igb_main.c 193.0 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
31
#include <linux/bitops.h>
32 33 34 35
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
36
#include <linux/slab.h>
37 38
#include <net/checksum.h>
#include <net/ip6_checksum.h>
39
#include <linux/net_tstamp.h>
40 41
#include <linux/mii.h>
#include <linux/ethtool.h>
42
#include <linux/if.h>
43 44
#include <linux/if_vlan.h>
#include <linux/pci.h>
45
#include <linux/pci-aspm.h>
46 47
#include <linux/delay.h>
#include <linux/interrupt.h>
48 49 50
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
51
#include <linux/if_ether.h>
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
55 56
#include <linux/dca.h>
#endif
57 58
#include "igb.h"

C
Carolyn Wyborny 已提交
59
#define MAJ 3
C
Carolyn Wyborny 已提交
60 61
#define MIN 2
#define BUILD 10
C
Carolyn Wyborny 已提交
62
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63
__stringify(BUILD) "-k"
64 65 66 67
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
68
static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
69 70 71 72 73

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

74
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
75 76 77 78
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
79 80
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
81
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
82 83 84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
85 86
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
90
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
92 93
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
95
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
97 98 99 100 101 102 103 104 105 106 107 108 109 110
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
111
static void igb_setup_mrqc(struct igb_adapter *);
112 113
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
A
Anders Berggren 已提交
114
static void igb_init_hw_timer(struct igb_adapter *adapter);
115 116 117 118 119 120 121
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
122 123
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
124
static void igb_set_rx_mode(struct net_device *);
125 126 127
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
128
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
129 130
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
131 132
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
133
static void igb_set_uta(struct igb_adapter *adapter);
134 135 136
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
137
static irqreturn_t igb_msix_ring(int irq, void *);
138
#ifdef CONFIG_IGB_DCA
139
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
140
static void igb_setup_dca(struct igb_adapter *);
141
#endif /* CONFIG_IGB_DCA */
142
static int igb_poll(struct napi_struct *, int);
143
static bool igb_clean_tx_irq(struct igb_q_vector *);
144
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
145 146 147
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
J
Jiri Pirko 已提交
148
static void igb_vlan_mode(struct net_device *netdev, u32 features);
149 150 151
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
152
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
153 154 155
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
156
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
157
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 159 160 161 162 163
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
164
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
165 166

#ifdef CONFIG_PCI_IOV
167 168 169
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
static int igb_find_enabled_vfs(struct igb_adapter *adapter);
static int igb_check_vf_assignment(struct igb_adapter *adapter);
R
RongQing Li 已提交
170
#endif
171 172

#ifdef CONFIG_PM
173
static int igb_suspend(struct pci_dev *, pm_message_t);
174 175 176
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
177
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
178 179 180 181 182 183 184
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
185 186 187 188
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
189
#ifdef CONFIG_PCI_IOV
190 191 192 193 194 195
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

196 197 198 199 200 201 202 203 204 205 206
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

207
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
208 209 210 211 212 213 214

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
L
Lucas De Marchi 已提交
215
	/* Power Management Hooks */
216 217 218 219 220 221 222 223 224 225 226 227
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
		printk(KERN_INFO "%-15s %08x\n",
			reginfo->name, rd32(reginfo->ofs));
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
	printk(KERN_INFO "%-15s ", rname);
	for (n = 0; n < 4; n++)
		printk(KERN_CONT "%08x ", regs[n]);
	printk(KERN_CONT "\n");
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
354
	u16 i, n;
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		printk(KERN_INFO "Device Name     state            "
			"trans_start      last_rx\n");
		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
		netdev->name,
		netdev->state,
		netdev->trans_start,
		netdev->last_rx);
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	printk(KERN_INFO " Register Name   Value\n");
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
		" leng ntw timestamp\n");
	for (n = 0; n < adapter->num_tx_queues; n++) {
387
		struct igb_tx_buffer *buffer_info;
388
		tx_ring = adapter->tx_ring[n];
389
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
390
		printk(KERN_INFO " %5d %5X %5X %016llX %04X %p %016llX\n",
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
			   n, tx_ring->next_to_use, tx_ring->next_to_clean,
			   (u64)buffer_info->dma,
			   buffer_info->length,
			   buffer_info->next_to_watch,
			   (u64)buffer_info->time_stamp);
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "T [desc]     [address 63:0  ] "
			"[PlPOCIStDDM Ln] [bi->dma       ] "
			"leng  ntw timestamp        bi->skb\n");

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
425
			struct igb_tx_buffer *buffer_info;
426
			tx_desc = IGB_TX_DESC(tx_ring, i);
427
			buffer_info = &tx_ring->tx_buffer_info[i];
428 429
			u0 = (struct my_u0 *)tx_desc;
			printk(KERN_INFO "T [0x%03X]    %016llX %016llX %016llX"
430
				" %04X  %p %016llX %p", i,
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
				(u64)buffer_info->dma,
				buffer_info->length,
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
				buffer_info->skb);
			if (i == tx_ring->next_to_use &&
				i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC/U\n");
			else if (i == tx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

			if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
					16, 1, phys_to_virt(buffer_info->dma),
					buffer_info->length, true);
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC]\n");
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO " %5d %5X %5X\n", n,
			   rx_ring->next_to_use, rx_ring->next_to_clean);
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "R  [desc]      [ PktBuf     A0] "
			"[  HeadBuf   DD] [bi->dma       ] [bi->skb] "
			"<-- Adv Rx Read format\n");
		printk(KERN_INFO "RWB[desc]      [PcsmIpSHl PtRs] "
			"[vl er S cks ln] ---------------- [bi->skb] "
			"<-- Adv Rx Write-Back format\n");

		for (i = 0; i < rx_ring->count; i++) {
506 507
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
508
			rx_desc = IGB_RX_DESC(rx_ring, i);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
					"%016llX ---------------- %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					buffer_info->skb);
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
					"%016llX %016llX %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
					buffer_info->skb);

				if (netif_msg_pktdata(adapter)) {
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS,
						16, 1,
						phys_to_virt(buffer_info->dma),
531 532 533 534 535 536 537 538
						IGB_RX_HDR_LEN, true);
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
					  phys_to_virt(
					    buffer_info->page_dma +
					    buffer_info->page_offset),
					  PAGE_SIZE/2, true);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
				}
			}

			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

		}
	}

exit:
	return;
}


P
Patrick Ohly 已提交
557 558 559 560 561 562 563 564
/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
565 566
	u64 stamp = 0;
	int shift = 0;
P
Patrick Ohly 已提交
567

568 569 570 571 572
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we never
	 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
	 */
573
	if (hw->mac.type >= e1000_82580) {
574 575 576 577
		stamp = rd32(E1000_SYSTIMR) >> 8;
		shift = IGB_82580_TSYNC_SHIFT;
	}

578 579
	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
P
Patrick Ohly 已提交
580 581 582
	return stamp;
}

583
/**
584
 * igb_get_hw_dev - return device
585 586
 * used by hardware layer to print debugging information
 **/
587
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
588 589
{
	struct igb_adapter *adapter = hw->back;
590
	return adapter->netdev;
591
}
P
Patrick Ohly 已提交
592

593 594 595 596 597 598 599 600 601 602 603 604 605 606
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

607
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
608 609
	dca_register_notify(&dca_notifier);
#endif
610
	ret = pci_register_driver(&igb_driver);
611 612 613 614 615 616 617 618 619 620 621 622 623
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
624
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
625 626
	dca_unregister_notify(&dca_notifier);
#endif
627 628 629 630 631
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

632 633 634 635 636 637 638 639 640 641
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
642
	int i = 0, j = 0;
643
	u32 rbase_offset = adapter->vfs_allocated_count;
644 645 646 647 648 649 650 651

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
652
		if (adapter->vfs_allocated_count) {
653
			for (; i < adapter->rss_queues; i++)
654 655
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
656
		}
657
	case e1000_82575:
658
	case e1000_82580:
659
	case e1000_i350:
660
	default:
661
		for (; i < adapter->num_rx_queues; i++)
662
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
663
		for (; j < adapter->num_tx_queues; j++)
664
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
665 666 667 668
		break;
	}
}

669 670
static void igb_free_queues(struct igb_adapter *adapter)
{
671
	int i;
672

673 674 675 676 677 678 679 680
	for (i = 0; i < adapter->num_tx_queues; i++) {
		kfree(adapter->tx_ring[i]);
		adapter->tx_ring[i] = NULL;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		kfree(adapter->rx_ring[i]);
		adapter->rx_ring[i] = NULL;
	}
681 682 683 684
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

685 686 687 688 689 690 691 692 693
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
694
	struct igb_ring *ring;
695
	int i;
696
	int orig_node = adapter->node;
697

698
	for (i = 0; i < adapter->num_tx_queues; i++) {
699 700 701 702 703 704 705 706 707 708
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
				    adapter->node);
		if (!ring)
			ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
709 710
		if (!ring)
			goto err;
711
		ring->count = adapter->tx_ring_count;
712
		ring->queue_index = i;
713
		ring->dev = &adapter->pdev->dev;
714
		ring->netdev = adapter->netdev;
715
		ring->numa_node = adapter->node;
716 717
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
718
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
719
		adapter->tx_ring[i] = ring;
720
	}
721 722
	/* Restore the adapter's original node */
	adapter->node = orig_node;
723

724
	for (i = 0; i < adapter->num_rx_queues; i++) {
725 726 727 728 729 730 731 732 733 734
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
				    adapter->node);
		if (!ring)
			ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
735 736
		if (!ring)
			goto err;
737
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
738
		ring->queue_index = i;
739
		ring->dev = &adapter->pdev->dev;
740
		ring->netdev = adapter->netdev;
741
		ring->numa_node = adapter->node;
742 743
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
744
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
745 746 747 748 749

		/* On i350, loopback VLAN packets have the tag byte-swapped. */
		if (adapter->hw.mac.type == e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);

750
		adapter->rx_ring[i] = ring;
751
	}
752 753
	/* Restore the adapter's original node */
	adapter->node = orig_node;
754 755

	igb_cache_ring_register(adapter);
756

757
	return 0;
A
Alexander Duyck 已提交
758

759
err:
760 761
	/* Restore the adapter's original node */
	adapter->node = orig_node;
762
	igb_free_queues(adapter);
763

764
	return -ENOMEM;
A
Alexander Duyck 已提交
765 766
}

A
Alexander Duyck 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

793
#define IGB_N0_QUEUE -1
794
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
795
{
796
	struct igb_adapter *adapter = q_vector->adapter;
797
	struct e1000_hw *hw = &adapter->hw;
798 799
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
800
	u32 msixbm = 0;
801

