igb_main.c 187.7 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
31
#include <linux/bitops.h>
32 33 34 35
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
36
#include <linux/slab.h>
37 38
#include <net/checksum.h>
#include <net/ip6_checksum.h>
39
#include <linux/net_tstamp.h>
40 41
#include <linux/mii.h>
#include <linux/ethtool.h>
42
#include <linux/if.h>
43 44
#include <linux/if_vlan.h>
#include <linux/pci.h>
45
#include <linux/pci-aspm.h>
46 47
#include <linux/delay.h>
#include <linux/interrupt.h>
48 49 50
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
51
#include <linux/if_ether.h>
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
55 56
#include <linux/dca.h>
#endif
57 58
#include "igb.h"

C
Carolyn Wyborny 已提交
59 60 61 62
#define MAJ 3
#define MIN 0
#define BUILD 6
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63
__stringify(BUILD) "-k"
64 65 66 67
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
68
static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
69 70 71 72 73

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

74
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
75 76 77 78
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
79 80
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
81
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
82 83 84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
85 86
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
90
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
92 93
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
95
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
97 98 99 100 101 102 103 104 105 106 107 108 109 110
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
111
static void igb_setup_mrqc(struct igb_adapter *);
112 113
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
A
Anders Berggren 已提交
114
static void igb_init_hw_timer(struct igb_adapter *adapter);
115 116 117 118 119 120 121
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
122 123
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
124
static void igb_set_rx_mode(struct net_device *);
125 126 127
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
128
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
129 130
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
131 132
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
133
static void igb_set_uta(struct igb_adapter *adapter);
134 135 136
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
137
static irqreturn_t igb_msix_ring(int irq, void *);
138
#ifdef CONFIG_IGB_DCA
139
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
140
static void igb_setup_dca(struct igb_adapter *);
141
#endif /* CONFIG_IGB_DCA */
142
static int igb_poll(struct napi_struct *, int);
143
static bool igb_clean_tx_irq(struct igb_q_vector *);
144
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
145 146 147
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
J
Jiri Pirko 已提交
148
static void igb_vlan_mode(struct net_device *netdev, u32 features);
149 150 151
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
152
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
153 154 155
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
156
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
157
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 159 160 161 162 163
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
164
static void igb_check_vf_rate_limit(struct igb_adapter *);
165 166

#ifdef CONFIG_PM
167
static int igb_suspend(struct pci_dev *, pm_message_t);
168 169 170
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
171
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
172 173 174 175 176 177 178
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
179 180 181 182
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
183
#ifdef CONFIG_PCI_IOV
184 185 186 187 188 189
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
L
Lucas De Marchi 已提交
208
	/* Power Management Hooks */
209 210 211 212 213 214 215 216 217 218 219 220
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
		printk(KERN_INFO "%-15s %08x\n",
			reginfo->name, rd32(reginfo->ofs));
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
	printk(KERN_INFO "%-15s ", rname);
	for (n = 0; n < 4; n++)
		printk(KERN_CONT "%08x ", regs[n]);
	printk(KERN_CONT "\n");
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	int n = 0;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		printk(KERN_INFO "Device Name     state            "
			"trans_start      last_rx\n");
		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
		netdev->name,
		netdev->state,
		netdev->trans_start,
		netdev->last_rx);
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	printk(KERN_INFO " Register Name   Value\n");
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
		" leng ntw timestamp\n");
	for (n = 0; n < adapter->num_tx_queues; n++) {
381
		struct igb_tx_buffer *buffer_info;
382
		tx_ring = adapter->tx_ring[n];
383
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
384
		printk(KERN_INFO " %5d %5X %5X %016llX %04X %p %016llX\n",
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
			   n, tx_ring->next_to_use, tx_ring->next_to_clean,
			   (u64)buffer_info->dma,
			   buffer_info->length,
			   buffer_info->next_to_watch,
			   (u64)buffer_info->time_stamp);
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "T [desc]     [address 63:0  ] "
			"[PlPOCIStDDM Ln] [bi->dma       ] "
			"leng  ntw timestamp        bi->skb\n");

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
419
			struct igb_tx_buffer *buffer_info;
420
			tx_desc = IGB_TX_DESC(tx_ring, i);
421
			buffer_info = &tx_ring->tx_buffer_info[i];
422 423
			u0 = (struct my_u0 *)tx_desc;
			printk(KERN_INFO "T [0x%03X]    %016llX %016llX %016llX"
424
				" %04X  %p %016llX %p", i,
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
				(u64)buffer_info->dma,
				buffer_info->length,
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
				buffer_info->skb);
			if (i == tx_ring->next_to_use &&
				i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC/U\n");
			else if (i == tx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

			if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
					16, 1, phys_to_virt(buffer_info->dma),
					buffer_info->length, true);
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC]\n");
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO " %5d %5X %5X\n", n,
			   rx_ring->next_to_use, rx_ring->next_to_clean);
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "R  [desc]      [ PktBuf     A0] "
			"[  HeadBuf   DD] [bi->dma       ] [bi->skb] "
			"<-- Adv Rx Read format\n");
		printk(KERN_INFO "RWB[desc]      [PcsmIpSHl PtRs] "
			"[vl er S cks ln] ---------------- [bi->skb] "
			"<-- Adv Rx Write-Back format\n");

		for (i = 0; i < rx_ring->count; i++) {
500 501
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
502
			rx_desc = IGB_RX_DESC(rx_ring, i);
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
					"%016llX ---------------- %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					buffer_info->skb);
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
					"%016llX %016llX %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
					buffer_info->skb);

				if (netif_msg_pktdata(adapter)) {
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS,
						16, 1,
						phys_to_virt(buffer_info->dma),
525 526 527 528 529 530 531 532
						IGB_RX_HDR_LEN, true);
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
					  phys_to_virt(
					    buffer_info->page_dma +
					    buffer_info->page_offset),
					  PAGE_SIZE/2, true);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
				}
			}

			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

		}
	}

exit:
	return;
}


P
Patrick Ohly 已提交
551 552 553 554 555 556 557 558
/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
559 560
	u64 stamp = 0;
	int shift = 0;
P
Patrick Ohly 已提交
561

562 563 564 565 566 567 568 569 570 571
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we never
	 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
	 */
	if (hw->mac.type == e1000_82580) {
		stamp = rd32(E1000_SYSTIMR) >> 8;
		shift = IGB_82580_TSYNC_SHIFT;
	}

572 573
	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
P
Patrick Ohly 已提交
574 575 576
	return stamp;
}

577
/**
578
 * igb_get_hw_dev - return device
579 580
 * used by hardware layer to print debugging information
 **/
581
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
582 583
{
	struct igb_adapter *adapter = hw->back;
584
	return adapter->netdev;
585
}
P
Patrick Ohly 已提交
586

587 588 589 590 591 592 593 594 595 596 597 598 599 600
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

601
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
602 603
	dca_register_notify(&dca_notifier);
#endif
604
	ret = pci_register_driver(&igb_driver);
605 606 607 608 609 610 611 612 613 614 615 616 617
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
618
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
619 620
	dca_unregister_notify(&dca_notifier);
#endif
621 622 623 624 625
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

626 627 628 629 630 631 632 633 634 635
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
636
	int i = 0, j = 0;
637
	u32 rbase_offset = adapter->vfs_allocated_count;
638 639 640 641 642 643 644 645

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
646
		if (adapter->vfs_allocated_count) {
647
			for (; i < adapter->rss_queues; i++)
648 649
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
650
		}
651
	case e1000_82575:
652
	case e1000_82580:
653
	case e1000_i350:
654
	default:
655
		for (; i < adapter->num_rx_queues; i++)
656
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
657
		for (; j < adapter->num_tx_queues; j++)
658
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
659 660 661 662
		break;
	}
}

663 664
static void igb_free_queues(struct igb_adapter *adapter)
{
665
	int i;
666

667 668 669 670 671 672 673 674
	for (i = 0; i < adapter->num_tx_queues; i++) {
		kfree(adapter->tx_ring[i]);
		adapter->tx_ring[i] = NULL;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		kfree(adapter->rx_ring[i]);
		adapter->rx_ring[i] = NULL;
	}
675 676 677 678
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

679 680 681 682 683 684 685 686 687
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
688
	struct igb_ring *ring;
689 690
	int i;

691
	for (i = 0; i < adapter->num_tx_queues; i++) {
692 693 694
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
		if (!ring)
			goto err;
695
		ring->count = adapter->tx_ring_count;
696
		ring->queue_index = i;
697
		ring->dev = &adapter->pdev->dev;
698
		ring->netdev = adapter->netdev;
699 700 701
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
702
		adapter->tx_ring[i] = ring;
703
	}
704

705
	for (i = 0; i < adapter->num_rx_queues; i++) {
706 707 708
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
		if (!ring)
			goto err;
709
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
710
		ring->queue_index = i;
711
		ring->dev = &adapter->pdev->dev;
712
		ring->netdev = adapter->netdev;
713 714 715 716
		ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
717
		adapter->rx_ring[i] = ring;
718
	}
719 720

	igb_cache_ring_register(adapter);
721

722
	return 0;
A
Alexander Duyck 已提交
723

724 725
err:
	igb_free_queues(adapter);
726

727
	return -ENOMEM;
A
Alexander Duyck 已提交
728 729
}

730
#define IGB_N0_QUEUE -1
731
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
732 733
{
	u32 msixbm = 0;
734
	struct igb_adapter *adapter = q_vector->adapter;
735
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
736
	u32 ivar, index;
737 738 739 740 741 742 743
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;

	if (q_vector->rx_ring)
		rx_queue = q_vector->rx_ring->reg_idx;
	if (q_vector->tx_ring)
		tx_queue = q_vector->tx_ring->reg_idx;
A
Alexander Duyck 已提交
744 745 746

	switch (hw->mac.type) {
	case e1000_82575:
747 748 749 750
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
751
		if (rx_queue > IGB_N0_QUEUE)
752
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
753
		if (tx_queue > IGB_N0_QUEUE)
754
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
755 756
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
757
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
758
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
759 760
		break;
	case e1000_82576:
761
		/* 82576 uses a table-based method for assigning vectors.
A
Alexander Duyck 已提交
762 763 764 765
		   Each queue has a single entry in the table to which we write
		   a vector number along with a "valid" bit.  Sadly, the layout
		   of the table is somewhat counterintuitive. */
		if (rx_queue > IGB_N0_QUEUE) {
766
			index = (rx_queue & 0x7);
A
Alexander Duyck 已提交
767
			ivar = array_rd32(E1000_IVAR0, index);
768
			if (rx_queue < 8) {
769 770 771
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
772 773 774 775
			} else {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
A
Alexander Duyck 已提交
776 777 778 779
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
780
			index = (tx_queue & 0x7);
A
Alexander Duyck 已提交
781
			ivar = array_rd32(E1000_IVAR0, index);
782
			if (tx_queue < 8) {
783 784 785
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
786 787 788 789
			} else {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
A
Alexander Duyck 已提交
790 791 792
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
793
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
794
		break;
795
	case e1000_82580:
796
	case e1000_i350:
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		/* 82580 uses the same table-based approach as 82576 but has fewer
		   entries as a result we carry over for queues greater than 4. */
		if (rx_queue > IGB_N0_QUEUE) {
			index = (rx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (rx_queue & 0x1) {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
			} else {
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
			index = (tx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (tx_queue & 0x1) {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
			} else {
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
829 830 831 832
	default:
		BUG();
		break;
	}
833 834 835 836 837 838

