case e1000_i354:
1723 1724 1725 1726
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1727
	case e1000_82576:
1728 1729
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1730 1731
		break;
	case e1000_82575:
1732 1733
	case e1000_i210:
	case e1000_i211:
1734 1735 1736
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1737
	}
1738

A
Alexander Duyck 已提交
1739 1740
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1741 1742 1743 1744 1745 1746 1747 1748
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
1749 1750
		 * expressed in KB.
		 */
1751 1752 1753 1754 1755
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
1756 1757 1758
		/* the Tx fifo also stores 16 bytes of information about the Tx
		 * but don't include ethernet FCS because hardware appends it
		 */
1759
		min_tx_space = (adapter->max_frame_size +
1760
				sizeof(union e1000_adv_tx_desc) -
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
1771 1772
		 * allocation, take space away from current Rx allocation
		 */
1773 1774 1775 1776
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

1777 1778 1779
			/* if short on Rx space, Rx wins and must trump Tx
			 * adjustment
			 */
1780 1781 1782
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1783
		wr32(E1000_PBA, pba);
1784 1785 1786 1787 1788 1789 1790
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
1791 1792
	 * - the full Rx FIFO size minus one full frame
	 */
1793
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1794
			((pba << 10) - 2 * adapter->max_frame_size));
1795

1796
	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1797
	fc->low_water = fc->high_water - 16;
1798 1799
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1800
	fc->current_mode = fc->requested_mode;
1801

1802 1803 1804 1805
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1806
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1807 1808

		/* ping all the active vfs to let them know we are going down */
1809
		igb_ping_all_vfs(adapter);
1810 1811 1812 1813 1814 1815

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1816
	/* Allow time for pending master requests to run */
1817
	hw->mac.ops.reset_hw(hw);
1818 1819
	wr32(E1000_WUC, 0);

1820
	if (hw->mac.ops.init_hw(hw))
1821
		dev_err(&pdev->dev, "Hardware Error\n");
1822

1823
	/* Flow control settings reset on hardware reset, so guarantee flow
1824 1825 1826 1827 1828
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1829
	igb_init_dmac(adapter, pba);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
1842 1843 1844
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1845 1846 1847 1848 1849
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1850 1851 1852
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);

1853
	igb_get_phy_info(hw);
1854 1855
}

1856 1857
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1858
{
1859 1860
	/* Since there is no support for separate Rx/Tx vlan accel
	 * enable/disable make sure Tx flag is always in same state as Rx.
J
Jiri Pirko 已提交
1861
	 */
1862 1863
	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		features |= NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
1864
	else
1865
		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
1866 1867 1868 1869

	return features;
}

1870 1871
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1872
{
1873
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
1874
	struct igb_adapter *adapter = netdev_priv(netdev);
1875

1876
	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
J
Jiri Pirko 已提交
1877 1878
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

1889 1890 1891
	return 0;
}

S
Stephen Hemminger 已提交
1892
static const struct net_device_ops igb_netdev_ops = {
1893
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1894
	.ndo_stop		= igb_close,
1895
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1896
	.ndo_get_stats64	= igb_get_stats64,
1897
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1898 1899 1900 1901 1902 1903 1904
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1905 1906 1907
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
L
Lior Levy 已提交
1908
	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1909
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1910 1911 1912
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1913 1914
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1915 1916
};

1917 1918 1919 1920 1921 1922 1923
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1924 1925 1926 1927 1928 1929
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
	case e1000_i211:
1930
		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
			 "%2d.%2d-%d",
			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
		break;

	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
		} else {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x",
				 fw.eep_major, fw.eep_minor, fw.etrack_id);
		}
		break;
1951 1952 1953 1954
	}
	return;
}

1955 1956
/**
 *  igb_init_i2c - Init I2C interface
C
Carolyn Wyborny 已提交
1957
 *  @adapter: pointer to adapter structure
1958
 **/
C
Carolyn Wyborny 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
	s32 status = E1000_SUCCESS;

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
		return E1000_SUCCESS;

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structue that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

1982
/**
1983 1984 1985
 *  igb_probe - Device Initialization Routine
 *  @pdev: PCI device information struct
 *  @ent: entry in igb_pci_tbl
1986
 *
1987
 *  Returns 0 on success, negative on failure
1988
 *
1989 1990 1991
 *  igb_probe initializes an adapter identified by a pci_dev structure.
 *  The OS initialization, configuring of the adapter private structure,
 *  and a hardware reset occur.
1992
 **/
1993
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1994 1995 1996 1997
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1998
	u16 eeprom_data = 0;
1999
	s32 ret_val;
2000
	static int global_quad_port_a; /* global quad port a indication */
2001 2002
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
2003
	int err, pci_using_dac;
2004
	u8 part_str[E1000_PBANUM_LENGTH];
2005

2006 2007 2008 2009 2010
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2011
			pci_name(pdev), pdev->vendor, pdev->device);
2012 2013 2014
		return -EINVAL;
	}

2015
	err = pci_enable_device_mem(pdev);
2016 2017 2018 2019
	if (err)
		return err;

	pci_using_dac = 0;
2020
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2021
	if (!err) {
2022
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2023 2024 2025
		if (!err)
			pci_using_dac = 1;
	} else {
2026
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2027
		if (err) {
2028 2029
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
2030
			if (err) {
2031 2032
				dev_err(&pdev->dev,
					"No usable DMA configuration, aborting\n");
2033 2034 2035 2036 2037
				goto err_dma;
			}
		}
	}

2038
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2039 2040
					   IORESOURCE_MEM),
					   igb_driver_name);
2041 2042 2043
	if (err)
		goto err_pci_reg;

2044
	pci_enable_pcie_error_reporting(pdev);
2045

2046
	pci_set_master(pdev);
2047
	pci_save_state(pdev);
2048 2049

	err = -ENOMEM;
2050
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2051
				   IGB_MAX_TX_QUEUES);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
2063
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2064 2065 2066 2067 2068

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
2069 2070
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
2071 2072
		goto err_ioremap;

S
Stephen Hemminger 已提交
2073
	netdev->netdev_ops = &igb_netdev_ops;
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
2096
		goto err_sw_init;
2097

2098
	/* setup the private structure */
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

2118
	/* features is initialized to 0 in allocation, it might have bits
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
2129 2130
			    NETIF_F_HW_VLAN_CTAG_RX |
			    NETIF_F_HW_VLAN_CTAG_TX;
2131 2132 2133

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
2134
	netdev->hw_features |= NETIF_F_RXALL;
2135 2136

	/* set this bit last since it cannot be part of hw_features */
2137
	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2138 2139 2140 2141 2142 2143

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2144

2145 2146
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2147
	if (pci_using_dac) {
2148
		netdev->features |= NETIF_F_HIGHDMA;
2149 2150
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2151

2152 2153
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2154
		netdev->features |= NETIF_F_SCTP_CSUM;
2155
	}
2156

2157 2158
	netdev->priv_flags |= IFF_UNICAST_FLT;

2159
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2160 2161

	/* before reading the NVM, reset the controller to put the device in a
2162 2163
	 * known good starting state
	 */
2164 2165
	hw->mac.ops.reset_hw(hw);

2166
	/* make sure the NVM is good , i211 parts have special NVM that
2167 2168 2169 2170 2171 2172 2173 2174
	 * doesn't contain a checksum
	 */
	if (hw->mac.type != e1000_i211) {
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2175 2176 2177 2178 2179 2180 2181 2182
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

2183
	if (!is_valid_ether_addr(netdev->dev_addr)) {
2184 2185 2186 2187 2188
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2189 2190 2191
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2192
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2193
		    (unsigned long) adapter);
2194
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2195
		    (unsigned long) adapter);
2196 2197 2198 2199

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2200
	/* Initialize link properties that are user-changeable */
2201 2202 2203 2204
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2205 2206
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2207 2208 2209

	igb_validate_mdi_setting(hw);

2210
	/* By default, support wake on port A */
2211
	if (hw->bus.func == 0)
2212 2213 2214 2215
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
2216
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2217 2218
				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				 &eeprom_data);
2219 2220
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2221

2222 2223
	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2224 2225 2226

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
2227 2228
	 * lan on a particular port
	 */
2229 2230
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2231
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2232 2233
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2234 2235
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2236
		/* Wake events only supported on port A for dual fiber
2237 2238
		 * regardless of eeprom setting
		 */
2239
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2240
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2241
		break;
2242
	case E1000_DEV_ID_82576_QUAD_COPPER:
2243
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2244 2245
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
2246
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2247 2248 2249 2250 2251 2252
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2253 2254 2255 2256
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2257 2258 2259
	}

	/* initialize the wol settings based on the eeprom settings */
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2272 2273 2274 2275

	/* reset the hardware with the new settings */
	igb_reset(adapter);

C
Carolyn Wyborny 已提交
2276 2277 2278 2279 2280 2281 2282
	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

2283 2284 2285 2286 2287 2288 2289 2290 2291
	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2292 2293 2294
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2295
#ifdef CONFIG_IGB_DCA
2296
	if (dca_add_requester(&pdev->dev) == 0) {
2297
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2298 2299 2300 2301
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2302
#endif
2303 2304 2305 2306
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;
2307

2308
		/* Read the NVM to determine if this i350 device supports an
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
A
Anders Berggren 已提交
2323
	/* do hw tstamp init after resetting */
2324
	igb_ptp_init(adapter);
A
Anders Berggren 已提交
2325

2326
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	/* print bus type/speed/width info, not applicable to i354 */
	if (hw->mac.type != e1000_i354) {
		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
			 netdev->name,
			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
			   "unknown"),
			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
			  "Width x4" :
			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
			  "Width x2" :
			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
			  "Width x1" : "unknown"), netdev->dev_addr);
	}
2341

2342 2343 2344 2345
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2346 2347 2348
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2349
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2350
		adapter->num_rx_queues, adapter->num_tx_queues);
2351 2352
	switch (hw->mac.type) {
	case e1000_i350:
2353 2354
	case e1000_i210:
	case e1000_i211:
2355 2356
		igb_set_eee_i350(hw);
		break;
2357 2358 2359 2360 2361 2362 2363
	case e1000_i354:
		if (hw->phy.media_type == e1000_media_type_copper) {
			if ((rd32(E1000_CTRL_EXT) &
			    E1000_CTRL_EXT_LINK_MODE_SGMII))
				igb_set_eee_i354(hw);
		}
		break;
2364 2365 2366
	default:
		break;
	}
Y
Yan, Zheng 已提交
2367 2368

	pm_runtime_put_noidle(&pdev->dev);
2369 2370 2371 2372
	return 0;

err_register:
	igb_release_hw_control(adapter);
C
Carolyn Wyborny 已提交
2373
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2374 2375
err_eeprom:
	if (!igb_check_reset_block(hw))
2376
		igb_reset_phy(hw);
2377 2378 2379 2380