802 803 804 805
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
806 807 808

	switch (hw->mac.type) {
	case e1000_82575:
809 810 811 812
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
813
		if (rx_queue > IGB_N0_QUEUE)
814
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
815
		if (tx_queue > IGB_N0_QUEUE)
816
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
817 818
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
819
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
820
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
821 822
		break;
	case e1000_82576:
A
Alexander Duyck 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836
		/*
		 * 82576 uses a table that essentially consists of 2 columns
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
837
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
838
		break;
839
	case e1000_82580:
840
	case e1000_i350:
A
Alexander Duyck 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
		/*
		 * On 82580 and newer adapters the scheme is similar to 82576
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
856 857
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
858 859 860 861
	default:
		BUG();
		break;
	}
862 863 864 865 866 867

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
885 886
	switch (hw->mac.type) {
	case e1000_82575:
887 888 889 890 891 892 893 894 895
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
896 897 898 899

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
900
		adapter->eims_other = E1000_EIMS_OTHER;
901

A
Alexander Duyck 已提交
902 903 904
		break;

	case e1000_82576:
905
	case e1000_82580:
906
	case e1000_i350:
907 908 909 910 911 912 913 914
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
915 916
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

917
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
918 919 920 921 922
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
923 924 925

	adapter->eims_enable_mask |= adapter->eims_other;

926 927
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
928

929 930 931 932 933 934 935 936 937 938 939 940
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
941
	struct e1000_hw *hw = &adapter->hw;
942 943
	int i, err = 0, vector = 0;

944
	err = request_irq(adapter->msix_entries[vector].vector,
945
	                  igb_msix_other, 0, netdev->name, adapter);
946 947 948 949 950 951 952 953 954
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

955
		if (q_vector->rx.ring && q_vector->tx.ring)
956
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
957 958
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
959
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
960 961
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
962
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
963
				q_vector->rx.ring->queue_index);
964
		else
965 966
			sprintf(q_vector->name, "%s-unused", netdev->name);

967
		err = request_irq(adapter->msix_entries[vector].vector,
968
		                  igb_msix_ring, 0, q_vector->name,
969
		                  q_vector);
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
987
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
988
		pci_disable_msi(adapter->pdev);
989
	}
990 991
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
1007 1008
		if (!q_vector)
			continue;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1027 1028 1029 1030 1031 1032 1033

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1034
static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1035 1036 1037 1038
{
	int err;
	int numvecs, i;

1039
	/* Number of supported queues. */
1040
	adapter->num_rx_queues = adapter->rss_queues;
1041 1042 1043 1044
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1045

1046 1047 1048
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1049
	/* if tx handler is separate add 1 for every tx queue */
1050 1051
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1052 1053 1054 1055 1056 1057

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1070
		goto out;
1071 1072 1073 1074 1075

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1087
		wrfl();
1088 1089 1090 1091
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1092
	adapter->vfs_allocated_count = 0;
1093
	adapter->rss_queues = 1;
1094
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1095
	adapter->num_rx_queues = 1;
1096
	adapter->num_tx_queues = 1;
1097
	adapter->num_q_vectors = 1;
1098
	if (!pci_enable_msi(adapter->pdev))
1099
		adapter->flags |= IGB_FLAG_HAS_MSI;
1100
out:
1101 1102 1103 1104
	/* Notify the stack of the (possibly) reduced queue counts. */
	netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
	return netif_set_real_num_rx_queues(adapter->netdev,
					    adapter->num_rx_queues);
1105 1106
}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;
1119
	int orig_node = adapter->node;
1120 1121

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		if ((adapter->num_q_vectors == (adapter->num_rx_queues +
						adapter->num_tx_queues)) &&
		    (adapter->num_rx_queues == v_idx))
			adapter->node = orig_node;
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
					adapter->node);
		if (!q_vector)
			q_vector = kzalloc(sizeof(struct igb_q_vector),
					   GFP_KERNEL);
1137 1138 1139 1140 1141 1142 1143 1144
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
1145 1146 1147
	/* Restore the adapter's original node */
	adapter->node = orig_node;

1148 1149 1150
	return 0;

err_out:
1151 1152
	/* Restore the adapter's original node */
	adapter->node = orig_node;
1153
	igb_free_q_vectors(adapter);
1154 1155 1156 1157 1158 1159
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1160
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1161

1162 1163 1164
	q_vector->rx.ring = adapter->rx_ring[ring_idx];
	q_vector->rx.ring->q_vector = q_vector;
	q_vector->rx.count++;
1165 1166 1167
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1168 1169 1170 1171 1172
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1173
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1174

1175 1176 1177
	q_vector->tx.ring = adapter->tx_ring[ring_idx];
	q_vector->tx.ring->q_vector = q_vector;
	q_vector->tx.count++;
1178
	q_vector->itr_val = adapter->tx_itr_setting;
1179
	q_vector->tx.work_limit = adapter->tx_work_limit;
1180 1181
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1226 1227 1228
	err = igb_set_interrupt_capability(adapter);
	if (err)
		return err;
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1259 1260 1261 1262 1263 1264 1265 1266 1267
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1268
	struct pci_dev *pdev = adapter->pdev;
1269 1270 1271 1272
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1273
		if (!err)
1274 1275
			goto request_done;
		/* fall back to MSI */
1276
		igb_clear_interrupt_scheme(adapter);
1277
		if (!pci_enable_msi(pdev))
1278
			adapter->flags |= IGB_FLAG_HAS_MSI;
1279 1280
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1281
		adapter->num_tx_queues = 1;
1282
		adapter->num_rx_queues = 1;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1299
	}
P
PJ Waskiewicz 已提交
1300

1301 1302
	igb_assign_vector(adapter->q_vector[0], 0);

1303
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1304
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1305
				  netdev->name, adapter);
1306 1307
		if (!err)
			goto request_done;
1308

1309 1310
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1311
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1312 1313
	}

1314
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1315
			  netdev->name, adapter);
1316

A
Andy Gospodarek 已提交
1317
	if (err)
1318
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1330
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1331

1332
		for (i = 0; i < adapter->num_q_vectors; i++)
1333
			free_irq(adapter->msix_entries[vector++].vector,
1334
				 adapter->q_vector[i]);
1335 1336
	} else {
		free_irq(adapter->pdev->irq, adapter);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1348 1349 1350 1351 1352
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1353
	if (adapter->msix_entries) {
1354 1355 1356 1357 1358
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1359
	}
P
PJ Waskiewicz 已提交
1360 1361

	wr32(E1000_IAM, 0);
1362 1363
	wr32(E1000_IMC, ~0);
	wrfl();
1364 1365 1366 1367 1368 1369 1370
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1382
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1383 1384 1385 1386
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1387
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1388
		if (adapter->vfs_allocated_count) {
1389
			wr32(E1000_MBVFIMR, 0xFF);
1390 1391 1392
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1393
	} else {
1394 1395 1396 1397
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1398
	}
1399 1400 1401 1402
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1403
	struct e1000_hw *hw = &adapter->hw;
1404 1405
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1417
	    !test_bit(old_vid, adapter->active_vlans)) {
1418 1419
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1473
	igb_set_rx_mode(netdev);
1474 1475 1476

	igb_restore_vlan(adapter);

1477
	igb_setup_tctl(adapter);
1478
	igb_setup_mrqc(adapter);
1479
	igb_setup_rctl(adapter);
1480 1481

	igb_configure_tx(adapter);
1482
	igb_configure_rx(adapter);
1483 1484 1485

	igb_rx_fifo_flush_82575(&adapter->hw);

1486
	/* call igb_desc_unused which always leaves
1487 1488 1489
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1490
		struct igb_ring *ring = adapter->rx_ring[i];
1491
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1492 1493 1494
	}
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1533 1534 1535
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1536
	if (adapter->msix_entries)
1537
		igb_configure_msix(adapter);
1538 1539
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1540 1541 1542 1543 1544

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1545 1546 1547 1548 1549 1550 1551
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1552 1553
	netif_tx_start_all_queues(adapter->netdev);

1554 1555 1556 1557
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1558 1559 1560 1561 1562 1563
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1564
	struct e1000_hw *hw = &adapter->hw;
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1577
	netif_tx_stop_all_queues(netdev);
1578 1579 1580 1581 1582 1583 1584 1585 1586

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1587 1588
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_disable(&(adapter->q_vector[i]->napi));
1589 1590 1591 1592 1593 1594 1595

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1596 1597

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1598 1599 1600
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1601

1602 1603 1604
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1605 1606
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1607 1608
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1609 1610 1611 1612 1613
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1628
	struct pci_dev *pdev = adapter->pdev;
1629
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1630 1631
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1632 1633 1634 1635 1636 1637
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1638
	switch (mac->type) {
1639
	case e1000_i350:
1640 1641 1642 1643
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1644
	case e1000_82576:
1645 1646
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1647 1648 1649 1650 1651
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1652
	}
1653

A
Alexander Duyck 已提交
1654 1655
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1673
				sizeof(union e1000_adv_tx_desc) -
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1694
		wr32(E1000_PBA, pba);
1695 1696 1697 1698 1699 1700 1701 1702 1703
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1704
			((pba << 10) - 2 * adapter->max_frame_size));
1705

1706 1707
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1708 1709
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1710
	fc->current_mode = fc->requested_mode;
1711

1712 1713 1714 1715
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1716
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1717 1718

		/* ping all the active vfs to let them know we are going down */
1719
		igb_ping_all_vfs(adapter);
1720 1721 1722 1723 1724 1725

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1726
	/* Allow time for pending master requests to run */
1727
	hw->mac.ops.reset_hw(hw);
1728 1729
	wr32(E1000_WUC, 0);

1730
	if (hw->mac.ops.init_hw(hw))
1731
		dev_err(&pdev->dev, "Hardware Error\n");
1732

1733
	igb_init_dmac(adapter, pba);
1734 1735 1736
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1737 1738 1739 1740 1741
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1742
	igb_get_phy_info(hw);
1743 1744
}

J
Jiri Pirko 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
static u32 igb_fix_features(struct net_device *netdev, u32 features)
{
	/*
	 * Since there is no support for separate rx/tx vlan accel
	 * enable/disable make sure tx flag is always in same state as rx.
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1759 1760
static int igb_set_features(struct net_device *netdev, u32 features)
{
J
Jiri Pirko 已提交
1761
	u32 changed = netdev->features ^ features;
1762

J
Jiri Pirko 已提交
1763 1764 1765
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

1766 1767 1768
	return 0;
}

S
Stephen Hemminger 已提交
1769
static const struct net_device_ops igb_netdev_ops = {
1770
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1771
	.ndo_stop		= igb_close,
1772
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1773
	.ndo_get_stats64	= igb_get_stats64,
1774
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1775 1776 1777 1778 1779 1780 1781
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1782 1783 1784 1785
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1786 1787 1788
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1789 1790
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1791 1792
};

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1810
	u16 eeprom_data = 0;
1811
	s32 ret_val;
1812
	static int global_quad_port_a; /* global quad port a indication */
1813 1814
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1815
	int err, pci_using_dac;
1816
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1817
	u8 part_str[E1000_PBANUM_LENGTH];
1818