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
856 857
	switch (hw->mac.type) {
	case e1000_82575:
858 859 860 861 862 863 864 865 866
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
867 868 869 870

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
871
		adapter->eims_other = E1000_EIMS_OTHER;
872

A
Alexander Duyck 已提交
873 874 875
		break;

	case e1000_82576:
876
	case e1000_82580:
877
	case e1000_i350:
878 879 880 881 882 883 884 885
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
886 887
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

888
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
889 890 891 892 893
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
894 895 896

	adapter->eims_enable_mask |= adapter->eims_other;

897 898
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
899

900 901 902 903 904 905 906 907 908 909 910 911
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
912
	struct e1000_hw *hw = &adapter->hw;
913 914
	int i, err = 0, vector = 0;

915
	err = request_irq(adapter->msix_entries[vector].vector,
916
	                  igb_msix_other, 0, netdev->name, adapter);
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

		if (q_vector->rx_ring && q_vector->tx_ring)
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
		else if (q_vector->tx_ring)
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
			        q_vector->tx_ring->queue_index);
		else if (q_vector->rx_ring)
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
935
		else
936 937
			sprintf(q_vector->name, "%s-unused", netdev->name);

938
		err = request_irq(adapter->msix_entries[vector].vector,
939
		                  igb_msix_ring, 0, q_vector->name,
940
		                  q_vector);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
958
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
959
		pci_disable_msi(adapter->pdev);
960
	}
961 962
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
978 979
		if (!q_vector)
			continue;
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
998 999 1000 1001 1002 1003 1004

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1005
static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1006 1007 1008 1009
{
	int err;
	int numvecs, i;

1010
	/* Number of supported queues. */
1011
	adapter->num_rx_queues = adapter->rss_queues;
1012 1013 1014 1015
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1016

1017 1018 1019
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1020
	/* if tx handler is separate add 1 for every tx queue */
1021 1022
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1023 1024 1025 1026 1027 1028

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1041
		goto out;
1042 1043 1044 1045 1046

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1058
		wrfl();
1059 1060 1061 1062
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1063
	adapter->vfs_allocated_count = 0;
1064
	adapter->rss_queues = 1;
1065
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1066
	adapter->num_rx_queues = 1;
1067
	adapter->num_tx_queues = 1;
1068
	adapter->num_q_vectors = 1;
1069
	if (!pci_enable_msi(adapter->pdev))
1070
		adapter->flags |= IGB_FLAG_HAS_MSI;
1071
out:
1072 1073 1074 1075
	/* Notify the stack of the (possibly) reduced queue counts. */
	netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
	return netif_set_real_num_rx_queues(adapter->netdev,
					    adapter->num_rx_queues);
1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
	return 0;

err_out:
1104
	igb_free_q_vectors(adapter);
1105 1106 1107 1108 1109 1110
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1111
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1112

1113
	q_vector->rx_ring = adapter->rx_ring[ring_idx];
1114
	q_vector->rx_ring->q_vector = q_vector;
1115 1116 1117
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1118 1119 1120 1121 1122
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1123
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1124

1125
	q_vector->tx_ring = adapter->tx_ring[ring_idx];
1126
	q_vector->tx_ring->q_vector = q_vector;
1127
	q_vector->itr_val = adapter->tx_itr_setting;
1128
	q_vector->tx_work_limit = adapter->tx_work_limit;
1129 1130
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1175 1176 1177
	err = igb_set_interrupt_capability(adapter);
	if (err)
		return err;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1208 1209 1210 1211 1212 1213 1214 1215 1216
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1217
	struct pci_dev *pdev = adapter->pdev;
1218 1219 1220 1221
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1222
		if (!err)
1223 1224
			goto request_done;
		/* fall back to MSI */
1225
		igb_clear_interrupt_scheme(adapter);
1226
		if (!pci_enable_msi(adapter->pdev))
1227
			adapter->flags |= IGB_FLAG_HAS_MSI;
1228 1229
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1230
		adapter->num_tx_queues = 1;
1231
		adapter->num_rx_queues = 1;
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
P
PJ Waskiewicz 已提交
1248
	} else {
1249
		igb_assign_vector(adapter->q_vector[0], 0);
1250
	}
P
PJ Waskiewicz 已提交
1251

1252
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1253
		err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1254
				  netdev->name, adapter);
1255 1256
		if (!err)
			goto request_done;
1257

1258 1259
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1260
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1261 1262
	}

1263
	err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1264
			  netdev->name, adapter);
1265

A
Andy Gospodarek 已提交
1266
	if (err)
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1279
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1280

1281 1282 1283 1284 1285 1286 1287
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			free_irq(adapter->msix_entries[vector++].vector,
			         q_vector);
		}
	} else {
		free_irq(adapter->pdev->irq, adapter);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1299 1300 1301 1302 1303
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1304
	if (adapter->msix_entries) {
1305 1306 1307 1308 1309
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1310
	}
P
PJ Waskiewicz 已提交
1311 1312

	wr32(E1000_IAM, 0);
1313 1314
	wr32(E1000_IMC, ~0);
	wrfl();
1315 1316 1317 1318 1319 1320 1321
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1333
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1334 1335 1336 1337
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1338
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1339
		if (adapter->vfs_allocated_count) {
1340
			wr32(E1000_MBVFIMR, 0xFF);
1341 1342
			ims |= E1000_IMS_VMMB;
		}
1343 1344 1345
		if (adapter->hw.mac.type == e1000_82580)
			ims |= E1000_IMS_DRSTA;

1346
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1347
	} else {
1348 1349 1350 1351
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1352
	}
1353 1354 1355 1356
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1357
	struct e1000_hw *hw = &adapter->hw;
1358 1359
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1371
	    !test_bit(old_vid, adapter->active_vlans)) {
1372 1373
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1427
	igb_set_rx_mode(netdev);
1428 1429 1430

	igb_restore_vlan(adapter);

1431
	igb_setup_tctl(adapter);
1432
	igb_setup_mrqc(adapter);
1433
	igb_setup_rctl(adapter);
1434 1435

	igb_configure_tx(adapter);
1436
	igb_configure_rx(adapter);
1437 1438 1439

	igb_rx_fifo_flush_82575(&adapter->hw);

1440
	/* call igb_desc_unused which always leaves
1441 1442 1443
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1444
		struct igb_ring *ring = adapter->rx_ring[i];
1445
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1446 1447 1448
	}
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1487 1488 1489 1490
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
P
PJ Waskiewicz 已提交
1491
	if (adapter->msix_entries)
1492
		igb_configure_msix(adapter);
1493 1494
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1495 1496 1497 1498 1499

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1500 1501 1502 1503 1504 1505 1506
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1507 1508
	netif_tx_start_all_queues(adapter->netdev);

1509 1510 1511 1512
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1513 1514 1515 1516 1517 1518
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1519
	struct e1000_hw *hw = &adapter->hw;
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1532
	netif_tx_stop_all_queues(netdev);
1533 1534 1535 1536 1537 1538 1539 1540 1541

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1542 1543 1544 1545
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_disable(&q_vector->napi);
	}
1546 1547 1548 1549 1550 1551 1552

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1553 1554

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1555 1556 1557
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1558

1559 1560 1561
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1562 1563
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1564 1565
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1566 1567 1568 1569 1570
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1585
	struct pci_dev *pdev = adapter->pdev;
1586
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1587 1588
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1589 1590 1591 1592 1593 1594
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1595
	switch (mac->type) {
1596
	case e1000_i350:
1597 1598 1599 1600
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1601
	case e1000_82576:
1602 1603
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1604 1605 1606 1607 1608
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1609
	}
1610

A
Alexander Duyck 已提交
1611 1612
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1630
				sizeof(union e1000_adv_tx_desc) -
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1651
		wr32(E1000_PBA, pba);
1652 1653 1654 1655 1656 1657 1658 1659 1660
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1661
			((pba << 10) - 2 * adapter->max_frame_size));
1662

1663 1664
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1665 1666
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1667
	fc->current_mode = fc->requested_mode;
1668

1669 1670 1671 1672
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1673
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1674 1675

		/* ping all the active vfs to let them know we are going down */
1676
		igb_ping_all_vfs(adapter);
1677 1678 1679 1680 1681 1682

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1683
	/* Allow time for pending master requests to run */
1684
	hw->mac.ops.reset_hw(hw);
1685 1686
	wr32(E1000_WUC, 0);

1687
	if (hw->mac.ops.init_hw(hw))
1688
		dev_err(&pdev->dev, "Hardware Error\n");
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/*
			 * DMA Coalescing high water mark needs to be higher
			 * than * the * Rx threshold.  The Rx threshold is
			 * currently * pba - 6, so we * should use a high water
			 * mark of pba * - 4. */
			hwm = (pba - 4) << 10;

			reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
			       & E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
			wr32(E1000_DMACR, reg);

			/* no lower threshold to disable coalescing(smart fifb)
			 * -UTRESH=0*/
			wr32(E1000_DMCRTRH, 0);

			/* set hwm to PBA -  2 * max frame size */
			wr32(E1000_FCRTC, hwm);

			/*
			 * This sets the time to wait before requesting tran-
			 * sition to * low power state to number of usecs needed
			 * to receive 1 512 * byte frame at gigabit line rate
			 */
			reg = rd32(E1000_DMCTLX);
			reg |= IGB_DMCTLX_DCFLUSH_DIS;

			/* Delay 255 usec before entering Lx state. */
			reg |= 0xFF;
			wr32(E1000_DMCTLX, reg);

			/* free space in Tx packet buffer to wake from DMAC */
			wr32(E1000_DMCTXTH,
			     (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size))
			     >> 6);

			/* make low power state decision controlled by DMAC */
			reg = rd32(E1000_PCIEMISC);
			reg |= E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* end if IGB_FLAG_DMAC set */
	}
1741 1742 1743 1744 1745
	if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC,
		                reg & ~E1000_PCIEMISC_LX_DECISION);
	}
1746 1747 1748
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1749 1750 1751 1752 1753
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1754
	igb_get_phy_info(hw);
1755 1756
}

J
Jiri Pirko 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
static u32 igb_fix_features(struct net_device *netdev, u32 features)
{
	/*
	 * Since there is no support for separate rx/tx vlan accel
	 * enable/disable make sure tx flag is always in same state as rx.
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1771 1772 1773 1774
static int igb_set_features(struct net_device *netdev, u32 features)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	int i;
J
Jiri Pirko 已提交
1775
	u32 changed = netdev->features ^ features;
1776 1777 1778 1779 1780 1781 1782 1783

	for (i = 0; i < adapter->num_rx_queues; i++) {
		if (features & NETIF_F_RXCSUM)
			adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
		else
			adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
	}

J
Jiri Pirko 已提交
1784 1785 1786
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

1787 1788 1789
	return 0;
}

S
Stephen Hemminger 已提交
1790
static const struct net_device_ops igb_netdev_ops = {
1791
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1792
	.ndo_stop		= igb_close,
1793
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1794
	.ndo_get_stats64	= igb_get_stats64,
1795
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1796 1797 1798 1799 1800 1801 1802
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1803 1804 1805 1806
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1807 1808 1809
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1810 1811
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1812 1813
};

