igb_main.c 197.1 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
60 61
#include "igb.h"

C
Carolyn Wyborny 已提交
62 63 64
#define MAJ 4
#define MIN 0
#define BUILD 1
C
Carolyn Wyborny 已提交
65
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66
__stringify(BUILD) "-k"
67 68 69 70
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
71
static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
72 73 74 75 76

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

77
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
78 79 80 81 82
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
83 84 85 86
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
90 91 92
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
93 94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
95 96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
97
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
98
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
100 101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
102
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
105 106 107 108 109 110 111 112 113 114 115 116 117 118
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
119
static void igb_setup_mrqc(struct igb_adapter *);
120 121 122 123 124 125 126 127 128
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
129 130
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
131
static void igb_set_rx_mode(struct net_device *);
132 133 134
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
135
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
136 137
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
138 139
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
140
static void igb_set_uta(struct igb_adapter *adapter);
141 142 143
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
144
static irqreturn_t igb_msix_ring(int irq, void *);
145
#ifdef CONFIG_IGB_DCA
146
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
147
static void igb_setup_dca(struct igb_adapter *);
148
#endif /* CONFIG_IGB_DCA */
149
static int igb_poll(struct napi_struct *, int);
150
static bool igb_clean_tx_irq(struct igb_q_vector *);
151
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
152 153 154
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
155
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
156 157
static int igb_vlan_rx_add_vid(struct net_device *, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, u16);
158
static void igb_restore_vlan(struct igb_adapter *);
159
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
160 161 162
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
163
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
164
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
165 166 167 168 169 170
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
171
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
172 173

#ifdef CONFIG_PCI_IOV
174
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
175
static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
R
RongQing Li 已提交
176
#endif
177 178

#ifdef CONFIG_PM
179
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
180
static int igb_suspend(struct device *);
181
#endif
Y
Yan, Zheng 已提交
182 183 184 185 186 187 188 189 190 191 192
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
193 194
#endif
static void igb_shutdown(struct pci_dev *);
195
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
196 197 198 199 200 201 202
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
203 204 205 206
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
207
#ifdef CONFIG_PCI_IOV
208 209 210 211 212 213
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

214 215 216 217 218
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

219
static const struct pci_error_handlers igb_err_handler = {
220 221 222 223 224
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

225
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226 227 228 229 230 231 232

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
233
	.driver.pm = &igb_pm_ops,
234 235 236 237 238 239 240 241 242 243
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

244 245 246 247 248
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
349
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
350 351 352 353
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
354 355
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
372
	u16 i, n;
373 374 375 376 377 378 379

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
380 381 382 383
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
384 385 386 387
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
388
	pr_info(" Register Name   Value\n");
389 390 391 392 393 394 395 396 397 398
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
399
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
400
	for (n = 0; n < adapter->num_tx_queues; n++) {
401
		struct igb_tx_buffer *buffer_info;
402
		tx_ring = adapter->tx_ring[n];
403
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
404 405
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
406 407
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
408 409
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
431 432 433 434 435 436
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
437 438

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
439
			const char *next_desc;
440
			struct igb_tx_buffer *buffer_info;
441
			tx_desc = IGB_TX_DESC(tx_ring, i);
442
			buffer_info = &tx_ring->tx_buffer_info[i];
443
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
444 445 446 447 448 449 450 451 452 453 454 455
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
456 457
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
458 459
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
460 461
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
462
				buffer_info->skb, next_desc);
463

464
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
465 466
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
467
					16, 1, buffer_info->skb->data,
468 469
					dma_unmap_len(buffer_info, len),
					true);
470 471 472 473 474 475
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
476
	pr_info("Queue [NTU] [NTC]\n");
477 478
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
479 480
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
512 513 514 515 516 517 518
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
519 520

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
521
			const char *next_desc;
522 523
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
524
			rx_desc = IGB_RX_DESC(rx_ring, i);
525 526
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
527 528 529 530 531 532 533 534

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

535 536
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
537 538
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
539 540
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
541
					next_desc);
542
			} else {
543 544
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
545 546 547
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
548
					next_desc);
549

550
				if (netif_msg_pktdata(adapter) &&
551
				    buffer_info->dma && buffer_info->page) {
552 553 554
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
555 556
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
557
					  IGB_RX_BUFSZ, true);
558 559 560 561 562 563 564 565 566
				}
			}
		}
	}

exit:
	return;
}

567
/**
568
 * igb_get_hw_dev - return device
569 570
 * used by hardware layer to print debugging information
 **/
571
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
572 573
{
	struct igb_adapter *adapter = hw->back;
574
	return adapter->netdev;
575
}
P
Patrick Ohly 已提交
576