1819 1820 1821 1822 1823 1824 1825 1826 1827
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
		     pci_name(pdev), pdev->vendor, pdev->device);
		return -EINVAL;
	}

1828
	err = pci_enable_device_mem(pdev);
1829 1830 1831 1832
	if (err)
		return err;

	pci_using_dac = 0;
1833
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1834
	if (!err) {
1835
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1836 1837 1838
		if (!err)
			pci_using_dac = 1;
	} else {
1839
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1840
		if (err) {
1841
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1842 1843 1844 1845 1846 1847 1848 1849
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1850 1851 1852
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1853 1854 1855
	if (err)
		goto err_pci_reg;

1856
	pci_enable_pcie_error_reporting(pdev);
1857

1858
	pci_set_master(pdev);
1859
	pci_save_state(pdev);
1860 1861

	err = -ENOMEM;
1862
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1863
				   IGB_MAX_TX_QUEUES);
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1881 1882
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1883 1884
		goto err_ioremap;

S
Stephen Hemminger 已提交
1885
	netdev->netdev_ops = &igb_netdev_ops;
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1908
		goto err_sw_init;
1909

1910
	/* setup the private structure */
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	/*
	 * features is initialized to 0 in allocation, it might have bits
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;

	/* set this bit last since it cannot be part of hw_features */
	netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
1956

1957
	if (pci_using_dac) {
1958
		netdev->features |= NETIF_F_HIGHDMA;
1959 1960
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
1961

1962 1963
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
1964
		netdev->features |= NETIF_F_SCTP_CSUM;
1965
	}
1966

1967 1968
	netdev->priv_flags |= IFF_UNICAST_FLT;

1969
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1970 1971 1972 1973 1974 1975

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
1976
	if (hw->nvm.ops.validate(hw) < 0) {
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1995
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
1996
	            (unsigned long) adapter);
1997
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
1998
	            (unsigned long) adapter);
1999 2000 2001 2002

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2003
	/* Initialize link properties that are user-changeable */
2004 2005 2006 2007
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2008 2009
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2010 2011 2012 2013 2014 2015 2016

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

2017
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
2018
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2019
	else if (hw->mac.type >= e1000_82580)
2020 2021 2022
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
2023 2024
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2037 2038
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2039 2040 2041 2042 2043
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
2044
	case E1000_DEV_ID_82576_QUAD_COPPER:
2045
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2046 2047 2048 2049 2050 2051 2052 2053 2054
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2055 2056 2057 2058
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
2059
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2073 2074 2075
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2076
#ifdef CONFIG_IGB_DCA
2077
	if (dca_add_requester(&pdev->dev) == 0) {
2078
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2079 2080 2081 2082
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2083
#endif
A
Anders Berggren 已提交
2084 2085 2086
	/* do hw tstamp init after resetting */
	igb_init_hw_timer(adapter);

2087 2088
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2089
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2090
		 netdev->name,
2091
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2092
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2093
		                                            "unknown"),
2094 2095 2096 2097
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2098
		 netdev->dev_addr);
2099

2100 2101 2102 2103
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2104 2105 2106
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2107
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2108
		adapter->num_rx_queues, adapter->num_tx_queues);
2109 2110 2111 2112 2113 2114 2115
	switch (hw->mac.type) {
	case e1000_i350:
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
2116 2117 2118 2119 2120 2121
	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
2122
		igb_reset_phy(hw);
2123 2124 2125 2126

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2127
	igb_clear_interrupt_scheme(adapter);
2128 2129 2130 2131
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2132 2133
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2153
	struct e1000_hw *hw = &adapter->hw;
2154

2155 2156 2157 2158
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2159 2160 2161 2162
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2163 2164
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2165

2166
#ifdef CONFIG_IGB_DCA
2167
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2168 2169
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2170
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2171
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2172 2173 2174
	}
#endif

2175 2176 2177 2178 2179 2180
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2181
	igb_clear_interrupt_scheme(adapter);
2182

2183 2184 2185 2186
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
2187 2188 2189 2190 2191 2192
		if (!igb_check_vf_assignment(adapter)) {
			pci_disable_sriov(pdev);
			msleep(500);
		} else {
			dev_info(&pdev->dev, "VF(s) assigned to guests!\n");
		}
2193 2194 2195 2196

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2197
		wrfl();
2198 2199 2200 2201
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
2202

2203 2204 2205
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2206 2207
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2208 2209 2210

	free_netdev(netdev);

2211
	pci_disable_pcie_error_reporting(pdev);
2212

2213 2214 2215
	pci_disable_device(pdev);
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2229 2230
	int old_vfs = igb_find_enabled_vfs(adapter);
	int i;
2231

2232 2233 2234 2235
	if (old_vfs) {
		dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
			 "max_vfs setting of %d\n", old_vfs, max_vfs);
		adapter->vfs_allocated_count = old_vfs;
2236 2237
	}

2238 2239 2240 2241 2242 2243 2244
	if (!adapter->vfs_allocated_count)
		return;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);
	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
2245
		adapter->vfs_allocated_count = 0;
2246 2247 2248
		dev_err(&pdev->dev, "Unable to allocate memory for VF "
			"Data Storage\n");
		goto out;
2249
	}
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

	if (!old_vfs) {
		if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
			goto err_out;
	}
	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;
err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return;
2269 2270 2271
#endif /* CONFIG_PCI_IOV */
}

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
/**
 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
 * @adapter: board private structure to initialize
 *
 * igb_init_hw_timer initializes the function pointer and values for the hw
 * timer found in hardware.
 **/
static void igb_init_hw_timer(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
2284
	case e1000_i350:
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
	case e1000_82580:
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/*
		 * The 82580 timesync updates the system timer every 8ns by 8ns
		 * and the value cannot be shifted.  Instead we need to shift
		 * the registers to generate a 64bit timer value.  As a result
		 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
		 * 24 in order to generate a larger value for synchronization.
		 */
		adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
		/* disable system timer temporarily by setting bit 31 */
		wr32(E1000_TSAUXC, 0x80000000);
		wrfl();

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIMR, 0x00000000);
		wr32(E1000_SYSTIML, 0x80000000);
		wr32(E1000_SYSTIMH, 0x000000FF);
		wrfl();

		/* enable system timer by clearing bit 31 */
		wr32(E1000_TSAUXC, 0x0);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	case e1000_82576:
		/*
		 * Initialize hardware timer: we keep it running just in case
		 * that some program needs it later on.
		 */
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/**
		 * Scale the NIC clock cycle by a large factor so that
		 * relatively small clock corrections can be added or
L
Lucas De Marchi 已提交
2339
		 * subtracted at each clock tick. The drawbacks of a large
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
		 * factor are a) that the clock register overflows more quickly
		 * (not such a big deal) and b) that the increment per tick has
		 * to fit into 24 bits.  As a result we need to use a shift of
		 * 19 so we can fit a value of 16 into the TIMINCA register.
		 */
		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
		wr32(E1000_TIMINCA,
		                (1 << E1000_TIMINCA_16NS_SHIFT) |
		                (16 << IGB_82576_TSYNC_SHIFT));

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIML, 0x00000000);
		wr32(E1000_SYSTIMH, 0xFF800000);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
	case e1000_82575:
		/* 82575 does not support timesync */
	default:
		break;
	}

}

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

2394
	/* set default ring sizes */
2395 2396
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2397 2398

	/* set default ITR values */
2399 2400 2401
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

2402 2403 2404
	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

2405 2406
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
2407 2408
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

2409 2410
	adapter->node = -1;

E
Eric Dumazet 已提交
2411
	spin_lock_init(&adapter->stats64_lock);
2412
#ifdef CONFIG_PCI_IOV
2413 2414 2415
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
2416 2417 2418 2419 2420 2421
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
2422 2423 2424 2425
		break;
	default:
		break;
	}
2426
#endif /* CONFIG_PCI_IOV */
2427
	adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2428 2429 2430
	/* i350 cannot do RSS and SR-IOV at the same time */
	if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
		adapter->rss_queues = 1;
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

	/*
	 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
	 * then we should combine the queues into a queue pair in order to
	 * conserve interrupts due to limited supply
	 */
	if ((adapter->rss_queues > 4) ||
	    ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
		adapter->flags |= IGB_FLAG_QUEUE_PAIRS;

2441
	/* This call may decrease the number of queues */
2442
	if (igb_init_interrupt_scheme(adapter)) {
2443 2444 2445 2446
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2447 2448
	igb_probe_vfs(adapter);

2449 2450 2451
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2452 2453 2454
	if (hw->mac.type == e1000_i350)
		adapter->flags &= ~IGB_FLAG_DMAC;

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

2482 2483
	netif_carrier_off(netdev);

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2494
	igb_power_up_link(adapter);
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2509 2510
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2511 2512 2513

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2514 2515 2516

	igb_irq_enable(adapter);

2517 2518 2519 2520 2521 2522 2523
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2524 2525
	netif_tx_start_all_queues(netdev);

2526 2527 2528
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2529 2530 2531 2532 2533

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
2534
	igb_power_down_link(adapter);
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2576
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2577
{
2578
	struct device *dev = tx_ring->dev;
2579
	int orig_node = dev_to_node(dev);
2580 2581
	int size;

2582
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2583 2584 2585
	tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
	if (!tx_ring->tx_buffer_info)
		tx_ring->tx_buffer_info = vzalloc(size);
2586
	if (!tx_ring->tx_buffer_info)
2587 2588 2589
		goto err;

	/* round up to nearest 4K */
2590
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2591 2592
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2593
	set_dev_node(dev, tx_ring->numa_node);
2594 2595 2596 2597
	tx_ring->desc = dma_alloc_coherent(dev,
					   tx_ring->size,
					   &tx_ring->dma,
					   GFP_KERNEL);
2598 2599 2600 2601 2602 2603
	set_dev_node(dev, orig_node);
	if (!tx_ring->desc)
		tx_ring->desc = dma_alloc_coherent(dev,
						   tx_ring->size,
						   &tx_ring->dma,
						   GFP_KERNEL);
2604 2605 2606 2607 2608 2609

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2610

2611 2612 2613
	return 0;

err:
2614
	vfree(tx_ring->tx_buffer_info);
2615
	dev_err(dev,
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2629
	struct pci_dev *pdev = adapter->pdev;
2630 2631 2632
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2633
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2634
		if (err) {
2635
			dev_err(&pdev->dev,
2636 2637
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2638
				igb_free_tx_resources(adapter->tx_ring[i]);
2639 2640 2641 2642 2643 2644 2645 2646
			break;
		}
	}

	return err;
}

/**
2647 2648
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2649
 **/
2650
void igb_setup_tctl(struct igb_adapter *adapter)
2651 2652 2653 2654
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2655 2656
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2672 2673 2674 2675 2676 2677 2678
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2679 2680
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2681 2682
{
	struct e1000_hw *hw = &adapter->hw;
2683
	u32 txdctl = 0;
2684 2685 2686 2687
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2688
	wr32(E1000_TXDCTL(reg_idx), 0);
2689 2690 2691 2692 2693 2694 2695 2696 2697
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2698
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2699
	wr32(E1000_TDH(reg_idx), 0);
2700
	writel(0, ring->tail);
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2721
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2722 2723
}