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1831
	u16 eeprom_data = 0;
1832
	s32 ret_val;
1833
	static int global_quad_port_a; /* global quad port a indication */
1834 1835
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1836
	int err, pci_using_dac;
1837
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1838
	u8 part_str[E1000_PBANUM_LENGTH];
1839

1840 1841 1842 1843 1844 1845 1846 1847 1848
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
		     pci_name(pdev), pdev->vendor, pdev->device);
		return -EINVAL;
	}

1849
	err = pci_enable_device_mem(pdev);
1850 1851 1852 1853
	if (err)
		return err;

	pci_using_dac = 0;
1854
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1855
	if (!err) {
1856
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1857 1858 1859
		if (!err)
			pci_using_dac = 1;
	} else {
1860
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1861
		if (err) {
1862
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1863 1864 1865 1866 1867 1868 1869 1870
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1871 1872 1873
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1874 1875 1876
	if (err)
		goto err_pci_reg;

1877
	pci_enable_pcie_error_reporting(pdev);
1878

1879
	pci_set_master(pdev);
1880
	pci_save_state(pdev);
1881 1882

	err = -ENOMEM;
1883
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1884
				   IGB_MAX_TX_QUEUES);
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1902 1903
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1904 1905
		goto err_ioremap;

S
Stephen Hemminger 已提交
1906
	netdev->netdev_ops = &igb_netdev_ops;
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1929
		goto err_sw_init;
1930

1931
	/* setup the private structure */
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

1951
	netdev->hw_features = NETIF_F_SG |
1952
			   NETIF_F_IP_CSUM |
1953 1954 1955
			   NETIF_F_IPV6_CSUM |
			   NETIF_F_TSO |
			   NETIF_F_TSO6 |
J
Jiri Pirko 已提交
1956 1957
			   NETIF_F_RXCSUM |
			   NETIF_F_HW_VLAN_RX;
1958 1959

	netdev->features = netdev->hw_features |
1960 1961 1962
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_FILTER;

1963 1964
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1965
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1966
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1967 1968
	netdev->vlan_features |= NETIF_F_SG;

1969
	if (pci_using_dac) {
1970
		netdev->features |= NETIF_F_HIGHDMA;
1971 1972
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
1973

1974 1975
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
1976
		netdev->features |= NETIF_F_SCTP_CSUM;
1977
	}
1978

1979 1980
	netdev->priv_flags |= IFF_UNICAST_FLT;

1981
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1982 1983 1984 1985 1986 1987

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
1988
	if (hw->nvm.ops.validate(hw) < 0) {
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2007
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2008
	            (unsigned long) adapter);
2009
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2010
	            (unsigned long) adapter);
2011 2012 2013 2014

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2015
	/* Initialize link properties that are user-changeable */
2016 2017 2018 2019
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2020 2021
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2022 2023 2024 2025 2026 2027 2028

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

2029
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
2030
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2031
	else if (hw->mac.type >= e1000_82580)
2032 2033 2034
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
2035 2036
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2049 2050
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2051 2052 2053 2054 2055
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
2056
	case E1000_DEV_ID_82576_QUAD_COPPER:
2057
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2058 2059 2060 2061 2062 2063 2064 2065 2066
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2067 2068 2069 2070
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
2071
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

J
Jiri Pirko 已提交
2085 2086
	igb_vlan_mode(netdev, netdev->features);

2087 2088 2089
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2090
#ifdef CONFIG_IGB_DCA
2091
	if (dca_add_requester(&pdev->dev) == 0) {
2092
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2093 2094 2095 2096
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2097
#endif
A
Anders Berggren 已提交
2098 2099 2100
	/* do hw tstamp init after resetting */
	igb_init_hw_timer(adapter);

2101 2102
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2103
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2104
		 netdev->name,
2105
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2106
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2107
		                                            "unknown"),
2108 2109 2110 2111
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2112
		 netdev->dev_addr);
2113

2114 2115 2116 2117
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2118 2119 2120
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2121
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2122
		adapter->num_rx_queues, adapter->num_tx_queues);
2123 2124 2125 2126 2127 2128 2129
	switch (hw->mac.type) {
	case e1000_i350:
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
2130 2131 2132 2133 2134 2135
	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
2136
		igb_reset_phy(hw);
2137 2138 2139 2140

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2141
	igb_clear_interrupt_scheme(adapter);
2142 2143 2144 2145
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2146 2147
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2167
	struct e1000_hw *hw = &adapter->hw;
2168

2169 2170 2171 2172
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2173 2174 2175 2176
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2177 2178
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2179

2180
#ifdef CONFIG_IGB_DCA
2181
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2182 2183
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2184
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2185
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2186 2187 2188
	}
#endif

2189 2190 2191 2192 2193 2194
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2195
	igb_clear_interrupt_scheme(adapter);
2196

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2207
		wrfl();
2208 2209 2210 2211
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
2212

2213 2214 2215
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2216 2217
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2218 2219 2220

	free_netdev(netdev);

2221
	pci_disable_pcie_error_reporting(pdev);
2222

2223 2224 2225
	pci_disable_device(pdev);
}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;

	if (adapter->vfs_allocated_count) {
		adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
		                           sizeof(struct vf_data_storage),
		                           GFP_KERNEL);
		/* if allocation failed then we do not support SR-IOV */
		if (!adapter->vf_data) {
			adapter->vfs_allocated_count = 0;
			dev_err(&pdev->dev, "Unable to allocate memory for VF "
			        "Data Storage\n");
		}
	}

	if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
#endif /* CONFIG_PCI_IOV */
		adapter->vfs_allocated_count = 0;
#ifdef CONFIG_PCI_IOV
	} else {
		unsigned char mac_addr[ETH_ALEN];
		int i;
		dev_info(&pdev->dev, "%d vfs allocated\n",
		         adapter->vfs_allocated_count);
		for (i = 0; i < adapter->vfs_allocated_count; i++) {
			random_ether_addr(mac_addr);
			igb_set_vf_mac(adapter, i, mac_addr);
		}
2267 2268 2269
		/* DMA Coalescing is not supported in IOV mode. */
		if (adapter->flags & IGB_FLAG_DMAC)
			adapter->flags &= ~IGB_FLAG_DMAC;
2270 2271 2272 2273
	}
#endif /* CONFIG_PCI_IOV */
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

/**
 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
 * @adapter: board private structure to initialize
 *
 * igb_init_hw_timer initializes the function pointer and values for the hw
 * timer found in hardware.
 **/
static void igb_init_hw_timer(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
2287
	case e1000_i350:
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	case e1000_82580:
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/*
		 * The 82580 timesync updates the system timer every 8ns by 8ns
		 * and the value cannot be shifted.  Instead we need to shift
		 * the registers to generate a 64bit timer value.  As a result
		 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
		 * 24 in order to generate a larger value for synchronization.
		 */
		adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
		/* disable system timer temporarily by setting bit 31 */
		wr32(E1000_TSAUXC, 0x80000000);
		wrfl();

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIMR, 0x00000000);
		wr32(E1000_SYSTIML, 0x80000000);
		wr32(E1000_SYSTIMH, 0x000000FF);
		wrfl();

		/* enable system timer by clearing bit 31 */
		wr32(E1000_TSAUXC, 0x0);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	case e1000_82576:
		/*
		 * Initialize hardware timer: we keep it running just in case
		 * that some program needs it later on.
		 */
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/**
		 * Scale the NIC clock cycle by a large factor so that
		 * relatively small clock corrections can be added or
L
Lucas De Marchi 已提交
2342
		 * subtracted at each clock tick. The drawbacks of a large
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
		 * factor are a) that the clock register overflows more quickly
		 * (not such a big deal) and b) that the increment per tick has
		 * to fit into 24 bits.  As a result we need to use a shift of
		 * 19 so we can fit a value of 16 into the TIMINCA register.
		 */
		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
		wr32(E1000_TIMINCA,
		                (1 << E1000_TIMINCA_16NS_SHIFT) |
		                (16 << IGB_82576_TSYNC_SHIFT));

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIML, 0x00000000);
		wr32(E1000_SYSTIMH, 0xFF800000);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
	case e1000_82575:
		/* 82575 does not support timesync */
	default:
		break;
	}

}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

2397
	/* set default ring sizes */
2398 2399
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2400 2401

	/* set default ITR values */
2402 2403 2404
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

2405 2406 2407
	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

2408 2409
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
2410 2411
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

E
Eric Dumazet 已提交
2412
	spin_lock_init(&adapter->stats64_lock);
2413
#ifdef CONFIG_PCI_IOV
2414 2415 2416
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
2417 2418 2419 2420 2421 2422
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
2423 2424 2425 2426
		break;
	default:
		break;
	}
2427
#endif /* CONFIG_PCI_IOV */
2428
	adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2429 2430 2431
	/* i350 cannot do RSS and SR-IOV at the same time */
	if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
		adapter->rss_queues = 1;
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441

	/*
	 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
	 * then we should combine the queues into a queue pair in order to
	 * conserve interrupts due to limited supply
	 */
	if ((adapter->rss_queues > 4) ||
	    ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
		adapter->flags |= IGB_FLAG_QUEUE_PAIRS;

2442
	/* This call may decrease the number of queues */
2443
	if (igb_init_interrupt_scheme(adapter)) {
2444 2445 2446 2447
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2448 2449
	igb_probe_vfs(adapter);

2450 2451 2452
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2453 2454 2455
	if (hw->mac.type == e1000_i350)
		adapter->flags &= ~IGB_FLAG_DMAC;

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

2483 2484
	netif_carrier_off(netdev);

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2495
	igb_power_up_link(adapter);
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2510 2511 2512 2513
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
2514 2515 2516

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2517 2518 2519

	igb_irq_enable(adapter);

2520 2521 2522 2523 2524 2525 2526
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2527 2528
	netif_tx_start_all_queues(netdev);

2529 2530 2531
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2532 2533 2534 2535 2536

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
2537
	igb_power_down_link(adapter);
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2579
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2580
{
2581
	struct device *dev = tx_ring->dev;
2582 2583
	int size;

2584 2585 2586
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	tx_ring->tx_buffer_info = vzalloc(size);
	if (!tx_ring->tx_buffer_info)
2587 2588 2589
		goto err;

	/* round up to nearest 4K */
2590
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2591 2592
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2593 2594 2595 2596
	tx_ring->desc = dma_alloc_coherent(dev,
					   tx_ring->size,
					   &tx_ring->dma,
					   GFP_KERNEL);
2597 2598 2599 2600 2601 2602 2603 2604 2605

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
2606
	vfree(tx_ring->tx_buffer_info);
2607
	dev_err(dev,
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2621
	struct pci_dev *pdev = adapter->pdev;
2622 2623 2624
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2625
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2626
		if (err) {
2627
			dev_err(&pdev->dev,
2628 2629
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2630
				igb_free_tx_resources(adapter->tx_ring[i]);
2631 2632 2633 2634 2635 2636 2637 2638
			break;
		}
	}

	return err;
}

/**
2639 2640
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2641
 **/
2642
void igb_setup_tctl(struct igb_adapter *adapter)
2643 2644 2645 2646
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2647 2648
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2664 2665 2666 2667 2668 2669 2670
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2671 2672
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2673 2674
{
	struct e1000_hw *hw = &adapter->hw;
2675
	u32 txdctl = 0;
2676 2677 2678 2679
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2680
	wr32(E1000_TXDCTL(reg_idx), 0);
2681 2682 2683 2684 2685 2686 2687 2688 2689
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2690
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2691
	wr32(E1000_TDH(reg_idx), 0);
2692
	writel(0, ring->tail);
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2713
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2714 2715
}