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2381
	igb_clear_interrupt_scheme(adapter);
2382 2383 2384 2385
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2386
	pci_release_selected_regions(pdev,
2387
				     pci_select_bars(pdev, IORESOURCE_MEM));
2388 2389 2390 2391 2392 2393
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
#ifdef CONFIG_PCI_IOV
static int  igb_disable_sriov(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
2404
		if (pci_vfs_assigned(pdev)) {
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	int err = 0;
	int i;

	if (!num_vfs)
		goto out;
	else if (old_vfs && old_vfs == num_vfs)
		goto out;
	else if (old_vfs && old_vfs != num_vfs)
		err = igb_disable_sriov(pdev);

	if (err)
		goto out;

	if (num_vfs > 7) {
		err = -EPERM;
		goto out;
	}

	adapter->vfs_allocated_count = num_vfs;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF Data Storage\n");
		err = -ENOMEM;
		goto out;
	}

	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
	if (err)
		goto err_out;

	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
2487
/**
C
Carolyn Wyborny 已提交
2488 2489
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
2490
 **/
C
Carolyn Wyborny 已提交
2491 2492 2493 2494 2495 2496
static void igb_remove_i2c(struct igb_adapter *adapter)
{
	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

2497
/**
2498 2499
 *  igb_remove - Device Removal Routine
 *  @pdev: PCI device information struct
2500
 *
2501 2502 2503 2504
 *  igb_remove is called by the PCI subsystem to alert the driver
 *  that it should release a PCI device.  The could be caused by a
 *  Hot-Plug event, or because the driver is going to be removed from
 *  memory.
2505
 **/
2506
static void igb_remove(struct pci_dev *pdev)
2507 2508 2509
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2510
	struct e1000_hw *hw = &adapter->hw;
2511

Y
Yan, Zheng 已提交
2512
	pm_runtime_get_noresume(&pdev->dev);
2513 2514 2515
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
C
Carolyn Wyborny 已提交
2516
	igb_remove_i2c(adapter);
2517
	igb_ptp_stop(adapter);
2518
	/* The watchdog timer may be rescheduled, so explicitly
2519 2520
	 * disable watchdog from being rescheduled.
	 */
2521 2522 2523 2524
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2525 2526
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2527

2528
#ifdef CONFIG_IGB_DCA
2529
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2530 2531
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2532
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2533
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2534 2535 2536
	}
#endif

2537
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2538 2539
	 * would have already happened in close and is redundant.
	 */
2540 2541 2542 2543
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2544
	igb_clear_interrupt_scheme(adapter);
2545

2546
#ifdef CONFIG_PCI_IOV
2547
	igb_disable_sriov(pdev);
2548
#endif
2549

2550 2551 2552
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2553
	pci_release_selected_regions(pdev,
2554
				     pci_select_bars(pdev, IORESOURCE_MEM));
2555

2556
	kfree(adapter->shadow_vfta);
2557 2558
	free_netdev(netdev);

2559
	pci_disable_pcie_error_reporting(pdev);
2560

2561 2562 2563
	pci_disable_device(pdev);
}

2564
/**
2565 2566
 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 *  @adapter: board private structure to initialize
2567
 *
2568 2569 2570 2571
 *  This function initializes the vf specific data storage and then attempts to
 *  allocate the VFs.  The reason for ordering it this way is because it is much
 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 *  the memory for the VFs.
2572
 **/
2573
static void igb_probe_vfs(struct igb_adapter *adapter)
2574 2575 2576
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2577
	struct e1000_hw *hw = &adapter->hw;
2578

2579 2580 2581 2582
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2583
	pci_sriov_set_totalvfs(pdev, 7);
A
Alex Williamson 已提交
2584
	igb_enable_sriov(pdev, max_vfs);
2585

2586 2587 2588
#endif /* CONFIG_PCI_IOV */
}

2589
static void igb_init_queue_configuration(struct igb_adapter *adapter)
2590 2591
{
	struct e1000_hw *hw = &adapter->hw;
2592
	u32 max_rss_queues;
2593

2594
	/* Determine the maximum number of RSS queues supported. */
2595
	switch (hw->mac.type) {
2596 2597 2598 2599
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2600
	case e1000_i210:
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
2617
	case e1000_i354:
2618 2619
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2620
		break;
2621 2622 2623 2624 2625 2626 2627
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2628
	case e1000_i211:
2629
		/* Device supports enough interrupts without queue pairing. */
2630
		break;
2631
	case e1000_82576:
2632
		/* If VFs are going to be allocated with RSS queues then we
2633 2634 2635 2636 2637 2638 2639 2640 2641
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
2642
	case e1000_i354:
2643
	case e1000_i210:
2644
	default:
2645
		/* If rss_queues > half of max_rss_queues, pair the queues in
2646 2647 2648 2649
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2650 2651
		break;
	}
2652 2653 2654
}

/**
2655 2656
 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 *  @adapter: board private structure to initialize
2657
 *
2658 2659 2660
 *  igb_sw_init initializes the Adapter private data structure.
 *  Fields are initialized based on PCI device information and
 *  OS network device settings (MTU size).
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
2693
			max_vfs = adapter->vfs_allocated_count = 7;
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	igb_init_queue_configuration(adapter);
2706

2707
	/* Setup and initialize a copy of the hw vlan table array */
2708 2709
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_ATOMIC);
2710

2711
	/* This call may decrease the number of queues */
2712
	if (igb_init_interrupt_scheme(adapter, true)) {
2713 2714 2715 2716
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2717 2718
	igb_probe_vfs(adapter);

2719 2720 2721
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2722
	if (hw->mac.type >= e1000_i350)
2723 2724
		adapter->flags &= ~IGB_FLAG_DMAC;

2725 2726 2727 2728 2729
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
2730 2731
 *  igb_open - Called when a network interface is made active
 *  @netdev: network interface device structure
2732
 *
2733
 *  Returns 0 on success, negative value on failure
2734
 *
2735 2736 2737 2738 2739
 *  The open entry point is called when a network interface is made
 *  active by the system (IFF_UP).  At this point all resources needed
 *  for transmit and receive operations are allocated, the interrupt
 *  handler is registered with the OS, the watchdog timer is started,
 *  and the stack is notified that the interface is ready.
2740
 **/
Y
Yan, Zheng 已提交
2741
static int __igb_open(struct net_device *netdev, bool resuming)
2742 2743 2744
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2745
	struct pci_dev *pdev = adapter->pdev;
2746 2747 2748 2749
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2750 2751
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2752
		return -EBUSY;
Y
Yan, Zheng 已提交
2753 2754 2755 2756
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2757

2758 2759
	netif_carrier_off(netdev);

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2770
	igb_power_up_link(adapter);
2771 2772 2773 2774

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
2775 2776
	 * clean_rx handler before we do so.
	 */
2777 2778 2779 2780 2781 2782
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

2794 2795 2796
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2797 2798
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2799 2800 2801

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2802 2803 2804

	igb_irq_enable(adapter);

2805 2806 2807 2808 2809 2810 2811
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2812 2813
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2814 2815 2816
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2817 2818 2819
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2820 2821 2822

	return 0;

2823 2824
err_set_queues:
	igb_free_irq(adapter);
2825 2826
err_req_irq:
	igb_release_hw_control(adapter);
2827
	igb_power_down_link(adapter);
2828 2829 2830 2831 2832
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2833 2834
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2835 2836 2837 2838

	return err;
}

Y
Yan, Zheng 已提交
2839 2840 2841 2842 2843
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2844
/**
2845 2846
 *  igb_close - Disables a network interface
 *  @netdev: network interface device structure
2847
 *
2848
 *  Returns 0, this is not allowed to fail
2849
 *
2850 2851 2852 2853
 *  The close entry point is called when an interface is de-activated
 *  by the OS.  The hardware is still under the driver's control, but
 *  needs to be disabled.  A global MAC reset is issued to stop the
 *  hardware, and all transmit and receive resources are freed.
2854
 **/
Y
Yan, Zheng 已提交
2855
static int __igb_close(struct net_device *netdev, bool suspending)
2856 2857
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2858
	struct pci_dev *pdev = adapter->pdev;
2859 2860 2861

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2862 2863 2864 2865
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2866 2867 2868 2869 2870
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2871 2872
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2873 2874 2875
	return 0;
}

Y
Yan, Zheng 已提交
2876 2877 2878 2879 2880
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2881
/**
2882 2883
 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2884
 *
2885
 *  Return 0 on success, negative on failure
2886
 **/
2887
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2888
{
2889
	struct device *dev = tx_ring->dev;
2890 2891
	int size;

2892
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2893 2894

	tx_ring->tx_buffer_info = vzalloc(size);
2895
	if (!tx_ring->tx_buffer_info)
2896 2897 2898
		goto err;

	/* round up to nearest 4K */
2899
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2900 2901
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2902 2903
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
2904 2905 2906 2907 2908
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2909

2910 2911 2912
	return 0;

err:
2913
	vfree(tx_ring->tx_buffer_info);
2914 2915
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2916 2917 2918 2919
	return -ENOMEM;
}

/**
2920 2921 2922
 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
2923
 *
2924
 *  Return 0 on success, negative on failure
2925 2926 2927
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2928
	struct pci_dev *pdev = adapter->pdev;
2929 2930 2931
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2932
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2933
		if (err) {
2934
			dev_err(&pdev->dev,
2935 2936
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2937
				igb_free_tx_resources(adapter->tx_ring[i]);
2938 2939 2940 2941 2942 2943 2944 2945
			break;
		}
	}

	return err;
}

/**
2946 2947
 *  igb_setup_tctl - configure the transmit control registers
 *  @adapter: Board private structure
2948
 **/
2949
void igb_setup_tctl(struct igb_adapter *adapter)
2950 2951 2952 2953
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2954 2955
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2971
/**
2972 2973 2974
 *  igb_configure_tx_ring - Configure transmit ring after Reset
 *  @adapter: board private structure
 *  @ring: tx ring to configure
2975
 *
2976
 *  Configure a transmit ring after a reset.
2977
 **/
2978 2979
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2980 2981
{
	struct e1000_hw *hw = &adapter->hw;
2982
	u32 txdctl = 0;
2983 2984 2985 2986
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2987
	wr32(E1000_TXDCTL(reg_idx), 0);
2988 2989 2990 2991
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
2992
	     ring->count * sizeof(union e1000_adv_tx_desc));
2993
	wr32(E1000_TDBAL(reg_idx),
2994
	     tdba & 0x00000000ffffffffULL);
2995 2996
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2997
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2998
	wr32(E1000_TDH(reg_idx), 0);
2999
	writel(0, ring->tail);
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
3010 3011
 *  igb_configure_tx - Configure transmit Unit after Reset
 *  @adapter: board private structure
3012
 *
3013
 *  Configure the Tx unit of the MAC after a reset.
3014 3015 3016 3017 3018 3019
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3020
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3021 3022
}

3023
/**
3024 3025
 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3026
 *
3027
 *  Returns 0 on success, negative on failure
3028
 **/
3029
int igb_setup_rx_resources(struct igb_ring *rx_ring)
3030
{
3031
	struct device *dev = rx_ring->dev;
3032
	int size;
3033