577 578 579 580 581 582 583 584 585
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
586
	pr_info("%s - version %s\n",
587 588
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
589
	pr_info("%s\n", igb_copyright);
590

591
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
592 593
	dca_register_notify(&dca_notifier);
#endif
594
	ret = pci_register_driver(&igb_driver);
595 596 597 598 599 600 601 602 603 604 605 606 607
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
608
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
609 610
	dca_unregister_notify(&dca_notifier);
#endif
611 612 613 614 615
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

616 617 618 619 620 621 622 623 624 625
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
626
	int i = 0, j = 0;
627
	u32 rbase_offset = adapter->vfs_allocated_count;
628 629 630 631 632 633 634 635

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
636
		if (adapter->vfs_allocated_count) {
637
			for (; i < adapter->rss_queues; i++)
638 639
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
640
		}
641
	case e1000_82575:
642
	case e1000_82580:
643
	case e1000_i350:
644 645
	case e1000_i210:
	case e1000_i211:
646
	default:
647
		for (; i < adapter->num_rx_queues; i++)
648
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
649
		for (; j < adapter->num_tx_queues; j++)
650
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
651 652 653 654
		break;
	}
}

A
Alexander Duyck 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

681
#define IGB_N0_QUEUE -1
682
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
683
{
684
	struct igb_adapter *adapter = q_vector->adapter;
685
	struct e1000_hw *hw = &adapter->hw;
686 687
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
688
	u32 msixbm = 0;
689

690 691 692 693
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
694 695 696

	switch (hw->mac.type) {
	case e1000_82575:
697 698 699 700
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
701
		if (rx_queue > IGB_N0_QUEUE)
702
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
703
		if (tx_queue > IGB_N0_QUEUE)
704
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
705 706
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
707
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
708
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
709 710
		break;
	case e1000_82576:
A
Alexander Duyck 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724
		/*
		 * 82576 uses a table that essentially consists of 2 columns
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
725
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
726
		break;
727
	case e1000_82580:
728
	case e1000_i350:
729 730
	case e1000_i210:
	case e1000_i211:
A
Alexander Duyck 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
		/*
		 * On 82580 and newer adapters the scheme is similar to 82576
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
746 747
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
748 749 750 751
	default:
		BUG();
		break;
	}
752 753 754 755 756 757

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
775 776
	switch (hw->mac.type) {
	case e1000_82575:
777 778 779 780 781 782 783 784 785
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
786 787 788 789

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
790
		adapter->eims_other = E1000_EIMS_OTHER;
791

A
Alexander Duyck 已提交
792 793 794
		break;

	case e1000_82576:
795
	case e1000_82580:
796
	case e1000_i350:
797 798
	case e1000_i210:
	case e1000_i211:
799 800 801 802 803 804 805 806
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
807 808
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

809
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
810 811 812 813 814
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
815 816 817

	adapter->eims_enable_mask |= adapter->eims_other;

818 819
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
820

821 822 823 824 825 826 827 828 829 830 831 832
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
833
	struct e1000_hw *hw = &adapter->hw;
834 835
	int i, err = 0, vector = 0;

836
	err = request_irq(adapter->msix_entries[vector].vector,
837
	                  igb_msix_other, 0, netdev->name, adapter);
838 839 840 841 842 843 844 845 846
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

847
		if (q_vector->rx.ring && q_vector->tx.ring)
848
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
849 850
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
851
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
852 853
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
854
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
855
				q_vector->rx.ring->queue_index);
856
		else
857 858
			sprintf(q_vector->name, "%s-unused", netdev->name);

859
		err = request_irq(adapter->msix_entries[vector].vector,
860
		                  igb_msix_ring, 0, q_vector->name,
861
		                  q_vector);
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
879
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
880
		pci_disable_msi(adapter->pdev);
881
	}
882 883
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
/**
 * igb_free_q_vector - Free memory allocated for specific interrupt vector
 * @adapter: board private structure to initialize
 * @v_idx: Index of vector to be freed
 *
 * This function frees the memory allocated to the q_vector.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	adapter->q_vector[v_idx] = NULL;
	netif_napi_del(&q_vector->napi);

	/*
	 * ixgbe_get_stats64() might access the rings on this vector,
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