2716 2717 2718 2719 2720 2721
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2722
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2723
{
2724
	struct device *dev = rx_ring->dev;
2725 2726
	int size, desc_len;

2727 2728 2729
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	rx_ring->rx_buffer_info = vzalloc(size);
	if (!rx_ring->rx_buffer_info)
2730 2731 2732 2733 2734 2735 2736 2737
		goto err;

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

2738 2739 2740 2741
	rx_ring->desc = dma_alloc_coherent(dev,
					   rx_ring->size,
					   &rx_ring->dma,
					   GFP_KERNEL);
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
2752 2753
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
2754 2755
	dev_err(dev, "Unable to allocate memory for the receive descriptor"
		" ring\n");
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2768
	struct pci_dev *pdev = adapter->pdev;
2769 2770 2771
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2772
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2773
		if (err) {
2774
			dev_err(&pdev->dev,
2775 2776
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2777
				igb_free_rx_resources(adapter->rx_ring[i]);
2778 2779 2780 2781 2782 2783 2784
			break;
		}
	}

	return err;
}

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

2813
	num_rx_queues = adapter->rss_queues;
2814 2815 2816 2817

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
2818
		case e1000_i350:
2819 2820 2821 2822
		case e1000_82580:
			num_rx_queues = 1;
			shift = 0;
			break;
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2874
		if (adapter->rss_queues > 1)
2875 2876 2877 2878 2879 2880 2881 2882
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	/*
	 * Generate RSS hash based on TCP port numbers and/or
	 * IPv4/v6 src and dst addresses since UDP cannot be
	 * hashed reliably due to IP fragmentation
	 */
	mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2893 2894 2895 2896

	wr32(E1000_MRQC, mrqc);
}

2897 2898 2899 2900
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2901
void igb_setup_rctl(struct igb_adapter *adapter)
2902 2903 2904 2905 2906 2907 2908
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2909
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2910

2911
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2912
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2913

2914 2915 2916 2917
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2918
	 */
2919
	rctl |= E1000_RCTL_SECRC;
2920

2921
	/* disable store bad packets and clear size bits. */
2922
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2923

A
Alexander Duyck 已提交
2924 2925
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2926

2927 2928
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2929

2930 2931 2932 2933 2934 2935 2936 2937 2938
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

2939 2940 2941
	wr32(E1000_RCTL, rctl);
}

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

2962 2963 2964 2965 2966 2967 2968 2969
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
2970
	u32 max_frame_size = adapter->max_frame_size;
2971 2972 2973 2974 2975
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2976 2977 2978 2979 2980 2981 2982
		/*
		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
2983
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
2984 2985 2986 2987 2988
	}

	wr32(E1000_RLPML, max_frame_size);
}

2989 2990
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3003 3004 3005 3006 3007
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3008 3009 3010 3011

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3012
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

3024 3025 3026 3027 3028 3029 3030
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
3031 3032
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3033 3034 3035 3036
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3037
	u32 srrctl = 0, rxdctl = 0;
3038 3039

	/* disable the queue */
3040
	wr32(E1000_RXDCTL(reg_idx), 0);
3041 3042 3043 3044 3045 3046 3047 3048 3049

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
3050
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3051
	wr32(E1000_RDH(reg_idx), 0);
3052
	writel(0, ring->tail);
3053

3054
	/* set descriptor configuration */
3055
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3056
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3057
	srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3058
#else
3059
	srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3060
#endif
3061
	srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
N
Nick Nunley 已提交
3062 3063
	if (hw->mac.type == e1000_82580)
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3064 3065 3066
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3067 3068 3069

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3070
	/* set filtering for VMDQ pools */
3071
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3072

3073 3074 3075
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3076 3077 3078

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3079 3080 3081
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3082 3083 3084 3085 3086 3087 3088 3089
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3090
	int i;
3091

3092 3093 3094
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3095 3096 3097 3098
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

3099 3100 3101
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
3102
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3103 3104 3105 3106 3107 3108 3109 3110
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3111
void igb_free_tx_resources(struct igb_ring *tx_ring)
3112
{
3113
	igb_clean_tx_ring(tx_ring);
3114

3115 3116
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3117

3118 3119 3120 3121
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3122 3123
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3139
		igb_free_tx_resources(adapter->tx_ring[i]);
3140 3141
}

3142
void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3143
				    struct igb_tx_buffer *buffer_info)
3144
{
3145
	if (buffer_info->dma) {
3146
		if (buffer_info->tx_flags & IGB_TX_FLAGS_MAPPED_AS_PAGE)
3147
			dma_unmap_page(tx_ring->dev,
3148 3149
					buffer_info->dma,
					buffer_info->length,
3150
					DMA_TO_DEVICE);
3151
		else
3152
			dma_unmap_single(tx_ring->dev,
3153 3154
					buffer_info->dma,
					buffer_info->length,
3155
					DMA_TO_DEVICE);
3156 3157
		buffer_info->dma = 0;
	}
3158 3159 3160 3161 3162
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
3163
	buffer_info->length = 0;
3164
	buffer_info->next_to_watch = NULL;
3165 3166 3167 3168 3169 3170
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3171
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3172
{
3173
	struct igb_tx_buffer *buffer_info;
3174 3175 3176
	unsigned long size;
	unsigned int i;

3177
	if (!tx_ring->tx_buffer_info)
3178 3179 3180 3181
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3182
		buffer_info = &tx_ring->tx_buffer_info[i];
3183
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3184 3185
	}

3186 3187
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3205
		igb_clean_tx_ring(adapter->tx_ring[i]);
3206 3207 3208 3209 3210 3211 3212 3213
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3214
void igb_free_rx_resources(struct igb_ring *rx_ring)
3215
{
3216
	igb_clean_rx_ring(rx_ring);
3217

3218 3219
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3220

3221 3222 3223 3224
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3225 3226
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3242
		igb_free_rx_resources(adapter->rx_ring[i]);
3243 3244 3245 3246 3247 3248
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3249
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3250 3251
{
	unsigned long size;
3252
	u16 i;
3253

3254
	if (!rx_ring->rx_buffer_info)
3255
		return;
3256

3257 3258
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3259
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3260
		if (buffer_info->dma) {
3261
			dma_unmap_single(rx_ring->dev,
3262
			                 buffer_info->dma,
3263
					 IGB_RX_HDR_LEN,
3264
					 DMA_FROM_DEVICE);
3265 3266 3267 3268 3269 3270 3271
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
3272
		if (buffer_info->page_dma) {
3273
			dma_unmap_page(rx_ring->dev,
3274
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
3275
				       PAGE_SIZE / 2,
3276
				       DMA_FROM_DEVICE);
A
Alexander Duyck 已提交
3277 3278
			buffer_info->page_dma = 0;
		}
3279 3280 3281
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
3282
			buffer_info->page_offset = 0;
3283 3284 3285
		}
	}

3286 3287
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3305
		igb_clean_rx_ring(adapter->rx_ring[i]);
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3318
	struct e1000_hw *hw = &adapter->hw;
3319 3320 3321 3322 3323 3324
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3325
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3326

3327 3328 3329
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3330

3331 3332 3333 3334
	return 0;
}

/**
3335
 * igb_write_mc_addr_list - write multicast addresses to MTA
3336 3337
 * @netdev: network interface device structure
 *
3338 3339 3340 3341
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3342
 **/
3343
static int igb_write_mc_addr_list(struct net_device *netdev)
3344 3345 3346
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3347
	struct netdev_hw_addr *ha;
3348
	u8  *mta_list;
3349 3350
	int i;

3351
	if (netdev_mc_empty(netdev)) {
3352 3353 3354 3355 3356
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3357

3358
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3359 3360
	if (!mta_list)
		return -ENOMEM;
3361

3362
	/* The shared function expects a packed array of only addresses. */
3363
	i = 0;
3364 3365
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3366 3367 3368 3369

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3370
	return netdev_mc_count(netdev);
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3391
	if (netdev_uc_count(netdev) > rar_entries)
3392
		return -ENOMEM;
3393

3394
	if (!netdev_uc_empty(netdev) && rar_entries) {
3395
		struct netdev_hw_addr *ha;
3396 3397

		netdev_for_each_uc_addr(ha, netdev) {
3398 3399
			if (!rar_entries)
				break;
3400 3401
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3402 3403
			                 vfn);
			count++;
3404 3405 3406 3407 3408 3409 3410 3411 3412
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3449
			 * then we should just turn on promiscuous mode so
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3463
		 * unicast promiscuous mode
3464 3465 3466 3467 3468 3469 3470
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3471
	}
3472
	wr32(E1000_RCTL, rctl);
3473

3474 3475 3476 3477 3478 3479 3480
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
3481
		return;
3482

3483 3484 3485
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3486
	igb_restore_vf_multicasts(adapter);
3487 3488
}

G
Greg Rose 已提交
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3528 3529 3530 3531 3532
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3533
	igb_get_phy_info(&adapter->hw);
3534 3535
}

A
Alexander Duyck 已提交
3536 3537 3538 3539
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3540
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

	/* check for thermal sensor event on i350, copper only */
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
			ret = !!(thstat & event);
		}
	}

	return ret;
}

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3605 3606
	                                           struct igb_adapter,
                                                   watchdog_task);
3607 3608
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3609
	u32 link;
3610
	int i;
3611

A
Alexander Duyck 已提交
3612
	link = igb_has_link(adapter);
3613 3614 3615
	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3616 3617 3618
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3619 3620

			ctrl = rd32(E1000_CTRL);
3621 3622
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3623
				 "Flow Control: %s\n",
3624 3625 3626
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
3627
				 "Full Duplex" : "Half Duplex",
3628 3629 3630 3631
			       ((ctrl & E1000_CTRL_TFCE) &&
			        (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
			       ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
3632

3633 3634 3635 3636 3637 3638
			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
				printk(KERN_INFO "igb: %s The network adapter "
						 "link speed was downshifted "
						 "because it overheated.\n",
						 netdev->name);
3639
			}
3640

3641
			/* adjust timeout factor according to speed/duplex */
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3654
			igb_ping_all_vfs(adapter);
3655
			igb_check_vf_rate_limit(adapter);
3656

3657
			/* link state has changed, schedule phy info update */
3658 3659 3660 3661 3662 3663 3664 3665
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3666 3667 3668 3669 3670 3671

			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
				printk(KERN_ERR "igb: %s The network adapter "
						"was stopped because it "
						"overheated.\n",
3672 3673
						netdev->name);
			}
3674

3675 3676 3677
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3678
			netif_carrier_off(netdev);
3679

3680 3681
			igb_ping_all_vfs(adapter);

3682
			/* link state has changed, schedule phy info update */
3683 3684 3685 3686 3687 3688
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