3034
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3035 3036

	rx_ring->rx_buffer_info = vzalloc(size);
3037
	if (!rx_ring->rx_buffer_info)
3038 3039 3040
		goto err;

	/* Round up to nearest 4K */
3041
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3042 3043
	rx_ring->size = ALIGN(rx_ring->size, 4096);

3044 3045
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
3046 3047 3048
	if (!rx_ring->desc)
		goto err;

3049
	rx_ring->next_to_alloc = 0;
3050 3051 3052 3053 3054 3055
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
3056 3057
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3058
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3059 3060 3061 3062
	return -ENOMEM;
}

/**
3063 3064 3065
 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
3066
 *
3067
 *  Return 0 on success, negative on failure
3068 3069 3070
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
3071
	struct pci_dev *pdev = adapter->pdev;
3072 3073 3074
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
3075
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3076
		if (err) {
3077
			dev_err(&pdev->dev,
3078 3079
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3080
				igb_free_rx_resources(adapter->rx_ring[i]);
3081 3082 3083 3084 3085 3086 3087
			break;
		}
	}

	return err;
}

3088
/**
3089 3090
 *  igb_setup_mrqc - configure the multiple receive queue control registers
 *  @adapter: Board private structure
3091 3092 3093 3094 3095
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
3096
	u32 j, num_rx_queues, shift = 0;
3097 3098 3099 3100
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
3101 3102

	/* Fill out hash function seeds */
3103 3104
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
3105

3106
	num_rx_queues = adapter->rss_queues;
3107

3108 3109 3110 3111 3112 3113 3114
	switch (hw->mac.type) {
	case e1000_82575:
		shift = 6;
		break;
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count) {
3115 3116 3117
			shift = 3;
			num_rx_queues = 2;
		}
3118 3119 3120
		break;
	default:
		break;
3121 3122
	}

3123
	/* Populate the indirection table 4 entries at a time.  To do this
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	 * we are generating the results for n and n+2 and then interleaving
	 * those with the results with n+1 and n+3.
	 */
	for (j = 0; j < 32; j++) {
		/* first pass generates n and n+2 */
		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
		u32 reta = (base & 0x07800780) >> (7 - shift);

		/* second pass generates n+1 and n+3 */
		base += 0x00010001 * num_rx_queues;
		reta |= (base & 0x07800780) << (1 + shift);

		wr32(E1000_RETA(j), reta);
3137 3138
	}

3139
	/* Disable raw packet checksumming so that RSS hash is placed in
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
3152

3153 3154 3155
	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
3156 3157 3158 3159 3160
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3161

3162 3163 3164 3165 3166
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

3167 3168
	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
3169 3170
	 * if we are only using one queue
	 */
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
3181
		if (adapter->rss_queues > 1)
3182
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3183
		else
3184
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3185
	} else {
3186 3187
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3188 3189 3190 3191 3192 3193
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

3194
/**
3195 3196
 *  igb_setup_rctl - configure the receive control registers
 *  @adapter: Board private structure
3197
 **/
3198
void igb_setup_rctl(struct igb_adapter *adapter)
3199 3200 3201 3202 3203 3204 3205
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3206
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3207

3208
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3209
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3210

3211
	/* enable stripping of CRC. It's unlikely this will break BMC
3212 3213
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
3214
	 */
3215
	rctl |= E1000_RCTL_SECRC;
3216

3217
	/* disable store bad packets and clear size bits. */
3218
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3219

A
Alexander Duyck 已提交
3220 3221
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
3222

3223 3224
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
3225

3226 3227 3228 3229 3230 3231 3232 3233 3234
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
3235 3236 3237
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
3238 3239
		 * in e1000e_set_rx_mode
		 */
B
Ben Greear 已提交
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3252 3253 3254
	wr32(E1000_RCTL, rctl);
}

3255 3256 3257 3258 3259 3260 3261
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
3262 3263
	 * increase the size to support vlan tags
	 */
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3276
/**
3277 3278
 *  igb_rlpml_set - set maximum receive packet size
 *  @adapter: board private structure
3279
 *
3280
 *  Configure maximum receivable packet size.
3281 3282 3283
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3284
	u32 max_frame_size = adapter->max_frame_size;
3285 3286 3287 3288 3289
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3290
		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3291 3292 3293 3294 3295
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3296
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3297 3298 3299 3300 3301
	}

	wr32(E1000_RLPML, max_frame_size);
}

3302 3303
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3304 3305 3306 3307
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

3308
	/* This register exists only on 82576 and newer so if we are older then
3309 3310 3311 3312 3313 3314
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3315
	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3316
	if (aupe)
3317
		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3318 3319
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3320 3321 3322 3323

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3324
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3325
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3326
	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3327 3328 3329
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
3330
		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3331 3332 3333 3334

	wr32(E1000_VMOLR(vfn), vmolr);
}

3335
/**
3336 3337 3338
 *  igb_configure_rx_ring - Configure a receive ring after Reset
 *  @adapter: board private structure
 *  @ring: receive ring to be configured
3339
 *
3340
 *  Configure the Rx unit of the MAC after a reset.
3341
 **/
3342
void igb_configure_rx_ring(struct igb_adapter *adapter,
3343
			   struct igb_ring *ring)
3344 3345 3346 3347
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3348
	u32 srrctl = 0, rxdctl = 0;
3349 3350

	/* disable the queue */
3351
	wr32(E1000_RXDCTL(reg_idx), 0);
3352 3353 3354 3355 3356 3357

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
3358
	     ring->count * sizeof(union e1000_adv_rx_desc));
3359 3360

	/* initialize head and tail */
3361
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3362
	wr32(E1000_RDH(reg_idx), 0);
3363
	writel(0, ring->tail);
3364

3365
	/* set descriptor configuration */
3366
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3367
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3368
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3369
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3370
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3371 3372 3373
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3374 3375 3376

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3377
	/* set filtering for VMDQ pools */
3378
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3379

3380 3381 3382
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3383 3384 3385

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3386 3387 3388
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3389
/**
3390 3391
 *  igb_configure_rx - Configure receive Unit after Reset
 *  @adapter: board private structure
3392
 *
3393
 *  Configure the Rx unit of the MAC after a reset.
3394 3395 3396
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3397
	int i;
3398

3399 3400 3401
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3402 3403
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3404
			 adapter->vfs_allocated_count);
3405

3406
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3407 3408
	 * the Base and Length of the Rx Descriptor Ring
	 */
3409 3410
	for (i = 0; i < adapter->num_rx_queues; i++)
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3411 3412 3413
}

/**
3414 3415
 *  igb_free_tx_resources - Free Tx Resources per Queue
 *  @tx_ring: Tx descriptor ring for a specific queue
3416
 *
3417
 *  Free all transmit software resources
3418
 **/
3419
void igb_free_tx_resources(struct igb_ring *tx_ring)
3420
{
3421
	igb_clean_tx_ring(tx_ring);
3422

3423 3424
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3425

3426 3427 3428 3429
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3430 3431
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3432 3433 3434 3435 3436

	tx_ring->desc = NULL;
}

/**
3437 3438
 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 *  @adapter: board private structure
3439
 *
3440
 *  Free all transmit software resources
3441 3442 3443 3444 3445 3446
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3447
		igb_free_tx_resources(adapter->tx_ring[i]);
3448 3449
}

3450 3451 3452 3453 3454
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3455
		if (dma_unmap_len(tx_buffer, len))
3456
			dma_unmap_single(ring->dev,
3457 3458
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3459
					 DMA_TO_DEVICE);
3460
	} else if (dma_unmap_len(tx_buffer, len)) {
3461
		dma_unmap_page(ring->dev,
3462 3463
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3464 3465 3466 3467
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3468
	dma_unmap_len_set(tx_buffer, len, 0);
3469
	/* buffer_info must be completely set up in the transmit path */
3470 3471 3472
}

/**
3473 3474
 *  igb_clean_tx_ring - Free Tx Buffers
 *  @tx_ring: ring to be cleaned
3475
 **/
3476
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3477
{
3478
	struct igb_tx_buffer *buffer_info;
3479
	unsigned long size;
3480
	u16 i;
3481

3482
	if (!tx_ring->tx_buffer_info)
3483 3484 3485 3486
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3487
		buffer_info = &tx_ring->tx_buffer_info[i];
3488
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3489 3490
	}

3491 3492
	netdev_tx_reset_queue(txring_txq(tx_ring));

3493 3494
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3495 3496 3497 3498 3499 3500 3501 3502 3503

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
3504 3505
 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 *  @adapter: board private structure
3506 3507 3508 3509 3510 3511
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3512
		igb_clean_tx_ring(adapter->tx_ring[i]);
3513 3514 3515
}

/**
3516 3517
 *  igb_free_rx_resources - Free Rx Resources
 *  @rx_ring: ring to clean the resources from
3518
 *
3519
 *  Free all receive software resources
3520
 **/
3521
void igb_free_rx_resources(struct igb_ring *rx_ring)
3522
{
3523
	igb_clean_rx_ring(rx_ring);
3524

3525 3526
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3527

3528 3529 3530 3531
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3532 3533
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3534 3535 3536 3537 3538

	rx_ring->desc = NULL;
}

/**
3539 3540
 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 *  @adapter: board private structure
3541
 *
3542
 *  Free all receive software resources
3543 3544 3545 3546 3547 3548
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3549
		igb_free_rx_resources(adapter->rx_ring[i]);
3550 3551 3552
}

/**
3553 3554
 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 *  @rx_ring: ring to free buffers from
3555
 **/
3556
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3557 3558
{
	unsigned long size;
3559
	u16 i;
3560

3561 3562 3563 3564
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3565
	if (!rx_ring->rx_buffer_info)
3566
		return;
3567

3568 3569
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3570
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3571

3572 3573 3574 3575 3576 3577 3578 3579 3580
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3581
		buffer_info->page = NULL;
3582 3583
	}

3584 3585
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3586 3587 3588 3589

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3590
	rx_ring->next_to_alloc = 0;
3591 3592 3593 3594 3595
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
3596 3597
 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 *  @adapter: board private structure
3598 3599 3600 3601 3602 3603
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3604
		igb_clean_rx_ring(adapter->rx_ring[i]);
3605 3606 3607
}

/**
3608 3609 3610
 *  igb_set_mac - Change the Ethernet Address of the NIC
 *  @netdev: network interface device structure
 *  @p: pointer to an address structure
3611
 *
3612
 *  Returns 0 on success, negative on failure
3613 3614 3615 3616
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3617
	struct e1000_hw *hw = &adapter->hw;
3618 3619 3620 3621 3622 3623
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3624
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3625

3626 3627
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3628
			 adapter->vfs_allocated_count);
3629