2724 2725 2726 2727 2728 2729
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2730
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2731
{
2732
	struct device *dev = rx_ring->dev;
2733
	int orig_node = dev_to_node(dev);
2734 2735
	int size, desc_len;

2736
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2737 2738 2739
	rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
	if (!rx_ring->rx_buffer_info)
		rx_ring->rx_buffer_info = vzalloc(size);
2740
	if (!rx_ring->rx_buffer_info)
2741 2742 2743 2744 2745 2746 2747 2748
		goto err;

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

2749
	set_dev_node(dev, rx_ring->numa_node);
2750 2751 2752 2753
	rx_ring->desc = dma_alloc_coherent(dev,
					   rx_ring->size,
					   &rx_ring->dma,
					   GFP_KERNEL);
2754 2755 2756 2757 2758 2759
	set_dev_node(dev, orig_node);
	if (!rx_ring->desc)
		rx_ring->desc = dma_alloc_coherent(dev,
						   rx_ring->size,
						   &rx_ring->dma,
						   GFP_KERNEL);
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
2770 2771
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
2772 2773
	dev_err(dev, "Unable to allocate memory for the receive descriptor"
		" ring\n");
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2786
	struct pci_dev *pdev = adapter->pdev;
2787 2788 2789
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2790
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2791
		if (err) {
2792
			dev_err(&pdev->dev,
2793 2794
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2795
				igb_free_rx_resources(adapter->rx_ring[i]);
2796 2797 2798 2799 2800 2801 2802
			break;
		}
	}

	return err;
}

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

2831
	num_rx_queues = adapter->rss_queues;
2832 2833 2834 2835

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
2836
		case e1000_i350:
2837 2838 2839 2840
		case e1000_82580:
			num_rx_queues = 1;
			shift = 0;
			break;
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2892
		if (adapter->rss_queues > 1)
2893 2894 2895 2896 2897 2898 2899 2900
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	/*
	 * Generate RSS hash based on TCP port numbers and/or
	 * IPv4/v6 src and dst addresses since UDP cannot be
	 * hashed reliably due to IP fragmentation
	 */
	mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2911 2912 2913 2914

	wr32(E1000_MRQC, mrqc);
}

2915 2916 2917 2918
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2919
void igb_setup_rctl(struct igb_adapter *adapter)
2920 2921 2922 2923 2924 2925 2926
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2927
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2928

2929
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2930
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2931

2932 2933 2934 2935
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2936
	 */
2937
	rctl |= E1000_RCTL_SECRC;
2938

2939
	/* disable store bad packets and clear size bits. */
2940
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2941

A
Alexander Duyck 已提交
2942 2943
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2944

2945 2946
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2947

2948 2949 2950 2951 2952 2953 2954 2955 2956
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

2957 2958 2959
	wr32(E1000_RCTL, rctl);
}

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

2980 2981 2982 2983 2984 2985 2986 2987
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
2988
	u32 max_frame_size = adapter->max_frame_size;
2989 2990 2991 2992 2993
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2994 2995 2996 2997 2998 2999 3000
		/*
		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3001
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3002 3003 3004 3005 3006
	}

	wr32(E1000_RLPML, max_frame_size);
}

3007 3008
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3021 3022 3023 3024 3025
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3026 3027 3028 3029

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3030
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

3042 3043 3044 3045 3046 3047 3048
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
3049 3050
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3051 3052 3053 3054
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3055
	u32 srrctl = 0, rxdctl = 0;
3056 3057

	/* disable the queue */
3058
	wr32(E1000_RXDCTL(reg_idx), 0);
3059 3060 3061 3062 3063 3064 3065 3066 3067

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
3068
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3069
	wr32(E1000_RDH(reg_idx), 0);
3070
	writel(0, ring->tail);
3071

3072
	/* set descriptor configuration */
3073
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3074
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3075
	srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3076
#else
3077
	srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3078
#endif
3079
	srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3080
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3081
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3082 3083 3084
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3085 3086 3087

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3088
	/* set filtering for VMDQ pools */
3089
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3090

3091 3092 3093
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3094 3095 3096

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3097 3098 3099
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3100 3101 3102 3103 3104 3105 3106 3107
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3108
	int i;
3109

3110 3111 3112
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3113 3114 3115 3116
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

3117 3118 3119
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
3120
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3121 3122 3123 3124 3125 3126 3127 3128
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3129
void igb_free_tx_resources(struct igb_ring *tx_ring)
3130
{
3131
	igb_clean_tx_ring(tx_ring);
3132

3133 3134
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3135

3136 3137 3138 3139
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3140 3141
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3157
		igb_free_tx_resources(adapter->tx_ring[i]);
3158 3159
}

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
		if (tx_buffer->dma)
			dma_unmap_single(ring->dev,
					 tx_buffer->dma,
					 tx_buffer->length,
					 DMA_TO_DEVICE);
	} else if (tx_buffer->dma) {
		dma_unmap_page(ring->dev,
			       tx_buffer->dma,
			       tx_buffer->length,
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	tx_buffer->dma = 0;
	/* buffer_info must be completely set up in the transmit path */
3180 3181 3182 3183 3184 3185
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3186
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3187
{
3188
	struct igb_tx_buffer *buffer_info;
3189
	unsigned long size;
3190
	u16 i;
3191

3192
	if (!tx_ring->tx_buffer_info)
3193 3194 3195 3196
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3197
		buffer_info = &tx_ring->tx_buffer_info[i];
3198
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3199 3200
	}

3201 3202
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3220
		igb_clean_tx_ring(adapter->tx_ring[i]);
3221 3222 3223 3224 3225 3226 3227 3228
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3229
void igb_free_rx_resources(struct igb_ring *rx_ring)
3230
{
3231
	igb_clean_rx_ring(rx_ring);
3232

3233 3234
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3235

3236 3237 3238 3239
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3240 3241
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3257
		igb_free_rx_resources(adapter->rx_ring[i]);
3258 3259 3260 3261 3262 3263
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3264
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3265 3266
{
	unsigned long size;
3267
	u16 i;
3268

3269
	if (!rx_ring->rx_buffer_info)
3270
		return;
3271

3272 3273
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3274
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3275
		if (buffer_info->dma) {
3276
			dma_unmap_single(rx_ring->dev,
3277
			                 buffer_info->dma,
3278
					 IGB_RX_HDR_LEN,
3279
					 DMA_FROM_DEVICE);
3280 3281 3282 3283 3284 3285 3286
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
3287
		if (buffer_info->page_dma) {
3288
			dma_unmap_page(rx_ring->dev,
3289
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
3290
				       PAGE_SIZE / 2,
3291
				       DMA_FROM_DEVICE);
A
Alexander Duyck 已提交
3292 3293
			buffer_info->page_dma = 0;
		}
3294 3295 3296
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
3297
			buffer_info->page_offset = 0;
3298 3299 3300
		}
	}

3301 3302
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3320
		igb_clean_rx_ring(adapter->rx_ring[i]);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3333
	struct e1000_hw *hw = &adapter->hw;
3334 3335 3336 3337 3338 3339
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3340
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3341

3342 3343 3344
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3345

3346 3347 3348 3349
	return 0;
}

/**
3350
 * igb_write_mc_addr_list - write multicast addresses to MTA
3351 3352
 * @netdev: network interface device structure
 *
3353 3354 3355 3356
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3357
 **/
3358
static int igb_write_mc_addr_list(struct net_device *netdev)
3359 3360 3361
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3362
	struct netdev_hw_addr *ha;
3363
	u8  *mta_list;
3364 3365
	int i;

3366
	if (netdev_mc_empty(netdev)) {
3367 3368 3369 3370 3371
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3372

3373
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3374 3375
	if (!mta_list)
		return -ENOMEM;
3376

3377
	/* The shared function expects a packed array of only addresses. */
3378
	i = 0;
3379 3380
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3381 3382 3383 3384

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3385
	return netdev_mc_count(netdev);
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3406
	if (netdev_uc_count(netdev) > rar_entries)
3407
		return -ENOMEM;
3408

3409
	if (!netdev_uc_empty(netdev) && rar_entries) {
3410
		struct netdev_hw_addr *ha;
3411 3412

		netdev_for_each_uc_addr(ha, netdev) {
3413 3414
			if (!rar_entries)
				break;
3415 3416
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3417 3418
			                 vfn);
			count++;
3419 3420 3421 3422 3423 3424 3425 3426 3427
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3464
			 * then we should just turn on promiscuous mode so
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3478
		 * unicast promiscuous mode
3479 3480 3481 3482 3483 3484 3485
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3486
	}
3487
	wr32(E1000_RCTL, rctl);
3488

3489 3490 3491 3492 3493 3494 3495
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
3496
		return;
3497

3498 3499 3500
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3501
	igb_restore_vf_multicasts(adapter);
3502 3503
}

G
Greg Rose 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3543 3544 3545 3546 3547
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3548
	igb_get_phy_info(&adapter->hw);
3549 3550
}

A
Alexander Duyck 已提交
3551 3552 3553 3554
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3555
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

	/* check for thermal sensor event on i350, copper only */
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
			ret = !!(thstat & event);
		}
	}

	return ret;
}

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3620 3621
	                                           struct igb_adapter,
                                                   watchdog_task);
3622 3623
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3624
	u32 link;
3625
	int i;
3626

A
Alexander Duyck 已提交
3627
	link = igb_has_link(adapter);
3628 3629 3630
	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3631 3632 3633
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3634 3635

			ctrl = rd32(E1000_CTRL);
3636 3637
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3638
				 "Flow Control: %s\n",
3639 3640 3641
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
3642
				 "Full Duplex" : "Half Duplex",
3643 3644 3645 3646
			       ((ctrl & E1000_CTRL_TFCE) &&
			        (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
			       ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
3647

3648 3649 3650 3651 3652 3653
			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
				printk(KERN_INFO "igb: %s The network adapter "
						 "link speed was downshifted "
						 "because it overheated.\n",
						 netdev->name);
3654
			}
3655

3656
			/* adjust timeout factor according to speed/duplex */
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3669
			igb_ping_all_vfs(adapter);
3670
			igb_check_vf_rate_limit(adapter);
3671

3672
			/* link state has changed, schedule phy info update */
3673 3674 3675 3676 3677 3678 3679 3680
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3681 3682 3683 3684 3685 3686

			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
				printk(KERN_ERR "igb: %s The network adapter "
						"was stopped because it "
						"overheated.\n",
3687 3688
						netdev->name);
			}
3689

3690 3691 3692
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3693
			netif_carrier_off(netdev);
3694

3695 3696
			igb_ping_all_vfs(adapter);