E
Eric Dumazet 已提交
3689 3690 3691
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3692

3693
	for (i = 0; i < adapter->num_tx_queues; i++) {
3694
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3695
		if (!netif_carrier_ok(netdev)) {
3696 3697 3698 3699
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3700 3701 3702 3703 3704 3705
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3706 3707
		}

3708 3709 3710
		/* Force detection of hung controller every watchdog period */
		tx_ring->detect_tx_hung = true;
	}
3711

3712
	/* Cause software interrupt to ensure rx ring is cleaned */
3713
	if (adapter->msix_entries) {
3714 3715 3716 3717 3718
		u32 eics = 0;
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			eics |= q_vector->eims_value;
		}
3719 3720 3721 3722
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3723

G
Greg Rose 已提交
3724 3725
	igb_spoof_check(adapter);

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3739 3740 3741 3742 3743 3744
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
3745
 *      receive rings.  The divisors and thresholds used by this function
3746 3747 3748 3749 3750 3751 3752
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3753
 * @q_vector: pointer to q_vector
3754
 **/
3755
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3756
{
3757
	int new_val = q_vector->itr_val;
3758
	int avg_wire_size = 0;
3759
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
3760 3761
	struct igb_ring *ring;
	unsigned int packets;
3762

3763 3764 3765 3766
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3767
		new_val = 976;
3768
		goto set_itr_val;
3769
	}
3770

E
Eric Dumazet 已提交
3771 3772 3773 3774 3775 3776
	ring = q_vector->rx_ring;
	if (ring) {
		packets = ACCESS_ONCE(ring->total_packets);

		if (packets)
			avg_wire_size = ring->total_bytes / packets;
3777 3778
	}

E
Eric Dumazet 已提交
3779 3780 3781 3782 3783 3784 3785
	ring = q_vector->tx_ring;
	if (ring) {
		packets = ACCESS_ONCE(ring->total_packets);

		if (packets)
			avg_wire_size = max_t(u32, avg_wire_size,
			                      ring->total_bytes / packets);
3786 3787 3788 3789 3790
	}

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3791

3792 3793 3794 3795 3796
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3797

3798 3799 3800 3801 3802
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3803

3804 3805 3806 3807
	/* when in itr mode 3 do not exceed 20K ints/sec */
	if (adapter->rx_itr_setting == 3 && new_val < 196)
		new_val = 196;

3808
set_itr_val:
3809 3810 3811
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3812
	}
3813
clear_counts:
3814 3815 3816 3817 3818 3819 3820 3821
	if (q_vector->rx_ring) {
		q_vector->rx_ring->total_bytes = 0;
		q_vector->rx_ring->total_packets = 0;
	}
	if (q_vector->tx_ring) {
		q_vector->tx_ring->total_bytes = 0;
		q_vector->tx_ring->total_packets = 0;
	}
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
 * @adapter: pointer to adapter
3838
 * @itr_setting: current q_vector->itr_val
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 **/
static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
				   int packets, int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
3878
		} else if (bytes < 1500) {
3879 3880 3881 3882 3883 3884 3885 3886 3887
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

3888
static void igb_set_itr(struct igb_adapter *adapter)
3889
{
3890
	struct igb_q_vector *q_vector = adapter->q_vector[0];
3891
	u16 current_itr;
3892
	u32 new_itr = q_vector->itr_val;
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->rx_itr = igb_update_itr(adapter,
				    adapter->rx_itr,
3903 3904
				    q_vector->rx_ring->total_packets,
				    q_vector->rx_ring->total_bytes);
3905

3906 3907
	adapter->tx_itr = igb_update_itr(adapter,
				    adapter->tx_itr,
3908 3909
				    q_vector->tx_ring->total_packets,
				    q_vector->tx_ring->total_bytes);
3910
	current_itr = max(adapter->rx_itr, adapter->tx_itr);
3911

3912
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3913
	if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3914 3915
		current_itr = low_latency;

3916 3917 3918
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3919
		new_itr = 56;  /* aka 70,000 ints/sec */
3920 3921
		break;
	case low_latency:
3922
		new_itr = 196; /* aka 20,000 ints/sec */
3923 3924
		break;
	case bulk_latency:
3925
		new_itr = 980; /* aka 4,000 ints/sec */
3926 3927 3928 3929 3930 3931
		break;
	default:
		break;
	}

set_itr_now:
3932 3933 3934 3935
	q_vector->rx_ring->total_bytes = 0;
	q_vector->rx_ring->total_packets = 0;
	q_vector->tx_ring->total_bytes = 0;
	q_vector->tx_ring->total_packets = 0;
3936

3937
	if (new_itr != q_vector->itr_val) {
3938 3939 3940
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3941 3942 3943 3944
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
		                 new_itr) :
3945 3946 3947 3948 3949 3950 3951
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3952 3953
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3954 3955 3956
	}
}

3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
		     u32 type_tucmd, u32 mss_l4len_idx)
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
	if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

3981 3982
static inline int igb_tso(struct igb_ring *tx_ring, struct sk_buff *skb,
			  u32 tx_flags, __be16 protocol, u8 *hdr_len)
3983 3984
{
	int err;
3985 3986 3987 3988 3989
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

	if (!skb_is_gso(skb))
		return 0;
3990 3991 3992 3993 3994 3995 3996

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
	}

3997 3998
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
3999

4000
	if (protocol == __constant_htons(ETH_P_IP)) {
4001 4002 4003 4004 4005 4006 4007
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4008
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4009
	} else if (skb_is_gso_v6(skb)) {
4010 4011 4012 4013 4014 4015
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
	}

4016 4017
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4018 4019

	/* MSS L4LEN IDX */
4020 4021
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4022

4023 4024 4025 4026
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
	vlan_macip_lens |= tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4027

4028
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4029

4030
	return 1;
4031 4032
}

4033 4034
static inline bool igb_tx_csum(struct igb_ring *tx_ring, struct sk_buff *skb,
			       u32 tx_flags, __be16 protocol)
4035
{
4036 4037 4038
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4039

4040 4041 4042 4043 4044
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
		if (!(tx_flags & IGB_TX_FLAGS_VLAN))
			return false;
	} else {
		u8 l4_hdr = 0;
4045
		switch (protocol) {
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but proto=%x!\n",
4059
				 protocol);
4060
			}
4061 4062
			break;
		}
4063

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but l4 proto=%x!\n",
				 l4_hdr);
4084
			}
4085
			break;
4086
		}
4087
	}
4088

4089 4090
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
	vlan_macip_lens |= tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4091

4092
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4093

4094
	return (skb->ip_summed == CHECKSUM_PARTIAL);
4095 4096
}

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
static __le32 igb_tx_cmd_type(u32 tx_flags)
{
	/* set type for advanced descriptor with frame checksum insertion */
	__le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
				      E1000_ADVTXD_DCMD_IFCS |
				      E1000_ADVTXD_DCMD_DEXT);

	/* set HW vlan bit if vlan is present */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);

	/* set timestamp bit if present */
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);

	/* set segmentation bits for TSO */
	if (tx_flags & IGB_TX_FLAGS_TSO)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);

	return cmd_type;
}

static __le32 igb_tx_olinfo_status(u32 tx_flags, unsigned int paylen,
				   struct igb_ring *tx_ring)
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

	/* 82575 requires a unique index per ring if any offload is enabled */
	if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
	    (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX))
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
	if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert IPv4 checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
	}

	return cpu_to_le32(olinfo_status);
}

4141 4142 4143
#define IGB_MAX_TXD_PWR	16
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)

4144
static inline int igb_tx_map(struct igb_ring *tx_ring, struct sk_buff *skb,
4145
			     struct igb_tx_buffer *first, u32 tx_flags)
4146
{
4147
	struct igb_tx_buffer *buffer_info;
4148
	struct device *dev = tx_ring->dev;
4149
	unsigned int hlen = skb_headlen(skb);
4150 4151
	unsigned int count = 0, i;
	unsigned int f;
4152
	u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
4153 4154 4155

	i = tx_ring->next_to_use;

4156
	buffer_info = &tx_ring->tx_buffer_info[i];
4157 4158
	BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
	buffer_info->length = hlen;
4159
	buffer_info->tx_flags = tx_flags;
4160
	buffer_info->dma = dma_map_single(dev, skb->data, hlen,
4161 4162
					  DMA_TO_DEVICE);
	if (dma_mapping_error(dev, buffer_info->dma))
4163
		goto dma_error;
4164

4165 4166
	tx_flags |= IGB_TX_FLAGS_MAPPED_AS_PAGE;

4167
	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4168 4169
		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
		unsigned int len = frag->size;
4170

4171
		count++;
4172 4173 4174 4175
		i++;
		if (i == tx_ring->count)
			i = 0;

4176
		buffer_info = &tx_ring->tx_buffer_info[i];
4177 4178
		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
		buffer_info->length = len;
4179
		buffer_info->tx_flags = tx_flags;
4180
		buffer_info->dma = skb_frag_dma_map(dev, frag, 0, len,
4181 4182
						DMA_TO_DEVICE);
		if (dma_mapping_error(dev, buffer_info->dma))
4183 4184
			goto dma_error;

4185 4186
	}

4187
	buffer_info->skb = skb;
4188
	/* multiply data chunks by size of headers */
4189 4190
	buffer_info->bytecount = ((gso_segs - 1) * hlen) + skb->len;
	buffer_info->gso_segs = gso_segs;
4191 4192 4193 4194 4195 4196

	/* set the timestamp */
	first->time_stamp = jiffies;

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = IGB_TX_DESC(tx_ring, i);
4197

A
Alexander Duyck 已提交
4198
	return ++count;
4199 4200

dma_error:
4201
	dev_err(dev, "TX DMA map failed\n");
4202 4203 4204 4205 4206 4207 4208

	/* clear timestamp and dma mappings for failed buffer_info mapping */
	buffer_info->dma = 0;
	buffer_info->time_stamp = 0;
	buffer_info->length = 0;

	/* clear timestamp and dma mappings for remaining portion of packet */
4209 4210 4211
	while (count--) {
		if (i == 0)
			i = tx_ring->count;
4212
		i--;
4213
		buffer_info = &tx_ring->tx_buffer_info[i];
4214 4215 4216 4217
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
	}

	return 0;
4218 4219
}

4220 4221 4222
static inline void igb_tx_queue(struct igb_ring *tx_ring,
				u32 tx_flags, int count, u32 paylen,
				u8 hdr_len)
4223
{
A
Alexander Duyck 已提交
4224
	union e1000_adv_tx_desc *tx_desc;
4225
	struct igb_tx_buffer *buffer_info;
4226
	__le32 olinfo_status, cmd_type;
A
Alexander Duyck 已提交
4227
	unsigned int i = tx_ring->next_to_use;
4228

4229 4230 4231 4232
	cmd_type = igb_tx_cmd_type(tx_flags);
	olinfo_status = igb_tx_olinfo_status(tx_flags,
					     paylen - hdr_len,
					     tx_ring);
4233