3630 3631 3632 3633
	return 0;
}

/**
3634 3635
 *  igb_write_mc_addr_list - write multicast addresses to MTA
 *  @netdev: network interface device structure
3636
 *
3637 3638 3639 3640
 *  Writes multicast address list to the MTA hash table.
 *  Returns: -ENOMEM on failure
 *           0 on no addresses written
 *           X on writing X addresses to MTA
3641
 **/
3642
static int igb_write_mc_addr_list(struct net_device *netdev)
3643 3644 3645
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3646
	struct netdev_hw_addr *ha;
3647
	u8  *mta_list;
3648 3649
	int i;

3650
	if (netdev_mc_empty(netdev)) {
3651 3652 3653 3654 3655
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3656

3657
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3658 3659
	if (!mta_list)
		return -ENOMEM;
3660

3661
	/* The shared function expects a packed array of only addresses. */
3662
	i = 0;
3663 3664
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3665 3666 3667 3668

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3669
	return netdev_mc_count(netdev);
3670 3671 3672
}

/**
3673 3674
 *  igb_write_uc_addr_list - write unicast addresses to RAR table
 *  @netdev: network interface device structure
3675
 *
3676 3677 3678 3679
 *  Writes unicast address list to the RAR table.
 *  Returns: -ENOMEM on failure/insufficient address space
 *           0 on no addresses written
 *           X on writing X addresses to the RAR table
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3690
	if (netdev_uc_count(netdev) > rar_entries)
3691
		return -ENOMEM;
3692

3693
	if (!netdev_uc_empty(netdev) && rar_entries) {
3694
		struct netdev_hw_addr *ha;
3695 3696

		netdev_for_each_uc_addr(ha, netdev) {
3697 3698
			if (!rar_entries)
				break;
3699
			igb_rar_set_qsel(adapter, ha->addr,
3700 3701
					 rar_entries--,
					 vfn);
3702
			count++;
3703 3704 3705 3706 3707 3708 3709 3710 3711
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3712 3713 3714 3715
	return count;
}

/**
3716 3717
 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 *  @netdev: network interface device structure
3718
 *
3719 3720 3721 3722
 *  The set_rx_mode entry point is called whenever the unicast or multicast
 *  address lists or the network interface flags are updated.  This routine is
 *  responsible for configuring the hardware for proper unicast, multicast,
 *  promiscuous mode, and all-multi behavior.
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
3746
			/* Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3747
			 * then we should just turn on promiscuous mode so
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
3758
		/* Write addresses to available RAR registers, if there is not
3759
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3760
		 * unicast promiscuous mode
3761 3762 3763 3764 3765 3766 3767
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3768
	}
3769
	wr32(E1000_RCTL, rctl);
3770

3771
	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3772 3773 3774 3775
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
3776
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3777
		return;
3778

3779
	vmolr |= rd32(E1000_VMOLR(vfn)) &
3780
		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3781
	wr32(E1000_VMOLR(vfn), vmolr);
3782
	igb_restore_vf_multicasts(adapter);
3783 3784
}

G
Greg Rose 已提交
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3824
/* Need to wait a few seconds after link up to get diagnostic information from
3825 3826
 * the phy
 */
3827 3828 3829
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3830
	igb_get_phy_info(&adapter->hw);
3831 3832
}

A
Alexander Duyck 已提交
3833
/**
3834 3835
 *  igb_has_link - check shared code for link and determine up/down
 *  @adapter: pointer to driver private info
A
Alexander Duyck 已提交
3836
 **/
3837
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3869 3870 3871 3872 3873
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

3874
	/* check for thermal sensor event on i350 copper only */
3875 3876 3877 3878 3879
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
3880
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3881 3882 3883 3884 3885 3886
			ret = !!(thstat & event);
	}

	return ret;
}

3887
/**
3888 3889
 *  igb_watchdog - Timer Call-back
 *  @data: pointer to adapter cast into an unsigned long
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3901 3902
						   struct igb_adapter,
						   watchdog_task);
3903
	struct e1000_hw *hw = &adapter->hw;
3904
	struct e1000_phy_info *phy = &hw->phy;
3905
	struct net_device *netdev = adapter->netdev;
3906
	u32 link;
3907
	int i;
3908

A
Alexander Duyck 已提交
3909
	link = igb_has_link(adapter);
3910
	if (link) {
Y
Yan, Zheng 已提交
3911 3912 3913
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3914 3915
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3916
			hw->mac.ops.get_speed_and_duplex(hw,
3917 3918
							 &adapter->link_speed,
							 &adapter->link_duplex);
3919 3920

			ctrl = rd32(E1000_CTRL);
3921
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3922 3923
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3924 3925 3926
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3927 3928 3929 3930 3931
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3932

3933 3934 3935 3936 3937
			/* check if SmartSpeed worked */
			igb_check_downshift(hw);
			if (phy->speed_downgraded)
				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");

3938
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3939 3940 3941 3942 3943
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3944
			}
3945

3946
			/* adjust timeout factor according to speed/duplex */
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3959
			igb_ping_all_vfs(adapter);
3960
			igb_check_vf_rate_limit(adapter);
3961

3962
			/* link state has changed, schedule phy info update */
3963 3964 3965 3966 3967 3968 3969 3970
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3971 3972

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3973 3974 3975 3976
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
3977
			}
3978

3979 3980 3981
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3982
			netif_carrier_off(netdev);
3983

3984 3985
			igb_ping_all_vfs(adapter);

3986
			/* link state has changed, schedule phy info update */
3987 3988 3989
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
3990 3991 3992

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
3993 3994 3995
		}
	}

E
Eric Dumazet 已提交
3996 3997 3998
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3999

4000
	for (i = 0; i < adapter->num_tx_queues; i++) {
4001
		struct igb_ring *tx_ring = adapter->tx_ring[i];
4002
		if (!netif_carrier_ok(netdev)) {
4003 4004 4005
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
4006 4007
			 * (Do the reset outside of interrupt context).
			 */
4008 4009 4010 4011 4012 4013
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
4014 4015
		}

4016
		/* Force detection of hung controller every watchdog period */
4017
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4018
	}
4019

4020
	/* Cause software interrupt to ensure Rx ring is cleaned */
4021
	if (adapter->msix_entries) {
4022
		u32 eics = 0;
4023 4024
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
4025 4026 4027 4028
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
4029

G
Greg Rose 已提交
4030
	igb_spoof_check(adapter);
4031
	igb_ptp_rx_hang(adapter);
G
Greg Rose 已提交
4032

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

4046
/**
4047 4048
 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 *  @q_vector: pointer to q_vector
4049
 *
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
 *  Stores a new ITR value based on strictly on packet size.  This
 *  algorithm is less sophisticated than that used in igb_update_itr,
 *  due to the difficulty of synchronizing statistics across multiple
 *  receive rings.  The divisors and thresholds used by this function
 *  were determined based on theoretical maximum wire speed and testing
 *  data, in order to minimize response time while increasing bulk
 *  throughput.
 *  This functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  This function is called only when operating in a multiqueue
 *         receive environment.
4061
 **/
4062
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4063
{
4064
	int new_val = q_vector->itr_val;
4065
	int avg_wire_size = 0;
4066
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
4067
	unsigned int packets;
4068

4069 4070 4071 4072
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
4073
		new_val = IGB_4K_ITR;
4074
		goto set_itr_val;
4075
	}
4076

4077 4078 4079
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
4080

4081 4082 4083 4084
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
4085 4086 4087 4088

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
4089

4090 4091 4092 4093 4094
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
4095

4096 4097 4098 4099 4100
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
4101

4102 4103 4104 4105 4106
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
4107

4108
set_itr_val:
4109 4110 4111
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
4112
	}
4113
clear_counts:
4114 4115 4116 4117
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
4118 4119 4120
}

/**
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
 *  igb_update_itr - update the dynamic ITR value based on statistics
 *  @q_vector: pointer to q_vector
 *  @ring_container: ring info to update the itr for
 *
 *  Stores a new ITR value based on packets and byte
 *  counts during the last interrupt.  The advantage of per interrupt
 *  computation is faster updates and more accurate ITR for the current
 *  traffic pattern.  Constants in this function were computed
 *  based on theoretical maximum wire speed and thresholds were set based
 *  on testing data as well as attempting to minimize response time
 *  while increasing bulk throughput.
 *  this functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  These calculations are only valid when operating in a single-
 *         queue environment.
4136
 **/
4137 4138
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
4139
{
4140 4141 4142
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
4143

4144
	/* no packets, exit with status unchanged */
4145
	if (packets == 0)
4146
		return;
4147

4148
	switch (itrval) {
4149 4150 4151
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
4152
			itrval = bulk_latency;
4153
		else if ((packets < 5) && (bytes > 512))
4154
			itrval = low_latency;
4155 4156 4157 4158 4159
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
4160
				itrval = bulk_latency;
4161
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4162
				itrval = bulk_latency;
4163
			} else if ((packets > 35)) {
4164
				itrval = lowest_latency;
4165 4166
			}
		} else if (bytes/packets > 2000) {
4167
			itrval = bulk_latency;
4168
		} else if (packets <= 2 && bytes < 512) {
4169
			itrval = lowest_latency;
4170 4171 4172 4173 4174
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
4175
				itrval = low_latency;
4176
		} else if (bytes < 1500) {
4177
			itrval = low_latency;
4178 4179 4180 4181
		}
		break;
	}

4182 4183 4184 4185 4186 4187
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
4188 4189
}

4190
static void igb_set_itr(struct igb_q_vector *q_vector)
4191
{
4192
	struct igb_adapter *adapter = q_vector->adapter;
4193
	u32 new_itr = q_vector->itr_val;
4194
	u8 current_itr = 0;
4195 4196 4197 4198

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
4199
		new_itr = IGB_4K_ITR;
4200 4201 4202
		goto set_itr_now;
	}

4203 4204
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
4205

4206
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4207

4208
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4209 4210 4211
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4212 4213
		current_itr = low_latency;

4214 4215 4216
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
4217
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4218 4219
		break;
	case low_latency:
4220
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4221 4222
		break;
	case bulk_latency:
4223
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4224 4225 4226 4227 4228 4229
		break;
	default:
		break;
	}

set_itr_now:
4230
	if (new_itr != q_vector->itr_val) {
4231 4232
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
4233 4234
		 * increasing
		 */
4235
		new_itr = new_itr > q_vector->itr_val ?
4236 4237 4238
			  max((new_itr * q_vector->itr_val) /
			  (new_itr + (q_vector->itr_val >> 2)),
			  new_itr) : new_itr;
4239 4240 4241 4242 4243 4244
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4245 4246
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4247 4248 4249
	}
}

4250 4251
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4265
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4266 4267 4268 4269 4270 4271 4272 4273
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4274 4275 4276
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4277
{
4278
	struct sk_buff *skb = first->skb;
4279 4280 4281
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

4282 4283 4284
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

4285 4286
	if (!skb_is_gso(skb))
		return 0;
4287 4288

	if (skb_header_cloned(skb)) {
4289
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4290 4291 4292 4293
		if (err)
			return err;
	}