3697
			/* link state has changed, schedule phy info update */
3698 3699 3700 3701 3702 3703
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

E
Eric Dumazet 已提交
3704 3705 3706
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3707

3708
	for (i = 0; i < adapter->num_tx_queues; i++) {
3709
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3710
		if (!netif_carrier_ok(netdev)) {
3711 3712 3713 3714
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3715 3716 3717 3718 3719 3720
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3721 3722
		}

3723
		/* Force detection of hung controller every watchdog period */
3724
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3725
	}
3726

3727
	/* Cause software interrupt to ensure rx ring is cleaned */
3728
	if (adapter->msix_entries) {
3729
		u32 eics = 0;
3730 3731
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
3732 3733 3734 3735
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3736

G
Greg Rose 已提交
3737 3738
	igb_spoof_check(adapter);

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3752 3753 3754 3755 3756 3757
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
3758
 *      receive rings.  The divisors and thresholds used by this function
3759 3760 3761 3762 3763 3764 3765
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3766
 * @q_vector: pointer to q_vector
3767
 **/
3768
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3769
{
3770
	int new_val = q_vector->itr_val;
3771
	int avg_wire_size = 0;
3772
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
3773
	unsigned int packets;
3774

3775 3776 3777 3778
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3779
		new_val = IGB_4K_ITR;
3780
		goto set_itr_val;
3781
	}
3782

3783 3784 3785
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
3786

3787 3788 3789 3790
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
3791 3792 3793 3794

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3795

3796 3797 3798 3799 3800
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3801

3802 3803 3804 3805 3806
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3807

3808 3809 3810 3811 3812
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
3813

3814
set_itr_val:
3815 3816 3817
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3818
	}
3819
clear_counts:
3820 3821 3822 3823
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
3839 3840
 * @q_vector: pointer to q_vector
 * @ring_container: ring info to update the itr for
3841
 **/
3842 3843
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
3844
{
3845 3846 3847
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
3848

3849
	/* no packets, exit with status unchanged */
3850
	if (packets == 0)
3851
		return;
3852

3853
	switch (itrval) {
3854 3855 3856
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
3857
			itrval = bulk_latency;
3858
		else if ((packets < 5) && (bytes > 512))
3859
			itrval = low_latency;
3860 3861 3862 3863 3864
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
3865
				itrval = bulk_latency;
3866
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
3867
				itrval = bulk_latency;
3868
			} else if ((packets > 35)) {
3869
				itrval = lowest_latency;
3870 3871
			}
		} else if (bytes/packets > 2000) {
3872
			itrval = bulk_latency;
3873
		} else if (packets <= 2 && bytes < 512) {
3874
			itrval = lowest_latency;
3875 3876 3877 3878 3879
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
3880
				itrval = low_latency;
3881
		} else if (bytes < 1500) {
3882
			itrval = low_latency;
3883 3884 3885 3886
		}
		break;
	}

3887 3888 3889 3890 3891 3892
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
3893 3894
}

3895
static void igb_set_itr(struct igb_q_vector *q_vector)
3896
{
3897
	struct igb_adapter *adapter = q_vector->adapter;
3898
	u32 new_itr = q_vector->itr_val;
3899
	u8 current_itr = 0;
3900 3901 3902 3903

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
3904
		new_itr = IGB_4K_ITR;
3905 3906 3907
		goto set_itr_now;
	}

3908 3909
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
3910

3911
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3912

3913
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3914 3915 3916
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3917 3918
		current_itr = low_latency;

3919 3920 3921
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3922
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3923 3924
		break;
	case low_latency:
3925
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3926 3927
		break;
	case bulk_latency:
3928
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3929 3930 3931 3932 3933 3934
		break;
	default:
		break;
	}

set_itr_now:
3935
	if (new_itr != q_vector->itr_val) {
3936 3937 3938
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3939 3940 3941
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
3942
				 new_itr) :
3943 3944 3945 3946 3947 3948 3949
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3950 3951
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3952 3953 3954
	}
}

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
		     u32 type_tucmd, u32 mss_l4len_idx)
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
3970
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
3971 3972 3973 3974 3975 3976 3977 3978
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

3979 3980 3981
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
3982
{
3983
	struct sk_buff *skb = first->skb;
3984 3985 3986 3987 3988
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

	if (!skb_is_gso(skb))
		return 0;
3989 3990

	if (skb_header_cloned(skb)) {
3991
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3992 3993 3994 3995
		if (err)
			return err;
	}

3996 3997
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
3998

3999
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4000 4001 4002 4003 4004 4005 4006
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4007
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4008 4009 4010
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4011
	} else if (skb_is_gso_v6(skb)) {
4012 4013 4014 4015
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4016 4017
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4018 4019
	}

4020
	/* compute header lengths */
4021 4022
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4023

4024 4025 4026 4027
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4028
	/* MSS L4LEN IDX */
4029 4030
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4031

4032 4033 4034
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4035
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4036

4037
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4038

4039
	return 1;
4040 4041
}

4042
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4043
{
4044
	struct sk_buff *skb = first->skb;
4045 4046 4047
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4048

4049
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4050 4051
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4052 4053
	} else {
		u8 l4_hdr = 0;
4054
		switch (first->protocol) {
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but proto=%x!\n",
4068
				 first->protocol);
4069
			}
4070 4071
			break;
		}
4072

4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but l4 proto=%x!\n",
				 l4_hdr);
4093
			}
4094
			break;
4095
		}
4096 4097 4098

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4099
	}
4100

4101
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4102
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4103

4104
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4105 4106
}

4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
static __le32 igb_tx_cmd_type(u32 tx_flags)
{
	/* set type for advanced descriptor with frame checksum insertion */
	__le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
				      E1000_ADVTXD_DCMD_IFCS |
				      E1000_ADVTXD_DCMD_DEXT);

	/* set HW vlan bit if vlan is present */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);

	/* set timestamp bit if present */
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);

	/* set segmentation bits for TSO */
	if (tx_flags & IGB_TX_FLAGS_TSO)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);

	return cmd_type;
}

4129 4130 4131
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4132 4133 4134 4135 4136
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

	/* 82575 requires a unique index per ring if any offload is enabled */
	if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4137
	    test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
	if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert IPv4 checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
	}

4149
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4150 4151
}

4152 4153 4154 4155 4156
/*
 * The largest size we can write to the descriptor is 65535.  In order to
 * maintain a power of two alignment we have to limit ourselves to 32K.
 */
#define IGB_MAX_TXD_PWR	15
4157
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4158

4159 4160
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4161
		       const u8 hdr_len)
4162
{
4163
	struct sk_buff *skb = first->skb;
4164 4165 4166 4167 4168 4169 4170 4171
	struct igb_tx_buffer *tx_buffer_info;
	union e1000_adv_tx_desc *tx_desc;
	dma_addr_t dma;
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	unsigned int paylen = skb->len - hdr_len;
	__le32 cmd_type;
4172
	u32 tx_flags = first->tx_flags;
4173 4174 4175 4176
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4177
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4178 4179 4180 4181
	cmd_type = igb_tx_cmd_type(tx_flags);

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
	if (dma_mapping_error(tx_ring->dev, dma))
4182
		goto dma_error;
4183

4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
	/* record length, and DMA address */
	first->length = size;
	first->dma = dma;
	tx_desc->read.buffer_addr = cpu_to_le64(dma);

	for (;;) {
		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
				cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.olinfo_status = 0;
			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4210

4211
		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4212

4213
		i++;
4214 4215 4216
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4217
			i = 0;
4218
		}
4219

E
Eric Dumazet 已提交
4220
		size = skb_frag_size(frag);
4221 4222 4223 4224 4225
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
				   size, DMA_TO_DEVICE);
		if (dma_mapping_error(tx_ring->dev, dma))
4226 4227
			goto dma_error;

4228 4229 4230 4231 4232 4233 4234 4235
		tx_buffer_info = &tx_ring->tx_buffer_info[i];
		tx_buffer_info->length = size;
		tx_buffer_info->dma = dma;

		tx_desc->read.olinfo_status = 0;
		tx_desc->read.buffer_addr = cpu_to_le64(dma);

		frag++;
4236 4237
	}

4238 4239 4240
	/* write last descriptor with RS and EOP bits */
	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
	tx_desc->read.cmd_type_len = cmd_type;
4241 4242 4243 4244

	/* set the timestamp */
	first->time_stamp = jiffies;

4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
	/*
	 * Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4255
	/* set next_to_watch value indicating a packet is present */
4256
	first->next_to_watch = tx_desc;
4257

4258 4259 4260
	i++;
	if (i == tx_ring->count)
		i = 0;
4261

4262
	tx_ring->next_to_use = i;
4263

4264
	writel(i, tx_ring->tail);
4265

4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
		tx_buffer_info = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
		if (tx_buffer_info == first)
			break;
4281 4282
		if (i == 0)
			i = tx_ring->count;
4283 4284 4285
		i--;
	}

4286 4287 4288
	tx_ring->next_to_use = i;
}

4289
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4290
{
4291 4292
	struct net_device *netdev = tx_ring->netdev;

4293 4294
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4295 4296 4297 4298 4299 4300 4301
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4302
	if (igb_desc_unused(tx_ring) < size)
4303 4304 4305
		return -EBUSY;

	/* A reprieve! */
4306
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4307 4308 4309 4310 4311

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4312 4313 4314
	return 0;
}

4315
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4316
{
4317
	if (igb_desc_unused(tx_ring) >= size)
4318
		return 0;
4319
	return __igb_maybe_stop_tx(tx_ring, size);
4320 4321
}

4322 4323
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4324
{
4325
	struct igb_tx_buffer *first;
4326
	int tso;
N
Nick Nunley 已提交
4327
	u32 tx_flags = 0;
4328
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4329
	u8 hdr_len = 0;
4330 4331 4332 4333 4334 4335

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4336
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4337 4338 4339
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4340

4341 4342 4343 4344 4345 4346
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4347 4348
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4349 4350
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
4351

4352
	if (vlan_tx_tag_present(skb)) {
4353 4354 4355 4356
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4357 4358 4359
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4360

4361 4362
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4363
		goto out_drop;
4364 4365
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4366

4367
	igb_tx_map(tx_ring, first, hdr_len);
4368 4369

	/* Make sure there is space in the ring for the next send. */
4370
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4371

4372
	return NETDEV_TX_OK;
4373 4374

out_drop:
4375 4376
	igb_unmap_and_free_tx_resource(tx_ring, first);

4377
	return NETDEV_TX_OK;
4378 4379
}

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4391 4392
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4393 4394
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4406 4407 4408 4409 4410 4411 4412 4413 4414
	/*
	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
	if (skb->len < 17) {
		if (skb_padto(skb, 17))
			return NETDEV_TX_OK;
		skb->len = 17;
	}
4415

4416
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4430

4431
	if (hw->mac.type >= e1000_82580)
4432 4433
		hw->dev_spec._82575.global_device_reset = true;