913 914 915 916 917 918 919 920 921 922
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
923 924 925 926
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
927
	adapter->num_q_vectors = 0;
928 929 930

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);
931 932 933 934 935 936 937 938 939 940 941 942 943
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
944 945 946 947 948 949 950

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
951
static void igb_set_interrupt_capability(struct igb_adapter *adapter)
952 953 954 955
{
	int err;
	int numvecs, i;

956
	/* Number of supported queues. */
957
	adapter->num_rx_queues = adapter->rss_queues;
958 959 960 961
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
962

963 964 965
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
966
	/* if tx handler is separate add 1 for every tx queue */
967 968
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
969 970 971 972 973 974

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
975 976
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
977

978 979 980 981 982 983 984 985 986 987
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
988
		return;
989 990 991 992 993

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
994 995 996 997 998 999 1000 1001 1002 1003 1004
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1005
		wrfl();
1006 1007 1008 1009
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1010
	adapter->vfs_allocated_count = 0;
1011
	adapter->rss_queues = 1;
1012
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1013
	adapter->num_rx_queues = 1;
1014
	adapter->num_tx_queues = 1;
1015
	adapter->num_q_vectors = 1;
1016
	if (!pci_enable_msi(adapter->pdev))
1017
		adapter->flags |= IGB_FLAG_HAS_MSI;
1018 1019
}

1020 1021 1022 1023 1024 1025 1026
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1027
/**
1028
 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1029
 * @adapter: board private structure to initialize
1030 1031 1032 1033 1034 1035
 * @v_count: q_vectors allocated on adapter, used for ring interleaving
 * @v_idx: index of vector in adapter struct
 * @txr_count: total number of Tx rings to allocate
 * @txr_idx: index of first Tx ring to allocate
 * @rxr_count: total number of Rx rings to allocate
 * @rxr_idx: index of first Rx ring to allocate
1036
 *
1037
 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1038
 **/
1039 1040 1041 1042
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1043 1044
{
	struct igb_q_vector *q_vector;
1045 1046
	struct igb_ring *ring;
	int ring_count, size;
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
	q_vector = kzalloc(size, GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1103
	}
1104

1105 1106 1107 1108
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1109

1110 1111
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1112

1113 1114
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1115

1116 1117 1118
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1119

1120 1121 1122 1123 1124 1125
		/*
		 * On i350, i210, and i211, loopback VLAN packets
		 * have the tag byte-swapped.
		 * */
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1136 1137
}

1138

1139
/**
1140 1141
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
1142
 *
1143 1144
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
1145
 **/
1146
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1147
{
1148 1149 1150 1151 1152
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1153

1154 1155 1156 1157
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1158

1159 1160 1161 1162 1163 1164
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1165 1166
		}
	}
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1184
	return 0;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1207
	igb_set_interrupt_capability(adapter);
1208 1209 1210 1211 1212 1213 1214

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1215
	igb_cache_ring_register(adapter);
1216 1217

	return 0;
1218

1219 1220 1221 1222 1223
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1224 1225 1226 1227 1228 1229 1230 1231 1232
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1233
	struct pci_dev *pdev = adapter->pdev;
1234 1235 1236 1237
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1238
		if (!err)
1239 1240
			goto request_done;
		/* fall back to MSI */
1241 1242
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1243
		igb_clear_interrupt_scheme(adapter);
1244
		if (!pci_enable_msi(pdev))
1245
			adapter->flags |= IGB_FLAG_HAS_MSI;
1246
		adapter->num_tx_queues = 1;
1247
		adapter->num_rx_queues = 1;
1248 1249 1250 1251 1252 1253 1254 1255 1256
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1257
	}
P
PJ Waskiewicz 已提交
1258

1259 1260
	igb_assign_vector(adapter->q_vector[0], 0);

1261
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1262
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1263
				  netdev->name, adapter);
1264 1265
		if (!err)
			goto request_done;
1266

1267 1268
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1269
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1270 1271
	}

1272
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1273
			  netdev->name, adapter);
1274

A
Andy Gospodarek 已提交
1275
	if (err)
1276
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1288
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1289