4294 4295
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4296

4297
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4298 4299 4300 4301 4302 4303 4304
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4305
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4306 4307 4308
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4309
	} else if (skb_is_gso_v6(skb)) {
4310 4311 4312 4313
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4314 4315
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4316 4317
	}

4318
	/* compute header lengths */
4319 4320
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4321

4322 4323 4324 4325
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4326
	/* MSS L4LEN IDX */
4327 4328
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4329

4330 4331 4332
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4333
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4334

4335
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4336

4337
	return 1;
4338 4339
}

4340
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4341
{
4342
	struct sk_buff *skb = first->skb;
4343 4344 4345
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4346

4347
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4348 4349
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4350 4351
	} else {
		u8 l4_hdr = 0;
4352
		switch (first->protocol) {
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4365 4366
					 "partial checksum but proto=%x!\n",
					 first->protocol);
4367
			}
4368 4369
			break;
		}
4370

4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4389 4390
					 "partial checksum but l4 proto=%x!\n",
					 l4_hdr);
4391
			}
4392
			break;
4393
		}
4394 4395 4396

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4397
	}
4398

4399
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4400
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4401

4402
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4403 4404
}

4405 4406 4407 4408 4409 4410
#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4411 4412
{
	/* set type for advanced descriptor with frame checksum insertion */
4413 4414 4415
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;
4416 4417

	/* set HW vlan bit if vlan is present */
4418 4419 4420 4421 4422 4423
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));
4424 4425

	/* set timestamp bit if present */
4426 4427
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));
4428

4429 4430
	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4431 4432 4433 4434

	return cmd_type;
}

4435 4436 4437
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4438 4439 4440
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

4441 4442
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4443 4444 4445
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
4446 4447 4448
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));
4449

4450 4451 4452 4453
	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));
4454

4455
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4456 4457
}

4458 4459
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4460
		       const u8 hdr_len)
4461
{
4462
	struct sk_buff *skb = first->skb;
4463
	struct igb_tx_buffer *tx_buffer;
4464
	union e1000_adv_tx_desc *tx_desc;
4465
	struct skb_frag_struct *frag;
4466
	dma_addr_t dma;
4467
	unsigned int data_len, size;
4468
	u32 tx_flags = first->tx_flags;
4469
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4470 4471 4472 4473
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4474 4475 4476 4477
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;
4478 4479

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4480

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4492 4493 4494

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
4495
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4496 4497 4498 4499 4500 4501 4502

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
4503
			tx_desc->read.olinfo_status = 0;
4504 4505 4506 4507 4508 4509 4510 4511 4512

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4513

4514
		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4515

4516
		i++;
4517 4518 4519
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4520
			i = 0;
4521
		}
4522
		tx_desc->read.olinfo_status = 0;
4523

E
Eric Dumazet 已提交
4524
		size = skb_frag_size(frag);
4525 4526 4527
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4528
				       size, DMA_TO_DEVICE);
4529

4530
		tx_buffer = &tx_ring->tx_buffer_info[i];
4531 4532
	}

4533
	/* write last descriptor with RS and EOP bits */
4534 4535
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4536

4537 4538
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4539 4540 4541
	/* set the timestamp */
	first->time_stamp = jiffies;

4542
	/* Force memory writes to complete before letting h/w know there
4543 4544 4545 4546 4547 4548 4549 4550
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4551
	/* set next_to_watch value indicating a packet is present */
4552
	first->next_to_watch = tx_desc;
4553

4554 4555 4556
	i++;
	if (i == tx_ring->count)
		i = 0;
4557

4558
	tx_ring->next_to_use = i;
4559

4560
	writel(i, tx_ring->tail);
4561

4562
	/* we need this if more than one processor can write to our tail
4563 4564
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4565 4566 4567 4568 4569 4570 4571 4572 4573
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4574 4575 4576
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4577
			break;
4578 4579
		if (i == 0)
			i = tx_ring->count;
4580 4581 4582
		i--;
	}

4583 4584 4585
	tx_ring->next_to_use = i;
}

4586
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4587
{
4588 4589
	struct net_device *netdev = tx_ring->netdev;

4590 4591
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4592 4593
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
4594 4595
	 * but since that doesn't exist yet, just open code it.
	 */
4596 4597 4598
	smp_mb();

	/* We need to check again in a case another CPU has just
4599 4600
	 * made room available.
	 */
4601
	if (igb_desc_unused(tx_ring) < size)
4602 4603 4604
		return -EBUSY;

	/* A reprieve! */
4605
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4606 4607 4608 4609 4610

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4611 4612 4613
	return 0;
}

4614
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4615
{
4616
	if (igb_desc_unused(tx_ring) >= size)
4617
		return 0;
4618
	return __igb_maybe_stop_tx(tx_ring, size);
4619 4620
}

4621 4622
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4623
{
4624
	struct igb_tx_buffer *first;
4625
	int tso;
N
Nick Nunley 已提交
4626
	u32 tx_flags = 0;
4627
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4628
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4629
	u8 hdr_len = 0;
4630

4631 4632
	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4633 4634
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for context descriptor,
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
	 * otherwise try next time
	 */
	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
		unsigned short f;
		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
	} else {
		count += skb_shinfo(skb)->nr_frags;
	}

	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4646 4647 4648
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4649

4650 4651 4652 4653 4654 4655
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4656 4657
	skb_tx_timestamp(skb);

4658 4659
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4660

4661 4662 4663 4664 4665 4666 4667 4668 4669
		if (!(adapter->ptp_tx_skb)) {
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
			tx_flags |= IGB_TX_FLAGS_TSTAMP;

			adapter->ptp_tx_skb = skb_get(skb);
			adapter->ptp_tx_start = jiffies;
			if (adapter->hw.mac.type == e1000_82576)
				schedule_work(&adapter->ptp_tx_work);
		}
4670
	}
4671

4672
	if (vlan_tx_tag_present(skb)) {
4673 4674 4675 4676
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4677 4678 4679
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4680

4681 4682
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4683
		goto out_drop;
4684 4685
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4686

4687
	igb_tx_map(tx_ring, first, hdr_len);
4688 4689

	/* Make sure there is space in the ring for the next send. */
4690
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4691

4692
	return NETDEV_TX_OK;
4693 4694

out_drop:
4695 4696
	igb_unmap_and_free_tx_resource(tx_ring, first);

4697
	return NETDEV_TX_OK;
4698 4699
}

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4711 4712
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4713 4714
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4726
	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4727 4728
	 * in order to meet this minimum size requirement.
	 */
4729 4730
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
4731 4732
			return NETDEV_TX_OK;
		skb->len = 17;
4733
		skb_set_tail_pointer(skb, 17);
4734
	}
4735

4736
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4737 4738 4739
}

/**
4740 4741
 *  igb_tx_timeout - Respond to a Tx Hang
 *  @netdev: network interface device structure
4742 4743 4744 4745 4746 4747 4748 4749
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4750

4751
	if (hw->mac.type >= e1000_82580)
4752 4753
		hw->dev_spec._82575.global_device_reset = true;

4754
	schedule_work(&adapter->reset_task);
4755 4756
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4757 4758 4759 4760 4761 4762 4763
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4764 4765
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4766 4767 4768 4769
	igb_reinit_locked(adapter);
}

/**
4770 4771 4772
 *  igb_get_stats64 - Get System Network Statistics
 *  @netdev: network interface device structure
 *  @stats: rtnl_link_stats64 pointer
4773
 **/
E
Eric Dumazet 已提交
4774
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4775
						struct rtnl_link_stats64 *stats)
4776
{
E
Eric Dumazet 已提交
4777 4778 4779 4780 4781 4782 4783 4784
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4785 4786 4787
}

/**
4788 4789 4790
 *  igb_change_mtu - Change the Maximum Transfer Unit
 *  @netdev: network interface device structure
 *  @new_mtu: new value for maximum frame size
4791
 *
4792
 *  Returns 0 on success, negative on failure
4793 4794 4795 4796
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4797
	struct pci_dev *pdev = adapter->pdev;
4798
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4799

4800
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4801
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4802 4803 4804
		return -EINVAL;
	}

4805
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4806
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4807
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4808 4809 4810 4811 4812
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4813

4814 4815
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4816

4817 4818
	if (netif_running(netdev))
		igb_down(adapter);
4819

4820
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
4835 4836
 *  igb_update_stats - Update the board statistics counters
 *  @adapter: board private structure
4837
 **/
E
Eric Dumazet 已提交
4838 4839
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4840 4841 4842
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4843
	u32 reg, mpc;
4844
	u16 phy_tmp;
4845 4846
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4847 4848
	unsigned int start;
	u64 _bytes, _packets;
4849 4850 4851

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

4852
	/* Prevent stats update while adapter is being reset, or if the pci
4853 4854 4855 4856 4857 4858 4859
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4860 4861 4862
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
4863
		u32 rqdpc = rd32(E1000_RQDPC(i));
4864
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4865

4866 4867 4868 4869
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
4870 4871 4872 4873 4874 4875 4876 4877

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4878 4879
	}

4880 4881
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4882 4883 4884 4885

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4886
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4887 4888 4889 4890 4891 4892 4893
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4894
	}
4895 4896
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4897 4898

	/* read stats registers */
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4916 4917 4918
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4933
	adapter->stats.rnbc += rd32(E1000_RNBC);
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4951 4952
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4953 4954

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4955 4956 4957 4958
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4959 4960 4961 4962 4963

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
4964 4965
	}

4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4980 4981
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4982 4983 4984 4985

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4986 4987
	 * our own version based on RUC and ROC
	 */
4988
	net_stats->rx_errors = adapter->stats.rxerrc +
4989 4990 4991
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4992 4993 4994 4995 4996
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4997 4998

	/* Tx Errors */
4999 5000 5001 5002 5003
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5004 5005 5006 5007 5008 5009

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
5010
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5011 5012 5013 5014 5015 5016 5017 5018 5019
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5020 5021 5022 5023 5024 5025 5026 5027 5028

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
5029 5030 5031 5032
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
5033
	struct igb_adapter *adapter = data;
5034
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
5035 5036
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
5037

5038 5039 5040
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5041
	if (icr & E1000_ICR_DOUTSYNC) {
5042 5043
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
5044 5045
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
5046 5047
		 * see if it is really a spoof event.
		 */
G
Greg Rose 已提交
5048
		igb_check_wvbr(adapter);
5049
	}
5050

5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

P
PJ Waskiewicz 已提交
5073
	wr32(E1000_EIMS, adapter->eims_other);
5074 5075 5076 5077

	return IRQ_HANDLED;
}

5078
static void igb_write_itr(struct igb_q_vector *q_vector)
5079
{
5080
	struct igb_adapter *adapter = q_vector->adapter;
5081
	u32 itr_val = q_vector->itr_val & 0x7FFC;
5082

5083 5084
	if (!q_vector->set_itr)
		return;
5085

5086 5087
	if (!itr_val)
		itr_val = 0x4;
5088

5089 5090
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
5091
	else
5092
		itr_val |= E1000_EITR_CNT_IGNR;
5093