4434
	schedule_work(&adapter->reset_task);
4435 4436
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4437 4438 4439 4440 4441 4442 4443
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4444 4445
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4446 4447 4448 4449
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4450
 * igb_get_stats64 - Get System Network Statistics
4451
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4452
 * @stats: rtnl_link_stats64 pointer
4453 4454
 *
 **/
E
Eric Dumazet 已提交
4455 4456
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4457
{
E
Eric Dumazet 已提交
4458 4459 4460 4461 4462 4463 4464 4465
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4478
	struct pci_dev *pdev = adapter->pdev;
4479
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4480

4481
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4482
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4483 4484 4485
		return -EINVAL;
	}

4486
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4487
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4488
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4489 4490 4491 4492 4493
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4494

4495 4496
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4497

4498 4499
	if (netif_running(netdev))
		igb_down(adapter);
4500

4501
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4520 4521
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4522 4523 4524
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4525
	u32 reg, mpc;
4526
	u16 phy_tmp;
4527 4528
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4529 4530
	unsigned int start;
	u64 _bytes, _packets;
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4543 4544 4545 4546
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4547
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4548

4549
		ring->rx_stats.drops += rqdpc_tmp;
4550
		net_stats->rx_fifo_errors += rqdpc_tmp;
E
Eric Dumazet 已提交
4551 4552 4553 4554 4555 4556 4557 4558

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4559 4560
	}

4561 4562
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4563 4564 4565 4566

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4567
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4568 4569 4570 4571 4572 4573 4574
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4575
	}
4576 4577
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4578 4579

	/* read stats registers */
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4597 4598 4599
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4614
	adapter->stats.rnbc += rd32(E1000_RNBC);
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4632 4633
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4634 4635

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4636 4637 4638 4639 4640 4641 4642
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
		adapter->stats.tncrs += rd32(E1000_TNCRS);
	}

4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4657 4658
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4659 4660 4661 4662

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4663
	 * our own version based on RUC and ROC */
4664
	net_stats->rx_errors = adapter->stats.rxerrc +
4665 4666 4667
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4668 4669 4670 4671 4672
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4673 4674

	/* Tx Errors */
4675 4676 4677 4678 4679
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4680 4681 4682 4683 4684 4685

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4686
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4687 4688 4689 4690 4691 4692 4693 4694 4695
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4696 4697 4698 4699 4700 4701 4702 4703 4704

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
4705 4706 4707 4708
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4709
	struct igb_adapter *adapter = data;
4710
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4711 4712
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4713

4714 4715 4716
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4717
	if (icr & E1000_ICR_DOUTSYNC) {
4718 4719
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
4720 4721 4722 4723
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
4724
	}
4725

4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

P
PJ Waskiewicz 已提交
4737
	wr32(E1000_EIMS, adapter->eims_other);
4738 4739 4740 4741

	return IRQ_HANDLED;
}

4742
static void igb_write_itr(struct igb_q_vector *q_vector)
4743
{
4744
	struct igb_adapter *adapter = q_vector->adapter;
4745
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4746

4747 4748
	if (!q_vector->set_itr)
		return;
4749

4750 4751
	if (!itr_val)
		itr_val = 0x4;
4752

4753 4754
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4755
	else
4756
		itr_val |= E1000_EITR_CNT_IGNR;
4757

4758 4759
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4760 4761
}

4762
static irqreturn_t igb_msix_ring(int irq, void *data)
4763
{
4764
	struct igb_q_vector *q_vector = data;
4765

4766 4767
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4768

4769
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4770

4771
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4772 4773
}

4774
#ifdef CONFIG_IGB_DCA
4775
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4776
{
4777
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4778 4779 4780
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4781 4782 4783
	if (q_vector->cpu == cpu)
		goto out_no_update;

4784 4785
	if (q_vector->tx.ring) {
		int q = q_vector->tx.ring->reg_idx;
4786 4787 4788 4789
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4790
		} else {
4791 4792 4793 4794 4795 4796 4797
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
4798 4799
	if (q_vector->rx.ring) {
		int q = q_vector->rx.ring->reg_idx;
4800 4801
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4802
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4803
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4804 4805 4806 4807
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4808
		}
J
Jeb Cramer 已提交
4809 4810 4811 4812 4813
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4814 4815
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4816 4817 4818 4819 4820
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4821
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4822 4823
	int i;

4824
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4825 4826
		return;

4827 4828 4829
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4830
	for (i = 0; i < adapter->num_q_vectors; i++) {
4831 4832
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4833 4834 4835 4836 4837 4838 4839
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4840
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4841 4842 4843 4844 4845 4846
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4847
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4848 4849
			break;
		if (dca_add_requester(dev) == 0) {
4850
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4851
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4852 4853 4854 4855 4856
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4857
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4858
			/* without this a class_device is left
4859
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4860
			dca_remove_requester(dev);
4861
			dev_info(&pdev->dev, "DCA disabled\n");
4862
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4863
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4864 4865 4866
		}
		break;
	}
4867

J
Jeb Cramer 已提交
4868
	return 0;
4869 4870
}

J
Jeb Cramer 已提交
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4881
#endif /* CONFIG_IGB_DCA */
4882

4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pvfdev;
	unsigned int device_id;
	u16 thisvf_devfn;

	random_ether_addr(mac_addr);
	igb_set_vf_mac(adapter, vf, mac_addr);

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		device_id = IGB_82576_VF_DEV_ID;
		/* VF Stride for 82576 is 2 */
		thisvf_devfn = (pdev->devfn + 0x80 + (vf << 1)) |
			(pdev->devfn & 1);
		break;
	case e1000_i350:
		device_id = IGB_I350_VF_DEV_ID;
		/* VF Stride for I350 is 4 */
		thisvf_devfn = (pdev->devfn + 0x80 + (vf << 2)) |
				(pdev->devfn & 3);
		break;
	default:
		device_id = 0;
		thisvf_devfn = 0;
		break;
	}

	pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
	while (pvfdev) {
		if (pvfdev->devfn == thisvf_devfn)
			break;
		pvfdev = pci_get_device(hw->vendor_id,
					device_id, pvfdev);
	}

	if (pvfdev)
		adapter->vf_data[vf].vfdev = pvfdev;
	else
		dev_err(&pdev->dev,
			"Couldn't find pci dev ptr for VF %4.4x\n",
			thisvf_devfn);
	return pvfdev != NULL;
}

static int igb_find_enabled_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
	struct pci_dev *pvfdev;
	u16 vf_devfn = 0;
	u16 vf_stride;
	unsigned int device_id;
	int vfs_found = 0;

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		device_id = IGB_82576_VF_DEV_ID;
		/* VF Stride for 82576 is 2 */
		vf_stride = 2;
		break;
	case e1000_i350:
		device_id = IGB_I350_VF_DEV_ID;
		/* VF Stride for I350 is 4 */
		vf_stride = 4;
		break;
	default:
		device_id = 0;
		vf_stride = 0;
		break;
	}

	vf_devfn = pdev->devfn + 0x80;
	pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
	while (pvfdev) {
		if (pvfdev->devfn == vf_devfn)
			vfs_found++;
		vf_devfn += vf_stride;
		pvfdev = pci_get_device(hw->vendor_id,
					device_id, pvfdev);
	}

	return vfs_found;
}

static int igb_check_vf_assignment(struct igb_adapter *adapter)
{
	int i;
	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (adapter->vf_data[i].vfdev) {
			if (adapter->vf_data[i].vfdev->dev_flags &
			    PCI_DEV_FLAGS_ASSIGNED)
				return true;
		}
	}
	return false;
}

#endif
4986 4987 4988 4989 4990 4991 4992 4993
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
4994
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4995 4996 4997 4998 4999
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5000 5001 5002 5003 5004 5005
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5006
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5007 5008 5009 5010 5011
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5012
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

5040 5041 5042 5043 5044 5045 5046 5047
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5048
	/* salt away the number of multicast addresses assigned
5049 5050 5051 5052 5053
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5054 5055 5056 5057 5058
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5059
	for (i = 0; i < n; i++)
5060
		vf_data->vf_mc_hashes[i] = hash_list[i];
5061 5062

	/* Flush and reset the mta with the new values */
5063
	igb_set_rx_mode(adapter->netdev);
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5075 5076 5077
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5078
		vf_data = &adapter->vf_data[i];
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5117 5118

	adapter->vf_data[vf].vlans_enabled = 0;
5119 5120 5121 5122 5123 5124 5125
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5126 5127 5128 5129 5130
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5160 5161
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5162 5163
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5164 5165
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5166
			wr32(E1000_VLVF(i), reg);
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5182
			adapter->vf_data[vf].vlans_enabled++;
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5209 5210
		}
	}
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5270
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5271
{
G
Greg Rose 已提交
5272 5273
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5274
	adapter->vf_data[vf].last_nack = jiffies;
5275 5276

	/* reset offloads to defaults */
5277
	igb_set_vmolr(adapter, vf, true);
5278 5279 5280

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5281 5282 5283 5284 5285 5286
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5287 5288 5289 5290 5291

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5292
	igb_set_rx_mode(adapter->netdev);
5293 5294
}

5295 5296 5297 5298 5299
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
5300 5301
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
		random_ether_addr(vf_mac);
5302 5303 5304 5305 5306 5307

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5308 5309 5310
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5311
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5312 5313 5314 5315
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5316
	igb_vf_reset(adapter, vf);
5317 5318

	/* set vf mac address */
5319
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5320 5321 5322 5323 5324 5325 5326

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5327
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5328 5329 5330 5331 5332 5333 5334 5335 5336

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5337 5338 5339 5340
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5341 5342
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5343

5344 5345
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5346

5347
	return err;
5348 5349 5350 5351 5352
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5353
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5354 5355 5356
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5357 5358
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5359
		igb_write_mbx(hw, &msg, 1, vf);
5360
		vf_data->last_nack = jiffies;
5361 5362 5363
	}
}

5364
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5365
{
5366 5367
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5368
	struct e1000_hw *hw = &adapter->hw;
5369
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5370 5371
	s32 retval;

5372
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5373

5374 5375
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5376
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5377 5378 5379 5380 5381
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5382 5383 5384

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5385
		return;
5386 5387 5388 5389 5390 5391 5392 5393

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5394
		return;
5395 5396
	}

5397
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5398 5399 5400 5401
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5402 5403 5404 5405
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5406 5407 5408 5409 5410 5411 5412 5413
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5414
		break;
5415 5416 5417
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5418 5419 5420 5421 5422 5423 5424
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5425 5426 5427 5428 5429 5430
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5431 5432
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5433 5434
		break;
	default:
5435
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5436 5437 5438 5439
		retval = -1;
		break;
	}

5440 5441
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5442 5443 5444 5445 5446 5447 5448
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5449
}
5450