A
Alexander Duyck 已提交
4234
	do {
4235
		buffer_info = &tx_ring->tx_buffer_info[i];
4236
		tx_desc = IGB_TX_DESC(tx_ring, i);
4237
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4238 4239 4240
		tx_desc->read.cmd_type_len = cmd_type |
					     cpu_to_le32(buffer_info->length);
		tx_desc->read.olinfo_status = olinfo_status;
A
Alexander Duyck 已提交
4241
		count--;
4242 4243 4244
		i++;
		if (i == tx_ring->count)
			i = 0;
A
Alexander Duyck 已提交
4245
	} while (count > 0);
4246

4247
	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
4248 4249 4250 4251 4252 4253 4254
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
4255
	writel(i, tx_ring->tail);
4256 4257 4258 4259 4260
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

4261
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4262
{
4263 4264
	struct net_device *netdev = tx_ring->netdev;

4265 4266
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4267 4268 4269 4270 4271 4272 4273
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4274
	if (igb_desc_unused(tx_ring) < size)
4275 4276 4277
		return -EBUSY;

	/* A reprieve! */
4278
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4279 4280 4281 4282 4283

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4284 4285 4286
	return 0;
}

N
Nick Nunley 已提交
4287
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4288
{
4289
	if (igb_desc_unused(tx_ring) >= size)
4290
		return 0;
4291
	return __igb_maybe_stop_tx(tx_ring, size);
4292 4293
}

4294 4295
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4296
{
4297
	struct igb_tx_buffer *first;
4298
	int tso, count;
N
Nick Nunley 已提交
4299
	u32 tx_flags = 0;
4300
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4301
	u8 hdr_len = 0;
4302 4303 4304 4305 4306 4307

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4308
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4309 4310 4311
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4312

4313 4314
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4315 4316
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
4317

4318
	if (vlan_tx_tag_present(skb)) {
4319 4320 4321 4322
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4323 4324
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
A
Alexander Duyck 已提交
4325

4326
	tso = igb_tso(tx_ring, skb, tx_flags, protocol, &hdr_len);
4327
	if (tso < 0) {
4328
		goto out_drop;
4329 4330
	} else if (tso) {
		tx_flags |= IGB_TX_FLAGS_TSO | IGB_TX_FLAGS_CSUM;
4331
		if (protocol == htons(ETH_P_IP))
4332
			tx_flags |= IGB_TX_FLAGS_IPV4;
4333
	} else if (igb_tx_csum(tx_ring, skb, tx_flags, protocol) &&
4334
		   (skb->ip_summed == CHECKSUM_PARTIAL)) {
4335
		tx_flags |= IGB_TX_FLAGS_CSUM;
4336
	}
4337

4338
	/*
A
Alexander Duyck 已提交
4339
	 * count reflects descriptors mapped, if 0 or less then mapping error
L
Lucas De Marchi 已提交
4340
	 * has occurred and we need to rewind the descriptor queue
4341
	 */
4342
	count = igb_tx_map(tx_ring, skb, first, tx_flags);
4343
	if (!count) {
4344
		dev_kfree_skb_any(skb);
4345 4346
		first->time_stamp = 0;
		tx_ring->next_to_use = first - tx_ring->tx_buffer_info;
4347
		return NETDEV_TX_OK;
4348
	}
4349

4350
	igb_tx_queue(tx_ring, tx_flags, count, skb->len, hdr_len);
4351 4352

	/* Make sure there is space in the ring for the next send. */
4353
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4354

4355
	return NETDEV_TX_OK;
4356 4357 4358 4359

out_drop:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
4360 4361
}

4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4373 4374
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4375 4376
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4388 4389 4390 4391 4392 4393 4394 4395 4396
	/*
	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
	if (skb->len < 17) {
		if (skb_padto(skb, 17))
			return NETDEV_TX_OK;
		skb->len = 17;
	}
4397

4398
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4412

4413 4414 4415
	if (hw->mac.type == e1000_82580)
		hw->dev_spec._82575.global_device_reset = true;

4416
	schedule_work(&adapter->reset_task);
4417 4418
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4419 4420 4421 4422 4423 4424 4425
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4426 4427
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4428 4429 4430 4431
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4432
 * igb_get_stats64 - Get System Network Statistics
4433
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4434
 * @stats: rtnl_link_stats64 pointer
4435 4436
 *
 **/
E
Eric Dumazet 已提交
4437 4438
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4439
{
E
Eric Dumazet 已提交
4440 4441 4442 4443 4444 4445 4446 4447
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4460
	struct pci_dev *pdev = adapter->pdev;
4461
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4462

4463
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4464
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4465 4466 4467
		return -EINVAL;
	}

4468
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4469
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4470
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4471 4472 4473 4474 4475
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4476

4477 4478
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4479

4480 4481
	if (netif_running(netdev))
		igb_down(adapter);
4482

4483
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4502 4503
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4504 4505 4506
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4507
	u32 reg, mpc;
4508
	u16 phy_tmp;
4509 4510
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4511 4512
	unsigned int start;
	u64 _bytes, _packets;
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4525 4526 4527 4528
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4529
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4530

4531
		ring->rx_stats.drops += rqdpc_tmp;
4532
		net_stats->rx_fifo_errors += rqdpc_tmp;
E
Eric Dumazet 已提交
4533 4534 4535 4536 4537 4538 4539 4540

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4541 4542
	}

4543 4544
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4545 4546 4547 4548

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4549
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4550 4551 4552 4553 4554 4555 4556
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4557
	}
4558 4559
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4560 4561

	/* read stats registers */
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4579 4580 4581
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4596
	adapter->stats.rnbc += rd32(E1000_RNBC);
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4614 4615
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4616 4617

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4618 4619 4620 4621 4622 4623 4624
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
		adapter->stats.tncrs += rd32(E1000_TNCRS);
	}

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4639 4640
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4641 4642 4643 4644

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4645
	 * our own version based on RUC and ROC */
4646
	net_stats->rx_errors = adapter->stats.rxerrc +
4647 4648 4649
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4650 4651 4652 4653 4654
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4655 4656

	/* Tx Errors */
4657 4658 4659 4660 4661
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4662 4663 4664 4665 4666 4667

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4668
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4669 4670 4671 4672 4673 4674 4675 4676 4677
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4678 4679 4680 4681 4682 4683 4684 4685 4686

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
4687 4688 4689 4690
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4691
	struct igb_adapter *adapter = data;
4692
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4693 4694
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4695

4696 4697 4698
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4699
	if (icr & E1000_ICR_DOUTSYNC) {
4700 4701
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
4702 4703 4704 4705
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
4706
	}
4707

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4719 4720 4721 4722 4723 4724
	if (adapter->vfs_allocated_count)
		wr32(E1000_IMS, E1000_IMS_LSC |
				E1000_IMS_VMMB |
				E1000_IMS_DOUTSYNC);
	else
		wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
P
PJ Waskiewicz 已提交
4725
	wr32(E1000_EIMS, adapter->eims_other);
4726 4727 4728 4729

	return IRQ_HANDLED;
}

4730
static void igb_write_itr(struct igb_q_vector *q_vector)
4731
{
4732
	struct igb_adapter *adapter = q_vector->adapter;
4733
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4734

4735 4736
	if (!q_vector->set_itr)
		return;
4737

4738 4739
	if (!itr_val)
		itr_val = 0x4;
4740

4741 4742
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4743
	else
4744
		itr_val |= 0x8000000;
4745

4746 4747
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4748 4749
}

4750
static irqreturn_t igb_msix_ring(int irq, void *data)
4751
{
4752
	struct igb_q_vector *q_vector = data;
4753

4754 4755
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4756

4757
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4758

4759
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4760 4761
}

4762
#ifdef CONFIG_IGB_DCA
4763
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4764
{
4765
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4766 4767 4768
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4769 4770 4771 4772 4773 4774 4775 4776 4777
	if (q_vector->cpu == cpu)
		goto out_no_update;

	if (q_vector->tx_ring) {
		int q = q_vector->tx_ring->reg_idx;
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4778
		} else {
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
	if (q_vector->rx_ring) {
		int q = q_vector->rx_ring->reg_idx;
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4790
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4791
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4792 4793 4794 4795
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4796
		}
J
Jeb Cramer 已提交
4797 4798 4799 4800 4801
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4802 4803
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4804 4805 4806 4807 4808
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4809
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4810 4811
	int i;

4812
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4813 4814
		return;

4815 4816 4817
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4818
	for (i = 0; i < adapter->num_q_vectors; i++) {
4819 4820
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4821 4822 4823 4824 4825 4826 4827
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4828
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4829 4830 4831 4832 4833 4834
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4835
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4836 4837
			break;
		if (dca_add_requester(dev) == 0) {
4838
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4839
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4840 4841 4842 4843 4844
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4845
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4846
			/* without this a class_device is left
4847
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4848
			dca_remove_requester(dev);
4849
			dev_info(&pdev->dev, "DCA disabled\n");
4850
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4851
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4852 4853 4854
		}
		break;
	}
4855

J
Jeb Cramer 已提交
4856
	return 0;
4857 4858
}

J
Jeb Cramer 已提交
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4869
#endif /* CONFIG_IGB_DCA */
4870

4871 4872 4873 4874 4875 4876 4877 4878
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
4879
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4880 4881 4882 4883 4884
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

4885 4886 4887 4888 4889 4890
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

4891
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
4892 4893 4894 4895 4896
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
4897
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

4925 4926 4927 4928 4929 4930 4931 4932
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

4933
	/* salt away the number of multicast addresses assigned
4934 4935 4936 4937 4938
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

4939 4940 4941 4942 4943
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
4944
	for (i = 0; i < n; i++)
4945
		vf_data->vf_mc_hashes[i] = hash_list[i];
4946 4947

	/* Flush and reset the mta with the new values */
4948
	igb_set_rx_mode(adapter->netdev);
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
4960 4961 4962
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

4963
		vf_data = &adapter->vf_data[i];
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5002 5003

	adapter->vf_data[vf].vlans_enabled = 0;
5004 5005 5006 5007 5008 5009 5010
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5011 5012 5013 5014 5015
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5045 5046
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5047 5048
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5049 5050
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5051
			wr32(E1000_VLVF(i), reg);
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5067
			adapter->vf_data[vf].vlans_enabled++;
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5095 5096
		}
	}
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5156
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5157
{
G
Greg Rose 已提交
5158 5159
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5160
	adapter->vf_data[vf].last_nack = jiffies;
5161 5162

	/* reset offloads to defaults */
5163
	igb_set_vmolr(adapter, vf, true);
5164 5165 5166

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5167 5168 5169 5170 5171 5172
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5173 5174 5175 5176 5177

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5178
	igb_set_rx_mode(adapter->netdev);
5179 5180
}

5181 5182 5183 5184 5185
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
5186 5187
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
		random_ether_addr(vf_mac);
5188 5189 5190 5191 5192 5193

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5194 5195 5196
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5197
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5198 5199 5200 5201
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5202
	igb_vf_reset(adapter, vf);
5203 5204

	/* set vf mac address */
5205
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5206 5207 5208 5209 5210 5211 5212

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5213
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5214 5215 5216 5217 5218 5219 5220 5221 5222

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5223 5224 5225 5226
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5227 5228
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5229

5230 5231
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5232

5233
	return err;
5234 5235 5236 5237 5238
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5239
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5240 5241 5242
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5243 5244
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5245
		igb_write_mbx(hw, &msg, 1, vf);
5246
		vf_data->last_nack = jiffies;
5247 5248 5249
	}
}