5094 5095
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
5096 5097
}

5098
static irqreturn_t igb_msix_ring(int irq, void *data)
5099
{
5100
	struct igb_q_vector *q_vector = data;
5101

5102 5103
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
5104

5105
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
5106

5107
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
5108 5109
}

5110
#ifdef CONFIG_IGB_DCA
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

5121
	/* We can enable relaxed ordering for reads, but not writes when
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

5142
	/* We can enable relaxed ordering for reads, but not writes when
5143 5144 5145 5146 5147 5148 5149 5150 5151
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

5152
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
5153
{
5154
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
5155 5156
	int cpu = get_cpu();

5157 5158 5159
	if (q_vector->cpu == cpu)
		goto out_no_update;

5160 5161 5162 5163 5164 5165
	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

5166 5167
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
5168 5169 5170 5171 5172
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
5173
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
5174 5175
	int i;

5176
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
5177 5178
		return;

5179 5180 5181
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

5182
	for (i = 0; i < adapter->num_q_vectors; i++) {
5183 5184
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
5185 5186 5187 5188 5189 5190 5191
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
5192
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
5193 5194 5195 5196 5197 5198
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
5199
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
5200 5201
			break;
		if (dca_add_requester(dev) == 0) {
5202
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5203
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
5204 5205 5206 5207 5208
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
5209
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
5210
			/* without this a class_device is left
5211 5212
			 * hanging around in the sysfs model
			 */
J
Jeb Cramer 已提交
5213
			dca_remove_requester(dev);
5214
			dev_info(&pdev->dev, "DCA disabled\n");
5215
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
5216
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
5217 5218 5219
		}
		break;
	}
5220

J
Jeb Cramer 已提交
5221
	return 0;
5222 5223
}

J
Jeb Cramer 已提交
5224
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5225
			  void *p)
J
Jeb Cramer 已提交
5226 5227 5228 5229
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5230
					 __igb_notify_dca);
J
Jeb Cramer 已提交
5231 5232 5233

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
5234
#endif /* CONFIG_IGB_DCA */
5235

5236 5237 5238 5239 5240
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

5241
	eth_zero_addr(mac_addr);
5242 5243
	igb_set_vf_mac(adapter, vf, mac_addr);

L
Lior Levy 已提交
5244 5245 5246
	/* By default spoof check is enabled for all VFs */
	adapter->vf_data[vf].spoofchk_enabled = true;

5247
	return 0;
5248 5249 5250
}

#endif
5251 5252 5253 5254 5255 5256 5257 5258
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5259
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5260 5261 5262 5263 5264
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5265 5266 5267 5268 5269 5270
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5271
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5272
			    IGB_VF_FLAG_MULTI_PROMISC);
5273 5274 5275 5276
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5277
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5278 5279
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
5280
		/* if we have hashes and we are clearing a multicast promisc
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;
}

5303 5304 5305 5306 5307 5308 5309 5310
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5311
	/* salt away the number of multicast addresses assigned
5312 5313 5314 5315 5316
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5317 5318 5319 5320 5321
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5322
	for (i = 0; i < n; i++)
5323
		vf_data->vf_mc_hashes[i] = hash_list[i];
5324 5325

	/* Flush and reset the mta with the new values */
5326
	igb_set_rx_mode(adapter->netdev);
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5338 5339 5340
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5341
		vf_data = &adapter->vf_data[i];
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5380 5381

	adapter->vf_data[vf].vlans_enabled = 0;
5382 5383 5384 5385 5386 5387 5388
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5389 5390 5391 5392 5393
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5423 5424
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5425 5426
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5427 5428
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5429
			wr32(E1000_VLVF(i), reg);
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5445
			adapter->vf_data[vf].vlans_enabled++;
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5472 5473
		}
	}
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
5507
				 "The VF VLAN has been set, but the PF device is not up.\n");
5508
			dev_warn(&adapter->pdev->dev,
5509
				 "Bring the PF device up before attempting to use the VF device.\n");
5510 5511 5512
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5513
			     false, vf);
5514 5515 5516 5517
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
5518
	}
5519
out:
5520
	return err;
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5531
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5532
{
G
Greg Rose 已提交
5533 5534
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5535
	adapter->vf_data[vf].last_nack = jiffies;
5536 5537

	/* reset offloads to defaults */
5538
	igb_set_vmolr(adapter, vf, true);
5539 5540 5541

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5542 5543 5544 5545 5546 5547
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5548 5549 5550 5551 5552

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5553
	igb_set_rx_mode(adapter->netdev);
5554 5555
}

5556 5557 5558 5559
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

5560
	/* clear mac address as we were hotplug removed/added */
5561
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5562
		eth_zero_addr(vf_mac);
5563 5564 5565 5566 5567 5568

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5569 5570 5571
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5572
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5573 5574 5575 5576
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5577
	igb_vf_reset(adapter, vf);
5578 5579

	/* set vf mac address */
5580
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5581 5582 5583 5584 5585 5586 5587

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5588
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5589 5590 5591 5592 5593 5594 5595 5596 5597

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
5598
	/* The VF MAC Address is stored in a packed array of bytes
G
Greg Rose 已提交
5599 5600
	 * starting at the second 32 bit word of the msg array
	 */
5601 5602
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5603

5604 5605
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5606

5607
	return err;
5608 5609 5610 5611 5612
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5613
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5614 5615 5616
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5617 5618
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5619
		igb_write_mbx(hw, &msg, 1, vf);
5620
		vf_data->last_nack = jiffies;
5621 5622 5623
	}
}

5624
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5625
{
5626 5627
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5628
	struct e1000_hw *hw = &adapter->hw;
5629
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5630 5631
	s32 retval;

5632
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5633

5634 5635
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5636
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5637 5638 5639 5640 5641
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5642 5643 5644

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5645
		return;
5646

5647
	/* until the vf completes a reset it should not be
5648 5649 5650 5651
	 * allowed to start any configuration.
	 */
	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5652
		return;
5653 5654
	}

5655
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5656 5657 5658 5659
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5660 5661 5662 5663
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5664 5665 5666 5667 5668
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
5669 5670
				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
				 vf);
5671
		break;
5672 5673 5674
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5675 5676 5677 5678 5679 5680 5681
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5682 5683 5684
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
5685 5686
				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
				 vf);
5687 5688
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5689 5690
		break;
	default:
5691
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5692 5693 5694 5695
		retval = -1;
		break;
	}

5696 5697
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5698 5699 5700 5701 5702 5703 5704
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5705
}
5706

5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5725 5726
}

5727 5728 5729 5730 5731 5732 5733
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5734 5735
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5754
/**
5755 5756 5757
 *  igb_intr_msi - Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5758 5759 5760
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5761 5762
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5763 5764 5765 5766
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5767
	igb_write_itr(q_vector);
5768

5769 5770 5771
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5772
	if (icr & E1000_ICR_DOUTSYNC) {
5773 5774 5775 5776
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5777 5778 5779 5780 5781 5782
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5794
	napi_schedule(&q_vector->napi);
5795 5796 5797 5798 5799

	return IRQ_HANDLED;
}

/**
5800 5801 5802
 *  igb_intr - Legacy Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5803 5804 5805
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5806 5807
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5808 5809
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5810 5811
	 * need for the IMC write
	 */
5812 5813 5814
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5815 5816
	 * not set, then the adapter didn't send an interrupt
	 */
5817 5818 5819
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5820 5821
	igb_write_itr(q_vector);

5822 5823 5824
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5825
	if (icr & E1000_ICR_DOUTSYNC) {
5826 5827 5828 5829
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5830 5831 5832 5833 5834 5835 5836
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5848
	napi_schedule(&q_vector->napi);
5849 5850 5851 5852

	return IRQ_HANDLED;
}

5853
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5854
{
5855
	struct igb_adapter *adapter = q_vector->adapter;
5856
	struct e1000_hw *hw = &adapter->hw;
5857

5858 5859 5860 5861
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5862
		else
5863
			igb_update_ring_itr(q_vector);
5864 5865
	}

5866 5867
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5868
			wr32(E1000_EIMS, q_vector->eims_value);
5869 5870 5871
		else
			igb_irq_enable(adapter);
	}
5872 5873
}

5874
/**
5875 5876 5877
 *  igb_poll - NAPI Rx polling callback
 *  @napi: napi polling structure
 *  @budget: count of how many packets we should handle
5878 5879
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5880
{
5881
	struct igb_q_vector *q_vector = container_of(napi,
5882 5883
						     struct igb_q_vector,
						     napi);
5884
	bool clean_complete = true;
5885

5886
#ifdef CONFIG_IGB_DCA
5887 5888
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5889
#endif
5890
	if (q_vector->tx.ring)
5891
		clean_complete = igb_clean_tx_irq(q_vector);
5892

5893
	if (q_vector->rx.ring)
5894
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5895

5896 5897 5898
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5899

5900
	/* If not enough Rx work done, exit the polling mode */
5901 5902
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5903

5904
	return 0;
5905
}
A
Al Viro 已提交
5906

5907
/**
5908 5909
 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 *  @q_vector: pointer to q_vector containing needed info
5910
 *
5911
 *  returns true if ring is completely cleaned
5912
 **/
5913
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5914
{
5915
	struct igb_adapter *adapter = q_vector->adapter;
5916
	struct igb_ring *tx_ring = q_vector->tx.ring;
5917
	struct igb_tx_buffer *tx_buffer;
5918
	union e1000_adv_tx_desc *tx_desc;
5919
	unsigned int total_bytes = 0, total_packets = 0;
5920
	unsigned int budget = q_vector->tx.work_limit;
5921
	unsigned int i = tx_ring->next_to_clean;
5922

5923 5924
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5925

5926
	tx_buffer = &tx_ring->tx_buffer_info[i];
5927
	tx_desc = IGB_TX_DESC(tx_ring, i);
5928
	i -= tx_ring->count;
5929

5930 5931
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5932 5933 5934 5935

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5936

5937
		/* prevent any other reads prior to eop_desc */
5938
		read_barrier_depends();
5939

5940 5941 5942 5943
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5944 5945
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5946

5947 5948 5949
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5950

5951 5952
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
5953

5954 5955
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
5956 5957
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
5958 5959
				 DMA_TO_DEVICE);

5960 5961 5962 5963
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

5964 5965
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
5966 5967
			tx_buffer++;
			tx_desc++;
5968
			i++;
5969 5970
			if (unlikely(!i)) {
				i -= tx_ring->count;
5971
				tx_buffer = tx_ring->tx_buffer_info;
5972 5973
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5974 5975

			/* unmap any remaining paged data */
5976
			if (dma_unmap_len(tx_buffer, len)) {
5977
				dma_unmap_page(tx_ring->dev,
5978 5979
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
5980
					       DMA_TO_DEVICE);
5981
				dma_unmap_len_set(tx_buffer, len, 0);
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
5994 5995 5996 5997 5998 5999 6000

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
6001

6002 6003
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
6004
	i += tx_ring->count;
6005
	tx_ring->next_to_clean = i;
6006 6007 6008 6009
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
6010 6011
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
6012