5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5469 5470
}

5471 5472 5473 5474 5475 5476 5477
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5478 5479
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5498 5499 5500 5501 5502 5503 5504
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5505 5506
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5507 5508 5509 5510
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5511
	igb_write_itr(q_vector);
5512

5513 5514 5515
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5516
	if (icr & E1000_ICR_DOUTSYNC) {
5517 5518 5519 5520
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5521 5522 5523 5524 5525 5526
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5527
	napi_schedule(&q_vector->napi);
5528 5529 5530 5531 5532

	return IRQ_HANDLED;
}

/**
5533
 * igb_intr - Legacy Interrupt Handler
5534 5535 5536 5537 5538
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5539 5540
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5551 5552
	igb_write_itr(q_vector);

5553 5554 5555
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5556
	if (icr & E1000_ICR_DOUTSYNC) {
5557 5558 5559 5560
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5561 5562 5563 5564 5565 5566 5567
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5568
	napi_schedule(&q_vector->napi);
5569 5570 5571 5572

	return IRQ_HANDLED;
}

5573
void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5574
{
5575
	struct igb_adapter *adapter = q_vector->adapter;
5576
	struct e1000_hw *hw = &adapter->hw;
5577

5578 5579 5580 5581
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5582
		else
5583
			igb_update_ring_itr(q_vector);
5584 5585
	}

5586 5587
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5588
			wr32(E1000_EIMS, q_vector->eims_value);
5589 5590 5591
		else
			igb_irq_enable(adapter);
	}
5592 5593
}

5594 5595 5596 5597 5598 5599
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5600
{
5601 5602 5603
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
5604
	bool clean_complete = true;
5605

5606
#ifdef CONFIG_IGB_DCA
5607 5608
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5609
#endif
5610
	if (q_vector->tx.ring)
5611
		clean_complete = igb_clean_tx_irq(q_vector);
5612

5613
	if (q_vector->rx.ring)
5614
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5615

5616 5617 5618
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5619

5620
	/* If not enough Rx work done, exit the polling mode */
5621 5622
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5623

5624
	return 0;
5625
}
A
Al Viro 已提交
5626

5627
/**
5628
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5629
 * @adapter: board private structure
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
 * @shhwtstamps: timestamp structure to update
 * @regval: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions
 */
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
                                   struct skb_shared_hwtstamps *shhwtstamps,
                                   u64 regval)
{
	u64 ns;

5642 5643 5644 5645
	/*
	 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
	 * 24 to match clock shift we setup earlier.
	 */
5646
	if (adapter->hw.mac.type >= e1000_82580)
5647 5648
		regval <<= IGB_82580_TSYNC_SHIFT;

5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
	ns = timecounter_cyc2time(&adapter->clock, regval);
	timecompare_update(&adapter->compare, ns);
	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
}

/**
 * igb_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: pointer to q_vector containing needed info
5659
 * @buffer: pointer to igb_tx_buffer structure
5660 5661 5662 5663 5664
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
5665 5666
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
			    struct igb_tx_buffer *buffer_info)
5667
{
5668
	struct igb_adapter *adapter = q_vector->adapter;
5669
	struct e1000_hw *hw = &adapter->hw;
5670 5671
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
5672

5673
	/* if skb does not support hw timestamp or TX stamp not valid exit */
5674
	if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
5675 5676 5677 5678 5679 5680 5681
	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
		return;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5682
	skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5683 5684
}

5685 5686
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5687
 * @q_vector: pointer to q_vector containing needed info
5688 5689
 * returns true if ring is completely cleaned
 **/
5690
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5691
{
5692
	struct igb_adapter *adapter = q_vector->adapter;
5693
	struct igb_ring *tx_ring = q_vector->tx.ring;
5694
	struct igb_tx_buffer *tx_buffer;
5695
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
5696
	unsigned int total_bytes = 0, total_packets = 0;
5697
	unsigned int budget = q_vector->tx.work_limit;
5698
	unsigned int i = tx_ring->next_to_clean;
5699

5700 5701
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5702

5703
	tx_buffer = &tx_ring->tx_buffer_info[i];
5704
	tx_desc = IGB_TX_DESC(tx_ring, i);
5705
	i -= tx_ring->count;
5706

5707
	for (; budget; budget--) {
5708
		eop_desc = tx_buffer->next_to_watch;
5709

5710 5711 5712 5713 5714 5715
		/* prevent any other reads prior to eop_desc */
		rmb();

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5716 5717 5718 5719 5720

		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5721 5722
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5723

5724 5725 5726
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5727

5728 5729 5730 5731 5732 5733
		/* retrieve hardware timestamp */
		igb_tx_hwtstamp(q_vector, tx_buffer);

		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
		tx_buffer->skb = NULL;
5734

5735 5736 5737 5738 5739 5740 5741 5742 5743
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 tx_buffer->dma,
				 tx_buffer->length,
				 DMA_TO_DEVICE);

		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buffer->dma = 0;
5744

5745 5746
			tx_buffer++;
			tx_desc++;
5747
			i++;
5748 5749
			if (unlikely(!i)) {
				i -= tx_ring->count;
5750
				tx_buffer = tx_ring->tx_buffer_info;
5751 5752
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774

			/* unmap any remaining paged data */
			if (tx_buffer->dma) {
				dma_unmap_page(tx_ring->dev,
					       tx_buffer->dma,
					       tx_buffer->length,
					       DMA_TO_DEVICE);
			}
		}

		/* clear last DMA location */
		tx_buffer->dma = 0;

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
A
Alexander Duyck 已提交
5775 5776
	}

5777
	i += tx_ring->count;
5778
	tx_ring->next_to_clean = i;
5779 5780 5781 5782
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
5783 5784
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
5785

5786
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5787
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
5788

5789
		eop_desc = tx_buffer->next_to_watch;
5790 5791 5792

		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
5793
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5794 5795
		if (eop_desc &&
		    time_after(jiffies, tx_buffer->time_stamp +
5796 5797
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5798 5799

			/* detected Tx unit hang */
5800
			dev_err(tx_ring->dev,
5801
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5802
				"  Tx Queue             <%d>\n"
5803 5804 5805 5806 5807 5808
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
5809
				"  next_to_watch        <%p>\n"
5810 5811
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5812
				tx_ring->queue_index,
5813
				rd32(E1000_TDH(tx_ring->reg_idx)),
5814
				readl(tx_ring->tail),
5815 5816
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5817 5818
				tx_buffer->time_stamp,
				eop_desc,
5819
				jiffies,
A
Alexander Duyck 已提交
5820
				eop_desc->wb.status);
5821 5822 5823 5824 5825
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
5826 5827
		}
	}
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848

	if (unlikely(total_packets &&
		     netif_carrier_ok(tx_ring->netdev) &&
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
5849 5850
}

5851
static inline void igb_rx_checksum(struct igb_ring *ring,
5852 5853
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
5854
{
5855
	skb_checksum_none_assert(skb);
5856

5857
	/* Ignore Checksum bit is set */
5858
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
5859 5860 5861 5862
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
5863
		return;
5864

5865
	/* TCP/UDP checksum error bit is set */
5866 5867 5868
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
5869 5870 5871 5872 5873
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
5874 5875
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
5876
			u64_stats_update_begin(&ring->rx_syncp);
5877
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
5878 5879
			u64_stats_update_end(&ring->rx_syncp);
		}
5880 5881 5882 5883
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
5884 5885
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
5886 5887
		skb->ip_summed = CHECKSUM_UNNECESSARY;

5888 5889
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
5890 5891
}

5892 5893 5894 5895 5896 5897 5898 5899
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

5900 5901 5902
static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
5903 5904 5905 5906 5907
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

5908 5909 5910 5911
	if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
				       E1000_RXDADV_STAT_TS))
		return;

5912 5913 5914 5915 5916 5917 5918 5919
	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
5920
	 * If nothing went wrong, then it should have a shared tx_flags that we
5921 5922
	 * can turn into a skb_shared_hwtstamps.
	 */
5923
	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
N
Nick Nunley 已提交
5924 5925 5926 5927 5928 5929 5930
		u32 *stamp = (u32 *)skb->data;
		regval = le32_to_cpu(*(stamp + 2));
		regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
		skb_pull(skb, IGB_TS_HDR_LEN);
	} else {
		if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
			return;
5931

N
Nick Nunley 已提交
5932 5933 5934
		regval = rd32(E1000_RXSTMPL);
		regval |= (u64)rd32(E1000_RXSTMPH) << 32;
	}
5935 5936 5937

	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954

static void igb_rx_vlan(struct igb_ring *ring,
			union e1000_adv_rx_desc *rx_desc,
			struct sk_buff *skb)
{
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, vid);
	}
}

5955
static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
5956 5957 5958 5959 5960 5961 5962
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5963 5964
	if (hlen > IGB_RX_HDR_LEN)
		hlen = IGB_RX_HDR_LEN;
5965 5966 5967
	return hlen;
}

5968
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
5969
{
5970
	struct igb_ring *rx_ring = q_vector->rx.ring;
5971 5972
	union e1000_adv_rx_desc *rx_desc;
	const int current_node = numa_node_id();
5973
	unsigned int total_bytes = 0, total_packets = 0;
5974 5975
	u16 cleaned_count = igb_desc_unused(rx_ring);
	u16 i = rx_ring->next_to_clean;
5976

5977
	rx_desc = IGB_RX_DESC(rx_ring, i);
5978

5979
	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
5980
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5981 5982
		struct sk_buff *skb = buffer_info->skb;
		union e1000_adv_rx_desc *next_rxd;
5983

5984
		buffer_info->skb = NULL;
5985
		prefetch(skb->data);
5986 5987 5988 5989

		i++;
		if (i == rx_ring->count)
			i = 0;
5990

5991
		next_rxd = IGB_RX_DESC(rx_ring, i);
5992
		prefetch(next_rxd);
5993

5994 5995 5996 5997 5998 5999
		/*
		 * This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();
6000

6001 6002 6003
		if (!skb_is_nonlinear(skb)) {
			__skb_put(skb, igb_get_hlen(rx_desc));
			dma_unmap_single(rx_ring->dev, buffer_info->dma,
6004
					 IGB_RX_HDR_LEN,
6005
					 DMA_FROM_DEVICE);
J
Jesse Brandeburg 已提交
6006
			buffer_info->dma = 0;
6007 6008
		}

6009 6010
		if (rx_desc->wb.upper.length) {
			u16 length = le16_to_cpu(rx_desc->wb.upper.length);
6011

K
Koki Sanagi 已提交
6012
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
6013 6014 6015 6016
						buffer_info->page,
						buffer_info->page_offset,
						length);

6017 6018
			skb->len += length;
			skb->data_len += length;
6019
			skb->truesize += PAGE_SIZE / 2;
6020

6021 6022
			if ((page_count(buffer_info->page) != 1) ||
			    (page_to_nid(buffer_info->page) != current_node))
6023 6024 6025
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
6026

6027 6028 6029
			dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
			buffer_info->page_dma = 0;
6030 6031
		}