5250
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5251
{
5252 5253
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5254
	struct e1000_hw *hw = &adapter->hw;
5255
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5256 5257
	s32 retval;

5258
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5259

5260 5261
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5262
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5263 5264 5265 5266 5267
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5268 5269 5270

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5271
		return;
5272 5273 5274 5275 5276 5277 5278 5279

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5280
		return;
5281 5282
	}

5283
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5284 5285 5286 5287
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5288 5289 5290 5291
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5292 5293 5294 5295 5296 5297 5298 5299
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5300
		break;
5301 5302 5303
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5304 5305 5306 5307 5308 5309 5310
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5311 5312 5313 5314 5315 5316
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5317 5318
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5319 5320
		break;
	default:
5321
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5322 5323 5324 5325
		retval = -1;
		break;
	}

5326 5327
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5328 5329 5330 5331 5332 5333 5334
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5335
}
5336

5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5355 5356
}

5357 5358 5359 5360 5361 5362 5363
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5364 5365
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5384 5385 5386 5387 5388 5389 5390
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5391 5392
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5393 5394 5395 5396
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5397
	igb_write_itr(q_vector);
5398

5399 5400 5401
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5402
	if (icr & E1000_ICR_DOUTSYNC) {
5403 5404 5405 5406
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5407 5408 5409 5410 5411 5412
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5413
	napi_schedule(&q_vector->napi);
5414 5415 5416 5417 5418

	return IRQ_HANDLED;
}

/**
5419
 * igb_intr - Legacy Interrupt Handler
5420 5421 5422 5423 5424
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5425 5426
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5427 5428 5429 5430 5431 5432 5433
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);
	if (!icr)
		return IRQ_NONE;  /* Not our interrupt */

5434
	igb_write_itr(q_vector);
5435 5436 5437 5438 5439 5440

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5441 5442 5443
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5444
	if (icr & E1000_ICR_DOUTSYNC) {
5445 5446 5447 5448
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5449 5450 5451 5452 5453 5454 5455
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5456
	napi_schedule(&q_vector->napi);
5457 5458 5459 5460

	return IRQ_HANDLED;
}

5461
static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5462
{
5463
	struct igb_adapter *adapter = q_vector->adapter;
5464
	struct e1000_hw *hw = &adapter->hw;
5465

5466 5467
	if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
5468
		if (!adapter->msix_entries)
5469
			igb_set_itr(adapter);
5470
		else
5471
			igb_update_ring_itr(q_vector);
5472 5473
	}

5474 5475
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5476
			wr32(E1000_EIMS, q_vector->eims_value);
5477 5478 5479
		else
			igb_irq_enable(adapter);
	}
5480 5481
}

5482 5483 5484 5485 5486 5487
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5488
{
5489 5490 5491
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
5492
	bool clean_complete = true;
5493

5494
#ifdef CONFIG_IGB_DCA
5495 5496
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5497
#endif
5498
	if (q_vector->tx_ring)
5499
		clean_complete = igb_clean_tx_irq(q_vector);
5500

5501
	if (q_vector->rx_ring)
5502
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5503

5504 5505 5506
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5507

5508
	/* If not enough Rx work done, exit the polling mode */
5509 5510
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5511

5512
	return 0;
5513
}
A
Al Viro 已提交
5514

5515
/**
5516
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5517
 * @adapter: board private structure
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
 * @shhwtstamps: timestamp structure to update
 * @regval: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions
 */
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
                                   struct skb_shared_hwtstamps *shhwtstamps,
                                   u64 regval)
{
	u64 ns;

5530 5531 5532 5533 5534 5535 5536
	/*
	 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
	 * 24 to match clock shift we setup earlier.
	 */
	if (adapter->hw.mac.type == e1000_82580)
		regval <<= IGB_82580_TSYNC_SHIFT;

5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
	ns = timecounter_cyc2time(&adapter->clock, regval);
	timecompare_update(&adapter->compare, ns);
	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
}

/**
 * igb_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: pointer to q_vector containing needed info
5547
 * @buffer: pointer to igb_tx_buffer structure
5548 5549 5550 5551 5552
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
5553 5554
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
			    struct igb_tx_buffer *buffer_info)
5555
{
5556
	struct igb_adapter *adapter = q_vector->adapter;
5557
	struct e1000_hw *hw = &adapter->hw;
5558 5559
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
5560

5561
	/* if skb does not support hw timestamp or TX stamp not valid exit */
5562
	if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
5563 5564 5565 5566 5567 5568 5569
	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
		return;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5570
	skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5571 5572
}

5573 5574
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5575
 * @q_vector: pointer to q_vector containing needed info
5576 5577
 * returns true if ring is completely cleaned
 **/
5578
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5579
{
5580 5581
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *tx_ring = q_vector->tx_ring;
5582
	struct igb_tx_buffer *tx_buffer;
5583
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
5584
	unsigned int total_bytes = 0, total_packets = 0;
5585
	unsigned int budget = q_vector->tx_work_limit;
5586
	unsigned int i = tx_ring->next_to_clean;
5587

5588 5589
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5590

5591
	tx_buffer = &tx_ring->tx_buffer_info[i];
5592
	tx_desc = IGB_TX_DESC(tx_ring, i);
5593
	i -= tx_ring->count;
5594

5595
	for (; budget; budget--) {
5596
		eop_desc = tx_buffer->next_to_watch;
5597

5598 5599 5600 5601 5602 5603
		/* prevent any other reads prior to eop_desc */
		rmb();

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5604 5605 5606 5607 5608

		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5609 5610
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5611

5612
		do {
A
Alexander Duyck 已提交
5613
			tx_desc->wb.status = 0;
5614 5615 5616 5617 5618 5619 5620 5621 5622
			if (likely(tx_desc == eop_desc)) {
				eop_desc = NULL;

				total_bytes += tx_buffer->bytecount;
				total_packets += tx_buffer->gso_segs;
				igb_tx_hwtstamp(q_vector, tx_buffer);
			}

			igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5623

5624 5625
			tx_buffer++;
			tx_desc++;
5626
			i++;
5627 5628
			if (unlikely(!i)) {
				i -= tx_ring->count;
5629
				tx_buffer = tx_ring->tx_buffer_info;
5630 5631 5632
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
		} while (eop_desc);
A
Alexander Duyck 已提交
5633 5634
	}

5635
	i += tx_ring->count;
5636
	tx_ring->next_to_clean = i;
5637 5638 5639 5640 5641 5642
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
	tx_ring->total_bytes += total_bytes;
	tx_ring->total_packets += total_packets;
5643

5644 5645
	if (tx_ring->detect_tx_hung) {
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
5646

5647
		eop_desc = tx_buffer->next_to_watch;
5648 5649 5650 5651

		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
5652 5653
		if (eop_desc &&
		    time_after(jiffies, tx_buffer->time_stamp +
5654 5655
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5656 5657

			/* detected Tx unit hang */
5658
			dev_err(tx_ring->dev,
5659
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5660
				"  Tx Queue             <%d>\n"
5661 5662 5663 5664 5665 5666
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
5667
				"  next_to_watch        <%p>\n"
5668 5669
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5670
				tx_ring->queue_index,
5671
				rd32(E1000_TDH(tx_ring->reg_idx)),
5672
				readl(tx_ring->tail),
5673 5674
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5675 5676
				tx_buffer->time_stamp,
				eop_desc,
5677
				jiffies,
A
Alexander Duyck 已提交
5678
				eop_desc->wb.status);
5679 5680 5681 5682 5683
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
5684 5685
		}
	}
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706

	if (unlikely(total_packets &&
		     netif_carrier_ok(tx_ring->netdev) &&
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
5707 5708
}

5709 5710
static inline void igb_rx_checksum(struct igb_ring *ring,
				   u32 status_err, struct sk_buff *skb)
5711
{
5712
	skb_checksum_none_assert(skb);
5713 5714

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
5715 5716
	if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
	     (status_err & E1000_RXD_STAT_IXSM))
5717
		return;
5718

5719 5720 5721
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5722 5723 5724 5725 5726
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
5727
		if ((skb->len == 60) &&
E
Eric Dumazet 已提交
5728 5729
		    (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
			u64_stats_update_begin(&ring->rx_syncp);
5730
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
5731 5732
			u64_stats_update_end(&ring->rx_syncp);
		}
5733 5734 5735 5736 5737 5738 5739
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

5740
	dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
5741 5742
}

N
Nick Nunley 已提交
5743
static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
                                   struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
5758
	 * If nothing went wrong, then it should have a shared tx_flags that we
5759 5760
	 * can turn into a skb_shared_hwtstamps.
	 */
N
Nick Nunley 已提交
5761 5762 5763 5764 5765 5766 5767 5768
	if (staterr & E1000_RXDADV_STAT_TSIP) {
		u32 *stamp = (u32 *)skb->data;
		regval = le32_to_cpu(*(stamp + 2));
		regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
		skb_pull(skb, IGB_TS_HDR_LEN);
	} else {
		if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
			return;
5769

N
Nick Nunley 已提交
5770 5771 5772
		regval = rd32(E1000_RXSTMPL);
		regval |= (u64)rd32(E1000_RXSTMPH) << 32;
	}
5773 5774 5775

	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
5776
static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
5777 5778 5779 5780 5781 5782 5783
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5784 5785
	if (hlen > IGB_RX_HDR_LEN)
		hlen = IGB_RX_HDR_LEN;
5786 5787 5788
	return hlen;
}

5789
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
5790
{
5791
	struct igb_ring *rx_ring = q_vector->rx_ring;
5792 5793
	union e1000_adv_rx_desc *rx_desc;
	const int current_node = numa_node_id();
5794
	unsigned int total_bytes = 0, total_packets = 0;
5795
	u32 staterr;
5796 5797
	u16 cleaned_count = igb_desc_unused(rx_ring);
	u16 i = rx_ring->next_to_clean;
5798

5799
	rx_desc = IGB_RX_DESC(rx_ring, i);
5800 5801 5802
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
5803
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5804 5805
		struct sk_buff *skb = buffer_info->skb;
		union e1000_adv_rx_desc *next_rxd;
5806

5807
		buffer_info->skb = NULL;
5808
		prefetch(skb->data);
5809 5810 5811 5812

		i++;
		if (i == rx_ring->count)
			i = 0;
5813

5814
		next_rxd = IGB_RX_DESC(rx_ring, i);
5815
		prefetch(next_rxd);
5816

5817 5818 5819 5820 5821 5822
		/*
		 * This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();
5823

5824 5825 5826
		if (!skb_is_nonlinear(skb)) {
			__skb_put(skb, igb_get_hlen(rx_desc));
			dma_unmap_single(rx_ring->dev, buffer_info->dma,
5827
					 IGB_RX_HDR_LEN,
5828
					 DMA_FROM_DEVICE);
J
Jesse Brandeburg 已提交
5829
			buffer_info->dma = 0;
5830 5831
		}

5832 5833
		if (rx_desc->wb.upper.length) {
			u16 length = le16_to_cpu(rx_desc->wb.upper.length);
5834

K
Koki Sanagi 已提交
5835
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5836 5837 5838 5839
						buffer_info->page,
						buffer_info->page_offset,
						length);

5840 5841 5842 5843
			skb->len += length;
			skb->data_len += length;
			skb->truesize += length;