6013
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6014
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
6015

6016
		/* Detect a transmit hang in hardware, this serializes the
6017 6018
		 * check with the clearing of time_stamp and movement of i
		 */
6019
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6020
		if (tx_buffer->next_to_watch &&
6021
		    time_after(jiffies, tx_buffer->time_stamp +
6022 6023
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6024 6025

			/* detected Tx unit hang */
6026
			dev_err(tx_ring->dev,
6027
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
6028
				"  Tx Queue             <%d>\n"
6029 6030 6031 6032 6033 6034
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
6035
				"  next_to_watch        <%p>\n"
6036 6037
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
6038
				tx_ring->queue_index,
6039
				rd32(E1000_TDH(tx_ring->reg_idx)),
6040
				readl(tx_ring->tail),
6041 6042
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
6043
				tx_buffer->time_stamp,
6044
				tx_buffer->next_to_watch,
6045
				jiffies,
6046
				tx_buffer->next_to_watch->wb.status);
6047 6048 6049 6050 6051
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
6052 6053
		}
	}
6054

6055
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6056
	if (unlikely(total_packets &&
6057 6058
	    netif_carrier_ok(tx_ring->netdev) &&
	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
6076 6077
}

6078
/**
6079 6080 6081
 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 *  @rx_ring: rx descriptor ring to store buffers on
 *  @old_buff: donor buffer to have page reused
6082
 *
6083
 *  Synchronizes page for reuse by the adapter
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
6103
					 IGB_RX_BUFSZ,
6104 6105 6106
					 DMA_FROM_DEVICE);
}

6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
				  struct page *page,
				  unsigned int truesize)
{
	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;

	/* since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif

	return true;
}

6142
/**
6143 6144 6145 6146 6147
 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 *  @rx_ring: rx descriptor ring to transact packets on
 *  @rx_buffer: buffer containing page to add
 *  @rx_desc: descriptor containing length of buffer written by hardware
 *  @skb: sk_buff to place the data into
6148
 *
6149 6150 6151 6152
 *  This function will add the data contained in rx_buffer->page to the skb.
 *  This is done either through a direct copy if the data in the buffer is
 *  less than the skb header size, otherwise it will just attach the page as
 *  a frag to the skb.
6153
 *
6154 6155
 *  The function will then update the page offset if necessary and return
 *  true if the buffer can be reused by the adapter.
6156 6157 6158 6159 6160 6161 6162 6163
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6164 6165 6166 6167 6168
#if (PAGE_SIZE < 8192)
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6191
			rx_buffer->page_offset, size, truesize);
6192

6193 6194
	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
}
6195

6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

6226
		/* we will be copying header into skb->data in
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6237
				      IGB_RX_BUFSZ,
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6256
static inline void igb_rx_checksum(struct igb_ring *ring,
6257 6258
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6259
{
6260
	skb_checksum_none_assert(skb);
6261

6262
	/* Ignore Checksum bit is set */
6263
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6264 6265 6266 6267
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6268
		return;
6269

6270
	/* TCP/UDP checksum error bit is set */
6271 6272 6273
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6274
		/* work around errata with sctp packets where the TCPE aka
6275 6276 6277
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6278 6279
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6280
			u64_stats_update_begin(&ring->rx_syncp);
6281
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6282 6283
			u64_stats_update_end(&ring->rx_syncp);
		}
6284 6285 6286 6287
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6288 6289
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6290 6291
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6292 6293
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6294 6295
}

6296 6297 6298 6299 6300 6301 6302 6303
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

6304
/**
6305 6306 6307 6308
 *  igb_is_non_eop - process handling of non-EOP buffers
 *  @rx_ring: Rx ring being processed
 *  @rx_desc: Rx descriptor for current buffer
 *  @skb: current socket buffer containing buffer in progress
6309
 *
6310 6311 6312 6313
 *  This function updates next to clean.  If the buffer is an EOP buffer
 *  this function exits returning false, otherwise it will place the
 *  sk_buff in the next buffer to be chained and return true indicating
 *  that this is in fact a non-EOP buffer.
6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6332
/**
6333 6334 6335
 *  igb_get_headlen - determine size of header for LRO/GRO
 *  @data: pointer to the start of the headers
 *  @max_len: total length of section to find headers in
6336
 *
6337 6338 6339 6340 6341
 *  This function is meant to determine the length of headers that will
 *  be recognized by hardware for LRO, and GRO offloads.  The main
 *  motivation of doing this is to only perform one pull for IPv4 TCP
 *  packets so that we can do basic things like calculating the gso_size
 *  based on the average data per packet.
6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

6391
		/* record next protocol if header is present */
6392
		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6393
			nexthdr = hdr.ipv4->protocol;
6394 6395 6396 6397 6398 6399
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
6400
		hlen = sizeof(struct ipv6hdr);
6401 6402 6403 6404
	} else {
		return hdr.network - data;
	}

6405 6406 6407
	/* relocate pointer to start of L4 header */
	hdr.network += hlen;

6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

6428
	/* If everything has gone correctly hdr.network should be the
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
6440 6441 6442 6443
 *  igb_pull_tail - igb specific version of skb_pull_tail
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being adjusted
6444
 *
6445 6446 6447 6448 6449 6450
 *  This function is an igb specific version of __pskb_pull_tail.  The
 *  main difference between this version and the original function is that
 *  this function can make several assumptions about the state of things
 *  that allow for significant optimizations versus the standard function.
 *  As a result we can do things like drop a frag and maintain an accurate
 *  truesize for the skb.
6451 6452 6453 6454
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6455
{
6456 6457 6458 6459
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

6460
	/* it is valid to use page_address instead of kmap since we are
6461 6462
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6463
	 */
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
	va = skb_frag_address(frag);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

6480
	/* we need the header to contain the greater of either ETH_HLEN or
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
6496 6497 6498 6499
 *  igb_cleanup_headers - Correct corrupted or empty headers
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being fixed
6500
 *
6501 6502
 *  Address the case where we are pulling data in on pages only
 *  and as such no data is present in the skb header.
6503
 *
6504 6505
 *  In addition if skb is not at least 60 bytes we need to pad it so that
 *  it is large enough to qualify as a valid Ethernet frame.
6506
 *
6507
 *  Returns true if an error was encountered and skb was freed.
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{
	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6536 6537
}

6538
/**
6539 6540 6541 6542
 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being populated
6543
 *
6544 6545 6546
 *  This function checks the ring, descriptor, and packet information in
 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 *  other fields within the skb.
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);

6560
	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6561 6562 6563 6564 6565 6566 6567 6568
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

6569
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6570 6571 6572 6573 6574 6575 6576
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6577
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6578
{
6579
	struct igb_ring *rx_ring = q_vector->rx.ring;
6580
	struct sk_buff *skb = rx_ring->skb;
6581
	unsigned int total_bytes = 0, total_packets = 0;
6582
	u16 cleaned_count = igb_desc_unused(rx_ring);
6583

6584 6585
	do {
		union e1000_adv_rx_desc *rx_desc;
6586

6587 6588 6589 6590 6591
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6592

6593
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6594

6595 6596
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6597

6598 6599 6600 6601 6602 6603
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();

6604
		/* retrieve a buffer from the ring */
6605
		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6606

6607 6608 6609
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6610

6611
		cleaned_count++;
6612

6613 6614 6615
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6616 6617 6618 6619 6620

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6621 6622
		}

6623
		/* probably a little skewed due to removing CRC */
6624 6625
		total_bytes += skb->len;

6626 6627
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6628

J
Jiri Pirko 已提交
6629
		napi_gro_receive(&q_vector->napi, skb);
6630

6631 6632 6633
		/* reset skb pointer */
		skb = NULL;

6634 6635 6636
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
6637

6638 6639 6640
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
6641
	u64_stats_update_begin(&rx_ring->rx_syncp);
6642 6643
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6644
	u64_stats_update_end(&rx_ring->rx_syncp);
6645 6646
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6647 6648

	if (cleaned_count)
6649
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6650

6651
	return (total_packets < budget);
6652 6653
}

6654
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6655
				  struct igb_rx_buffer *bi)
6656 6657
{
	struct page *page = bi->page;
6658
	dma_addr_t dma;
6659

6660 6661
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
6662 6663
		return true;

6664 6665 6666 6667 6668
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
6669 6670
	}

6671 6672
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6673

6674
	/* if mapping failed free memory back to system since
6675 6676
	 * there isn't much point in holding memory we can't use
	 */
6677
	if (dma_mapping_error(rx_ring->dev, dma)) {
6678 6679
		__free_page(page);

6680 6681 6682 6683
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

6684
	bi->dma = dma;
6685 6686
	bi->page = page;
	bi->page_offset = 0;
6687

6688 6689 6690
	return true;
}

6691
/**
6692 6693
 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
 *  @adapter: address of board private structure
6694
 **/
6695
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6696 6697
{
	union e1000_adv_rx_desc *rx_desc;
6698
	struct igb_rx_buffer *bi;
6699
	u16 i = rx_ring->next_to_use;
6700

6701 6702 6703 6704
	/* nothing to do */
	if (!cleaned_count)
		return;

6705
	rx_desc = IGB_RX_DESC(rx_ring, i);
6706
	bi = &rx_ring->rx_buffer_info[i];
6707
	i -= rx_ring->count;
6708

6709
	do {
6710
		if (!igb_alloc_mapped_page(rx_ring, bi))
6711
			break;
6712

6713
		/* Refresh the desc even if buffer_addrs didn't change
6714 6715
		 * because each write-back erases this info.
		 */
6716
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6717

6718 6719
		rx_desc++;
		bi++;
6720
		i++;
6721
		if (unlikely(!i)) {
6722
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6723
			bi = rx_ring->rx_buffer_info;
6724 6725 6726 6727 6728
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6729 6730 6731

		cleaned_count--;
	} while (cleaned_count);
6732

6733 6734
	i += rx_ring->count;

6735
	if (rx_ring->next_to_use != i) {
6736
		/* record the next descriptor to use */
6737 6738
		rx_ring->next_to_use = i;

6739 6740 6741
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

6742
		/* Force memory writes to complete before letting h/w
6743 6744
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
6745 6746
		 * such as IA-64).
		 */
6747
		wmb();
6748
		writel(i, rx_ring->tail);
6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6771 6772
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6795
	case SIOCSHWTSTAMP:
6796
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6797 6798 6799 6800 6801
	default:
		return -EOPNOTSUPP;
	}
}

6802 6803 6804 6805
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6806
	if (pcie_capability_read_word(adapter->pdev, reg, value))
6807 6808 6809 6810 6811 6812 6813 6814 6815
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6816
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6817 6818 6819 6820 6821
		return -E1000_ERR_CONFIG;

	return 0;
}

6822
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6823 6824 6825 6826
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6827
	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6828

6829
	if (enable) {
6830 6831 6832 6833 6834
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6835
		/* Disable CFI check */
6836 6837 6838 6839 6840 6841 6842 6843 6844 6845
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6846
	igb_rlpml_set(adapter);
6847 6848
}