6032
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
6033 6034
			struct igb_rx_buffer *next_buffer;
			next_buffer = &rx_ring->rx_buffer_info[i];
6035 6036 6037 6038
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
6039 6040
			goto next_desc;
		}
6041

6042 6043
		if (igb_test_staterr(rx_desc,
				     E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
6044
			dev_kfree_skb_any(skb);
6045 6046 6047
			goto next_desc;
		}

6048
		igb_rx_hwtstamp(q_vector, rx_desc, skb);
6049
		igb_rx_hash(rx_ring, rx_desc, skb);
6050
		igb_rx_checksum(rx_ring, rx_desc, skb);
6051
		igb_rx_vlan(rx_ring, rx_desc, skb);
6052 6053 6054 6055 6056 6057

		total_bytes += skb->len;
		total_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

J
Jiri Pirko 已提交
6058
		napi_gro_receive(&q_vector->napi, skb);
6059

6060
		budget--;
6061
next_desc:
6062 6063 6064 6065
		if (!budget)
			break;

		cleaned_count++;
6066 6067
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6068
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6069 6070 6071 6072 6073 6074
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
	}
6075

6076
	rx_ring->next_to_clean = i;
E
Eric Dumazet 已提交
6077
	u64_stats_update_begin(&rx_ring->rx_syncp);
6078 6079
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6080
	u64_stats_update_end(&rx_ring->rx_syncp);
6081 6082
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6083 6084

	if (cleaned_count)
6085
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6086

6087
	return !!budget;
6088 6089
}

6090
static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
6091
				 struct igb_rx_buffer *bi)
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124
{
	struct sk_buff *skb = bi->skb;
	dma_addr_t dma = bi->dma;

	if (dma)
		return true;

	if (likely(!skb)) {
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		bi->skb = skb;
		if (!skb) {
			rx_ring->rx_stats.alloc_failed++;
			return false;
		}

		/* initialize skb for ring */
		skb_record_rx_queue(skb, rx_ring->queue_index);
	}

	dma = dma_map_single(rx_ring->dev, skb->data,
			     IGB_RX_HDR_LEN, DMA_FROM_DEVICE);

	if (dma_mapping_error(rx_ring->dev, dma)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->dma = dma;
	return true;
}

static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6125
				  struct igb_rx_buffer *bi)
6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
{
	struct page *page = bi->page;
	dma_addr_t page_dma = bi->page_dma;
	unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);

	if (page_dma)
		return true;

	if (!page) {
		page = netdev_alloc_page(rx_ring->netdev);
		bi->page = page;
		if (unlikely(!page)) {
			rx_ring->rx_stats.alloc_failed++;
			return false;
		}
	}

	page_dma = dma_map_page(rx_ring->dev, page,
				page_offset, PAGE_SIZE / 2,
				DMA_FROM_DEVICE);

	if (dma_mapping_error(rx_ring->dev, page_dma)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->page_dma = page_dma;
	bi->page_offset = page_offset;
	return true;
}

6157
/**
6158
 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6159 6160
 * @adapter: address of board private structure
 **/
6161
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6162 6163
{
	union e1000_adv_rx_desc *rx_desc;
6164
	struct igb_rx_buffer *bi;
6165
	u16 i = rx_ring->next_to_use;
6166

6167
	rx_desc = IGB_RX_DESC(rx_ring, i);
6168
	bi = &rx_ring->rx_buffer_info[i];
6169
	i -= rx_ring->count;
6170 6171

	while (cleaned_count--) {
6172 6173
		if (!igb_alloc_mapped_skb(rx_ring, bi))
			break;
6174

6175 6176 6177
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info. */
		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
6178

6179 6180 6181 6182
		if (!igb_alloc_mapped_page(rx_ring, bi))
			break;

		rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
6183

6184 6185
		rx_desc++;
		bi++;
6186
		i++;
6187
		if (unlikely(!i)) {
6188
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6189
			bi = rx_ring->rx_buffer_info;
6190 6191 6192 6193 6194
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6195 6196
	}

6197 6198
	i += rx_ring->count;

6199 6200 6201 6202 6203 6204 6205 6206
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
6207
		writel(i, rx_ring->tail);
6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6230 6231
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6232 6233 6234 6235 6236 6237 6238 6239 6240
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

6241 6242 6243 6244 6245 6246
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
6259 6260 6261 6262
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
6263 6264
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6265
	struct hwtstamp_config config;
6266 6267
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6268
	u32 tsync_rx_cfg = 0;
6269 6270
	bool is_l4 = false;
	bool is_l2 = false;
6271
	u32 regval;
6272 6273 6274 6275 6276 6277 6278 6279

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

6280 6281
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
6282
		tsync_tx_ctl = 0;
6283 6284 6285 6286 6287 6288 6289 6290
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
6291
		tsync_rx_ctl = 0;
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
6302
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6303 6304 6305
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6306
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6307
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6308
		is_l4 = true;
6309 6310
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6311
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6312
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6313
		is_l4 = true;
6314 6315 6316
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6317
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6318
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6319 6320
		is_l2 = true;
		is_l4 = true;
6321 6322 6323 6324
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6325
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6326
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6327 6328
		is_l2 = true;
		is_l4 = true;
6329 6330 6331 6332 6333
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6334
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6335
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6336
		is_l2 = true;
6337
		is_l4 = true;
6338 6339 6340 6341 6342
		break;
	default:
		return -ERANGE;
	}

6343 6344 6345 6346 6347 6348
	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

N
Nick Nunley 已提交
6349 6350 6351 6352 6353
	/*
	 * Per-packet timestamping only works if all packets are
	 * timestamped, so enable timestamping in all packets as
	 * long as one rx filter was configured.
	 */
6354
	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
N
Nick Nunley 已提交
6355 6356 6357 6358
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
	}

6359 6360
	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
6361 6362
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
6363 6364
	wr32(E1000_TSYNCTXCTL, regval);

6365
	/* enable/disable RX */
6366
	regval = rd32(E1000_TSYNCRXCTL);
6367 6368
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
6369 6370
	wr32(E1000_TSYNCRXCTL, regval);

6371 6372
	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6373

6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		                 E1000_ETQF_1588 | /* enable timestamping */
		                 ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
6404 6405 6406 6407 6408 6409 6410
	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
6411

6412 6413
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
6414 6415
}

6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6429 6430
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6431 6432 6433 6434 6435
	default:
		return -EOPNOTSUPP;
	}
}

6436 6437 6438 6439 6440
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

6441
	cap_offset = adapter->pdev->pcie_cap;
6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

6455
	cap_offset = adapter->pdev->pcie_cap;
6456 6457 6458 6459 6460 6461 6462 6463
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

J
Jiri Pirko 已提交
6464
static void igb_vlan_mode(struct net_device *netdev, u32 features)
6465 6466 6467 6468
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6469
	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6470

6471
	if (enable) {
6472 6473 6474 6475 6476
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6477
		/* Disable CFI check */
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6488
	igb_rlpml_set(adapter);
6489 6490 6491 6492 6493 6494
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6495
	int pf_id = adapter->vfs_allocated_count;
6496

6497 6498
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6499

6500 6501
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6502 6503

	set_bit(vid, adapter->active_vlans);
6504 6505 6506 6507 6508 6509
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6510
	int pf_id = adapter->vfs_allocated_count;
6511
	s32 err;
6512

6513 6514
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6515

6516 6517
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6518
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6519 6520

	clear_bit(vid, adapter->active_vlans);
6521 6522 6523 6524
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6525
	u16 vid;
6526

6527 6528
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6529 6530
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
6531 6532
}

6533
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6534
{
6535
	struct pci_dev *pdev = adapter->pdev;
6536 6537 6538 6539
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6540 6541 6542 6543 6544
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6545 6546
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6547 6548 6549
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL)
		goto err_inval;
6550

6551
	switch (spd + dplx) {
6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6570
		goto err_inval;
6571 6572
	}
	return 0;
6573 6574 6575 6576

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
6577 6578
}

6579
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6580 6581 6582 6583
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6584
	u32 ctrl, rctl, status;
6585 6586 6587 6588 6589 6590 6591
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6592 6593 6594
	if (netif_running(netdev))
		igb_close(netdev);

6595
	igb_clear_interrupt_scheme(adapter);
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6609
		igb_set_rx_mode(netdev);
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6627
		igb_disable_pcie_master(hw);
6628 6629 6630 6631 6632 6633 6634 6635

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6636 6637
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6638 6639 6640
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

6671 6672 6673 6674 6675 6676 6677 6678 6679
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
6680
	pci_save_state(pdev);
T
Taku Izumi 已提交
6681

6682
	err = pci_enable_device_mem(pdev);
6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

6693
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
6694 6695
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
6696 6697 6698
	}

	igb_reset(adapter);
6699 6700 6701 6702 6703

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

6704 6705
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
6706 6707 6708 6709 6710
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
6711 6712 6713 6714 6715 6716 6717 6718 6719

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
6720 6721 6722 6723 6724 6725 6726 6727
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
6739
	struct e1000_hw *hw = &adapter->hw;
6740
	struct igb_q_vector *q_vector;
6741 6742
	int i;

6743
	for (i = 0; i < adapter->num_q_vectors; i++) {
6744 6745 6746 6747 6748
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
6749
		napi_schedule(&q_vector->napi);
6750
	}
6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

6770 6771 6772
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6793
	pci_ers_result_t result;
T
Taku Izumi 已提交
6794
	int err;
6795

6796
	if (pci_enable_device_mem(pdev)) {
6797 6798
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
6799 6800 6801 6802
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
6803
		pci_save_state(pdev);
6804

6805 6806
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
6807

6808 6809 6810 6811
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
6812

6813 6814 6815 6816 6817 6818
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
6819 6820

	return result;
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

6877 6878 6879 6880
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
6881 6882 6883
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6884

6885
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6886

6887
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6888 6889 6890 6891

	return 0;
}

6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

6975 6976
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7005
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7006 7007 7008 7009 7010
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

7011 7012 7013
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7014
	u32 reg;
7015

7016 7017 7018 7019
	switch (hw->mac.type) {
	case e1000_82575:
	default:
		/* replication is not supported for 82575 */
7020
		return;
7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7031 7032
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7033 7034
		break;
	}
7035

7036 7037 7038
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7039 7040
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
7041 7042 7043 7044
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7045 7046
}

7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

			/*
			 * DMA Coalescing high water mark needs to be higher
			 * than the RX threshold. set hwm to PBA -  2 * max
			 * frame size
			 */
			hwm = pba - (2 * adapter->max_frame_size);
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			dmac_thr = pba - 4;

			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
			wr32(E1000_DMACR, reg);

			/*
			 * no lower threshold to disable
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);
			wr32(E1000_FCRTC, hwm);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

			/*
			 * free space in tx packet buffer to wake from
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

			/*
			 * make low power state decision controlled
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

7113
/* igb_main.c */