5844 5845
			if ((page_count(buffer_info->page) != 1) ||
			    (page_to_nid(buffer_info->page) != current_node))
5846 5847 5848
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
5849

5850 5851 5852
			dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
			buffer_info->page_dma = 0;
5853 5854
		}

5855
		if (!(staterr & E1000_RXD_STAT_EOP)) {
5856 5857
			struct igb_rx_buffer *next_buffer;
			next_buffer = &rx_ring->rx_buffer_info[i];
5858 5859 5860 5861
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
5862 5863
			goto next_desc;
		}
5864

5865
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5866
			dev_kfree_skb_any(skb);
5867 5868 5869
			goto next_desc;
		}

N
Nick Nunley 已提交
5870 5871
		if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
			igb_rx_hwtstamp(q_vector, staterr, skb);
5872 5873 5874
		total_bytes += skb->len;
		total_packets++;

5875
		igb_rx_checksum(rx_ring, staterr, skb);
5876

5877
		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
5878

J
Jiri Pirko 已提交
5879 5880
		if (staterr & E1000_RXD_STAT_VP) {
			u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
5881

J
Jiri Pirko 已提交
5882 5883 5884
			__vlan_hwaccel_put_tag(skb, vid);
		}
		napi_gro_receive(&q_vector->napi, skb);
5885

5886
		budget--;
5887
next_desc:
5888 5889 5890 5891
		if (!budget)
			break;

		cleaned_count++;
5892 5893
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5894
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
5895 5896 5897 5898 5899 5900 5901
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}
5902

5903
	rx_ring->next_to_clean = i;
E
Eric Dumazet 已提交
5904
	u64_stats_update_begin(&rx_ring->rx_syncp);
5905 5906
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
5907
	u64_stats_update_end(&rx_ring->rx_syncp);
5908 5909 5910 5911
	rx_ring->total_packets += total_packets;
	rx_ring->total_bytes += total_bytes;

	if (cleaned_count)
5912
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
5913

5914
	return !!budget;
5915 5916
}

5917
static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
5918
				 struct igb_rx_buffer *bi)
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
{
	struct sk_buff *skb = bi->skb;
	dma_addr_t dma = bi->dma;

	if (dma)
		return true;

	if (likely(!skb)) {
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		bi->skb = skb;
		if (!skb) {
			rx_ring->rx_stats.alloc_failed++;
			return false;
		}

		/* initialize skb for ring */
		skb_record_rx_queue(skb, rx_ring->queue_index);
	}

	dma = dma_map_single(rx_ring->dev, skb->data,
			     IGB_RX_HDR_LEN, DMA_FROM_DEVICE);

	if (dma_mapping_error(rx_ring->dev, dma)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->dma = dma;
	return true;
}

static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
5952
				  struct igb_rx_buffer *bi)
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
{
	struct page *page = bi->page;
	dma_addr_t page_dma = bi->page_dma;
	unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);

	if (page_dma)
		return true;

	if (!page) {
		page = netdev_alloc_page(rx_ring->netdev);
		bi->page = page;
		if (unlikely(!page)) {
			rx_ring->rx_stats.alloc_failed++;
			return false;
		}
	}

	page_dma = dma_map_page(rx_ring->dev, page,
				page_offset, PAGE_SIZE / 2,
				DMA_FROM_DEVICE);

	if (dma_mapping_error(rx_ring->dev, page_dma)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->page_dma = page_dma;
	bi->page_offset = page_offset;
	return true;
}

5984
/**
5985
 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
5986 5987
 * @adapter: address of board private structure
 **/
5988
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
5989 5990
{
	union e1000_adv_rx_desc *rx_desc;
5991
	struct igb_rx_buffer *bi;
5992
	u16 i = rx_ring->next_to_use;
5993

5994
	rx_desc = IGB_RX_DESC(rx_ring, i);
5995
	bi = &rx_ring->rx_buffer_info[i];
5996
	i -= rx_ring->count;
5997 5998

	while (cleaned_count--) {
5999 6000
		if (!igb_alloc_mapped_skb(rx_ring, bi))
			break;
6001

6002 6003 6004
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info. */
		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
6005

6006 6007 6008 6009
		if (!igb_alloc_mapped_page(rx_ring, bi))
			break;

		rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
6010

6011 6012
		rx_desc++;
		bi++;
6013
		i++;
6014
		if (unlikely(!i)) {
6015
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6016
			bi = rx_ring->rx_buffer_info;
6017 6018 6019 6020 6021
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6022 6023
	}

6024 6025
	i += rx_ring->count;

6026 6027 6028 6029 6030 6031 6032 6033
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
6034
		writel(i, rx_ring->tail);
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6057 6058
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6059 6060 6061 6062 6063 6064 6065 6066 6067
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

6068 6069 6070 6071 6072 6073
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
6086 6087 6088 6089
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
6090 6091
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6092
	struct hwtstamp_config config;
6093 6094
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6095
	u32 tsync_rx_cfg = 0;
6096 6097
	bool is_l4 = false;
	bool is_l2 = false;
6098
	u32 regval;
6099 6100 6101 6102 6103 6104 6105 6106

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

6107 6108
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
6109
		tsync_tx_ctl = 0;
6110 6111 6112 6113 6114 6115 6116 6117
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
6118
		tsync_rx_ctl = 0;
6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
6129
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6130 6131 6132
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6133
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6134
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6135
		is_l4 = true;
6136 6137
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6138
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6139
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6140
		is_l4 = true;
6141 6142 6143
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6144
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6145
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6146 6147
		is_l2 = true;
		is_l4 = true;
6148 6149 6150 6151
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6152
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6153
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6154 6155
		is_l2 = true;
		is_l4 = true;
6156 6157 6158 6159 6160
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6161
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6162
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6163
		is_l2 = true;
6164 6165 6166 6167 6168
		break;
	default:
		return -ERANGE;
	}

6169 6170 6171 6172 6173 6174
	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

N
Nick Nunley 已提交
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
	/*
	 * Per-packet timestamping only works if all packets are
	 * timestamped, so enable timestamping in all packets as
	 * long as one rx filter was configured.
	 */
	if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
	}

6185 6186
	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
6187 6188
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
6189 6190
	wr32(E1000_TSYNCTXCTL, regval);

6191
	/* enable/disable RX */
6192
	regval = rd32(E1000_TSYNCRXCTL);
6193 6194
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
6195 6196
	wr32(E1000_TSYNCRXCTL, regval);

6197 6198
	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6199

6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		                 E1000_ETQF_1588 | /* enable timestamping */
		                 ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
6230 6231 6232 6233 6234 6235 6236
	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
6237

6238 6239
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
6240 6241
}

6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6255 6256
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6257 6258 6259 6260 6261
	default:
		return -EOPNOTSUPP;
	}
}

6262 6263 6264 6265 6266
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

6267
	cap_offset = adapter->pdev->pcie_cap;
6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

6281
	cap_offset = adapter->pdev->pcie_cap;
6282 6283 6284 6285 6286 6287 6288 6289
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

J
Jiri Pirko 已提交
6290
static void igb_vlan_mode(struct net_device *netdev, u32 features)
6291 6292 6293 6294 6295 6296 6297
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);

J
Jiri Pirko 已提交
6298
	if (features & NETIF_F_HW_VLAN_RX) {
6299 6300 6301 6302 6303
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6304
		/* Disable CFI check */
6305 6306 6307 6308 6309 6310 6311 6312 6313 6314
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6315 6316
	igb_rlpml_set(adapter);

6317 6318 6319 6320 6321 6322 6323 6324
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6325
	int pf_id = adapter->vfs_allocated_count;
6326

6327 6328
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6329

6330 6331
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6332 6333

	set_bit(vid, adapter->active_vlans);
6334 6335 6336 6337 6338 6339
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6340
	int pf_id = adapter->vfs_allocated_count;
6341
	s32 err;
6342 6343 6344 6345 6346 6347

	igb_irq_disable(adapter);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

6348 6349
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6350

6351 6352
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6353
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6354 6355

	clear_bit(vid, adapter->active_vlans);
6356 6357 6358 6359
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6360
	u16 vid;
6361

J
Jiri Pirko 已提交
6362 6363
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
6364 6365
}

6366
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6367
{
6368
	struct pci_dev *pdev = adapter->pdev;
6369 6370 6371 6372
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6373 6374 6375 6376 6377
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6378 6379
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6380 6381 6382
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL)
		goto err_inval;
6383

6384
	switch (spd + dplx) {
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6403
		goto err_inval;
6404 6405
	}
	return 0;
6406 6407 6408 6409

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
6410 6411
}

6412
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6413 6414 6415 6416
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6417
	u32 ctrl, rctl, status;
6418 6419 6420 6421 6422 6423 6424
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6425 6426 6427
	if (netif_running(netdev))
		igb_close(netdev);

6428
	igb_clear_interrupt_scheme(adapter);
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6442
		igb_set_rx_mode(netdev);
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6460
		igb_disable_pcie_master(hw);
6461 6462 6463 6464 6465 6466 6467 6468

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6469 6470
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6471 6472 6473
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

6504 6505 6506 6507 6508 6509 6510 6511 6512
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
6513
	pci_save_state(pdev);
T
Taku Izumi 已提交
6514

6515
	err = pci_enable_device_mem(pdev);
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

6526
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
6527 6528
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
6529 6530 6531
	}

	igb_reset(adapter);
6532 6533 6534 6535 6536

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

6537 6538
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
6539 6540 6541 6542 6543
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
6544 6545 6546 6547 6548 6549 6550 6551 6552

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
6553 6554 6555 6556 6557 6558 6559 6560
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
6572
	struct e1000_hw *hw = &adapter->hw;
6573 6574
	int i;

6575
	if (!adapter->msix_entries) {
6576
		struct igb_q_vector *q_vector = adapter->q_vector[0];
6577
		igb_irq_disable(adapter);
6578
		napi_schedule(&q_vector->napi);
6579 6580
		return;
	}
6581

6582 6583 6584 6585
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		wr32(E1000_EIMC, q_vector->eims_value);
		napi_schedule(&q_vector->napi);
6586
	}
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

6606 6607 6608
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6629
	pci_ers_result_t result;
T
Taku Izumi 已提交
6630
	int err;
6631

6632
	if (pci_enable_device_mem(pdev)) {
6633 6634
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
6635 6636 6637 6638
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
6639
		pci_save_state(pdev);
6640

6641 6642
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
6643

6644 6645 6646 6647
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
6648

6649 6650 6651 6652 6653 6654
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
6655 6656

	return result;
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

6713 6714 6715 6716
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
6717 6718 6719
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6720

6721
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6722

6723
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6724 6725 6726 6727

	return 0;
}

6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

6811 6812
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6841
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
6842 6843 6844 6845 6846
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

6847 6848 6849
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
6850
	u32 reg;
6851

6852 6853 6854 6855
	switch (hw->mac.type) {
	case e1000_82575:
	default:
		/* replication is not supported for 82575 */
6856
		return;
6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
6867 6868
	case e1000_i350:
		/* none of the above registers are supported by i350 */
6869 6870
		break;
	}
6871

6872 6873 6874
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
6875 6876
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
6877 6878 6879 6880
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
6881 6882
}

6883
/* igb_main.c */