6849 6850
static int igb_vlan_rx_add_vid(struct net_device *netdev,
			       __be16 proto, u16 vid)
6851 6852 6853
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6854
	int pf_id = adapter->vfs_allocated_count;
6855

6856 6857
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6858

6859 6860
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6861 6862

	set_bit(vid, adapter->active_vlans);
6863 6864

	return 0;
6865 6866
}

6867 6868
static int igb_vlan_rx_kill_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
6869 6870 6871
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6872
	int pf_id = adapter->vfs_allocated_count;
6873
	s32 err;
6874

6875 6876
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6877

6878 6879
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6880
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6881 6882

	clear_bit(vid, adapter->active_vlans);
6883 6884

	return 0;
6885 6886 6887 6888
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6889
	u16 vid;
6890

6891 6892
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6893
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6894
		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6895 6896
}

6897
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6898
{
6899
	struct pci_dev *pdev = adapter->pdev;
6900 6901 6902 6903
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6904
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6905 6906
	 * for the switch() below to work
	 */
6907 6908 6909
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922
	/* Fiber NIC's only allow 1000 gbps Full duplex
	 * and 100Mbps Full duplex for 100baseFx sfp
	 */
	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
		switch (spd + dplx) {
		case SPEED_10 + DUPLEX_HALF:
		case SPEED_10 + DUPLEX_FULL:
		case SPEED_100 + DUPLEX_HALF:
			goto err_inval;
		default:
			break;
		}
	}
6923

6924
	switch (spd + dplx) {
6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6943
		goto err_inval;
6944
	}
6945 6946 6947 6948

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

6949
	return 0;
6950 6951 6952 6953

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
6954 6955
}

Y
Yan, Zheng 已提交
6956 6957
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
6958 6959 6960 6961
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6962
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
6963
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6964 6965 6966 6967 6968 6969
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6970
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
6971
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
6972

6973
	igb_clear_interrupt_scheme(adapter);
6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6987
		igb_set_rx_mode(netdev);
6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
7005
		igb_disable_pcie_master(hw);
7006 7007 7008 7009 7010 7011 7012 7013

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

7014 7015
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
7016 7017 7018
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
7019 7020

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7021 7022
	 * would have already happened in close and is redundant.
	 */
7023 7024 7025 7026 7027 7028 7029 7030
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
7031
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
7032
static int igb_suspend(struct device *dev)
7033 7034 7035
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
7036
	struct pci_dev *pdev = to_pci_dev(dev);
7037

Y
Yan, Zheng 已提交
7038
	retval = __igb_shutdown(pdev, &wake, 0);
7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
7051
#endif /* CONFIG_PM_SLEEP */
7052

Y
Yan, Zheng 已提交
7053
static int igb_resume(struct device *dev)
7054
{
Y
Yan, Zheng 已提交
7055
	struct pci_dev *pdev = to_pci_dev(dev);
7056 7057 7058 7059 7060 7061 7062
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
7063
	pci_save_state(pdev);
T
Taku Izumi 已提交
7064

7065
	err = pci_enable_device_mem(pdev);
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

7076
	if (igb_init_interrupt_scheme(adapter, true)) {
A
Alexander Duyck 已提交
7077 7078
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
7079 7080 7081
	}

	igb_reset(adapter);
7082 7083

	/* let the f/w know that the h/w is now under the control of the
7084 7085
	 * driver.
	 */
7086 7087
	igb_get_hw_control(adapter);

7088 7089
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
7090
	if (netdev->flags & IFF_UP) {
7091
		rtnl_lock();
Y
Yan, Zheng 已提交
7092
		err = __igb_open(netdev, true);
7093
		rtnl_unlock();
A
Alexander Duyck 已提交
7094 7095 7096
		if (err)
			return err;
	}
7097 7098

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7131 7132 7133

	return 0;
}
Y
Yan, Zheng 已提交
7134 7135 7136 7137 7138 7139

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
7140 7141 7142 7143
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
7144 7145
	bool wake;

Y
Yan, Zheng 已提交
7146
	__igb_shutdown(pdev, &wake, 0);
7147 7148 7149 7150 7151

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7152 7153
}

7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

7220
#ifdef CONFIG_NET_POLL_CONTROLLER
7221
/* Polling 'interrupt' - used by things like netconsole to send skbs
7222 7223 7224 7225 7226 7227
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
7228
	struct e1000_hw *hw = &adapter->hw;
7229
	struct igb_q_vector *q_vector;
7230 7231
	int i;

7232
	for (i = 0; i < adapter->num_q_vectors; i++) {
7233 7234 7235 7236 7237
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
7238
		napi_schedule(&q_vector->napi);
7239
	}
7240 7241 7242 7243
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
7244 7245 7246
 *  igb_io_error_detected - called when PCI error is detected
 *  @pdev: Pointer to PCI device
 *  @state: The current pci connection state
7247
 *
7248 7249 7250
 *  This function is called after a PCI bus error affecting
 *  this device has been detected.
 **/
7251 7252 7253 7254 7255 7256 7257 7258
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

7259 7260 7261
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

7262 7263 7264 7265 7266 7267 7268 7269 7270
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
7271 7272
 *  igb_io_slot_reset - called after the pci bus has been reset.
 *  @pdev: Pointer to PCI device
7273
 *
7274 7275 7276
 *  Restart the card from scratch, as if from a cold-boot. Implementation
 *  resembles the first-half of the igb_resume routine.
 **/
7277 7278 7279 7280 7281
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7282
	pci_ers_result_t result;
T
Taku Izumi 已提交
7283
	int err;
7284

7285
	if (pci_enable_device_mem(pdev)) {
7286 7287
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
7288 7289 7290 7291
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
7292
		pci_save_state(pdev);
7293

7294 7295
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
7296

7297 7298 7299 7300
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
7301

7302 7303
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
7304 7305 7306
		dev_err(&pdev->dev,
			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
			err);
7307 7308
		/* non-fatal, continue */
	}
7309 7310

	return result;
7311 7312 7313
}

/**
7314 7315
 *  igb_io_resume - called when traffic can start flowing again.
 *  @pdev: Pointer to PCI device
7316
 *
7317 7318 7319
 *  This callback is called when the error recovery driver tells us that
 *  its OK to resume normal operation. Implementation resembles the
 *  second-half of the igb_resume routine.
7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
7336 7337
	 * driver.
	 */
7338 7339 7340
	igb_get_hw_control(adapter);
}

7341
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7342
			     u8 qsel)
7343 7344 7345 7346 7347 7348 7349 7350
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7351
		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7368
static int igb_set_vf_mac(struct igb_adapter *adapter,
7369
			  int vf, unsigned char *mac_addr)
7370 7371
{
	struct e1000_hw *hw = &adapter->hw;
7372
	/* VF MAC addresses start at end of receive addresses and moves
7373 7374
	 * towards the first, as a result a collision should not be possible
	 */
7375
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7376

7377
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7378

7379
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7380 7381 7382 7383

	return 0;
}

7384 7385 7386 7387 7388 7389 7390
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7391 7392
	dev_info(&adapter->pdev->dev,
		 "Reload the VF driver to make this change effective.");
7393
	if (test_bit(__IGB_DOWN, &adapter->state)) {
7394 7395 7396 7397
		dev_warn(&adapter->pdev->dev,
			 "The VF MAC address has been set, but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev,
			 "Bring the PF device up before attempting to use the VF device.\n");
7398 7399 7400 7401
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
7424 7425
		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
			 tx_rate;
7426 7427

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7428 7429
		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
			      E1000_RTTBCNRC_RF_INT_MASK);
7430 7431 7432 7433 7434 7435
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7436
	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
L
Lior Levy 已提交
7437 7438 7439
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
7458
			 "Link speed has been changed. VF Transmit rate is disabled\n");
7459 7460 7461 7462 7463 7464 7465
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
7466 7467
				      adapter->vf_data[i].tx_rate,
				      actual_link_speed);
7468 7469 7470
	}
}

7471 7472
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7491 7492
}

L
Lior Levy 已提交
7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 reg_val, reg_offset;

	if (!adapter->vfs_allocated_count)
		return -EOPNOTSUPP;

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;

	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
	reg_val = rd32(reg_offset);
	if (setting)
		reg_val |= ((1 << vf) |
			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	else
		reg_val &= ~((1 << vf) |
			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	wr32(reg_offset, reg_val);

	adapter->vf_data[vf].spoofchk_enabled = setting;
	return E1000_SUCCESS;
}

7520 7521 7522 7523 7524 7525 7526 7527
static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7528
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7529 7530
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
L
Lior Levy 已提交
7531
	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7532 7533 7534
	return 0;
}

7535 7536 7537
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7538
	u32 reg;
7539

7540 7541
	switch (hw->mac.type) {
	case e1000_82575:
7542 7543
	case e1000_i210:
	case e1000_i211:
7544
	case e1000_i354:
7545 7546
	default:
		/* replication is not supported for 82575 */
7547
		return;
7548 7549 7550 7551 7552 7553 7554 7555 7556 7557
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7558 7559
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7560 7561
		break;
	}
7562

7563 7564 7565
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7566
		igb_vmdq_set_anti_spoofing_pf(hw, true,
7567
					      adapter->vfs_allocated_count);
7568 7569 7570 7571
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7572 7573
}

7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

7587
			/* DMA Coalescing high water mark needs to be greater
7588 7589
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7590
			 */
7591 7592 7593 7594 7595 7596 7597 7598 7599
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

7600
			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7601 7602 7603 7604 7605
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7606 7607 7608 7609 7610 7611 7612 7613 7614 7615
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7616 7617

			/* Disable BMC-to-OS Watchdog Enable */
7618 7619 7620
			if (hw->mac.type != e1000_i354)
				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;

7621 7622
			wr32(E1000_DMACR, reg);

7623
			/* no lower threshold to disable
7624 7625 7626 7627 7628 7629 7630 7631
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

7632
			/* free space in tx packet buffer to wake from
7633 7634 7635 7636 7637
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

7638
			/* make low power state decision controlled
7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

7652 7653
/**
 *  igb_read_i2c_byte - Reads 8 bit word over I2C
C
Carolyn Wyborny 已提交
7654 7655 7656 7657 7658 7659 7660
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
7661
 **/
C
Carolyn Wyborny 已提交
7662
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7663
		      u8 dev_addr, u8 *data)
C
Carolyn Wyborny 已提交
7664 7665
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7666
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
	    != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
		return E1000_SUCCESS;
	}
}

7690 7691
/**
 *  igb_write_i2c_byte - Writes 8 bit word over I2C
C
Carolyn Wyborny 已提交
7692 7693 7694 7695 7696 7697 7698
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
7699
 **/
C
Carolyn Wyborny 已提交
7700
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7701
		       u8 dev_addr, u8 data)
C
Carolyn Wyborny 已提交
7702 7703
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7704
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
		return E1000_SUCCESS;

}
7722
/* igb_main.c */