1290
		for (i = 0; i < adapter->num_q_vectors; i++)
1291
			free_irq(adapter->msix_entries[vector++].vector,
1292
				 adapter->q_vector[i]);
1293 1294
	} else {
		free_irq(adapter->pdev->irq, adapter);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1306 1307 1308 1309 1310
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1311
	if (adapter->msix_entries) {
1312 1313 1314 1315 1316
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1317
	}
P
PJ Waskiewicz 已提交
1318 1319

	wr32(E1000_IAM, 0);
1320 1321
	wr32(E1000_IMC, ~0);
	wrfl();
1322 1323 1324 1325 1326 1327 1328
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1340
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1341 1342 1343 1344
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1345
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1346
		if (adapter->vfs_allocated_count) {
1347
			wr32(E1000_MBVFIMR, 0xFF);
1348 1349 1350
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1351
	} else {
1352 1353 1354 1355
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1356
	}
1357 1358 1359 1360
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1361
	struct e1000_hw *hw = &adapter->hw;
1362 1363
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1375
	    !test_bit(old_vid, adapter->active_vlans)) {
1376 1377
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1431
	igb_set_rx_mode(netdev);
1432 1433 1434

	igb_restore_vlan(adapter);

1435
	igb_setup_tctl(adapter);
1436
	igb_setup_mrqc(adapter);
1437
	igb_setup_rctl(adapter);
1438 1439

	igb_configure_tx(adapter);
1440
	igb_configure_rx(adapter);
1441 1442 1443

	igb_rx_fifo_flush_82575(&adapter->hw);

1444
	/* call igb_desc_unused which always leaves
1445 1446 1447
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1448
		struct igb_ring *ring = adapter->rx_ring[i];
1449
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1450 1451 1452
	}
}

1453 1454 1455 1456 1457 1458
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1459 1460
	igb_reset_phy(&adapter->hw);

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1493 1494 1495
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1496
	if (adapter->msix_entries)
1497
		igb_configure_msix(adapter);
1498 1499
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1500 1501 1502 1503 1504

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1505 1506 1507 1508 1509 1510 1511
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1512 1513
	netif_tx_start_all_queues(adapter->netdev);

1514 1515 1516 1517
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1518 1519 1520 1521 1522 1523
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1524
	struct e1000_hw *hw = &adapter->hw;
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1537
	netif_tx_stop_all_queues(netdev);
1538 1539 1540 1541 1542 1543 1544 1545 1546

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1547 1548
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_disable(&(adapter->q_vector[i]->napi));
1549 1550 1551 1552 1553 1554 1555

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1556 1557

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1558 1559 1560
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1561

1562 1563 1564
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1565 1566
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1567 1568
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1569 1570 1571 1572 1573
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1588
	struct pci_dev *pdev = adapter->pdev;
1589
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1590 1591
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1592 1593 1594 1595 1596 1597
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1598
	switch (mac->type) {
1599
	case e1000_i350:
1600 1601 1602 1603
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1604
	case e1000_82576:
1605 1606
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1607 1608
		break;
	case e1000_82575:
1609 1610
	case e1000_i210:
	case e1000_i211:
1611 1612 1613
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1614
	}
1615

A
Alexander Duyck 已提交
1616 1617
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1635
				sizeof(union e1000_adv_tx_desc) -
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1656
		wr32(E1000_PBA, pba);
1657 1658 1659 1660 1661 1662 1663 1664 1665
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1666
			((pba << 10) - 2 * adapter->max_frame_size));
1667

1668 1669
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1670 1671
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1672
	fc->current_mode = fc->requested_mode;
1673

1674 1675 1676 1677
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1678
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1679 1680

		/* ping all the active vfs to let them know we are going down */
1681
		igb_ping_all_vfs(adapter);
1682 1683 1684 1685 1686 1687

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1688
	/* Allow time for pending master requests to run */
1689
	hw->mac.ops.reset_hw(hw);
1690 1691
	wr32(E1000_WUC, 0);

1692
	if (hw->mac.ops.init_hw(hw))
1693
		dev_err(&pdev->dev, "Hardware Error\n");
1694

1695 1696 1697 1698 1699 1700 1701
	/*
	 * Flow control settings reset on hardware reset, so guarantee flow
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1702
	igb_init_dmac(adapter, pba);
1703 1704 1705
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1706 1707 1708 1709 1710
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1711 1712 1713 1714 1715
#ifdef CONFIG_IGB_PTP
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);
#endif /* CONFIG_IGB_PTP */

1716
	igb_get_phy_info(hw);
1717 1718
}

1719 1720
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
{
	/*
	 * Since there is no support for separate rx/tx vlan accel
	 * enable/disable make sure tx flag is always in same state as rx.
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1734 1735
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1736
{
1737
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
1738
	struct igb_adapter *adapter = netdev_priv(netdev);
1739

J
Jiri Pirko 已提交
1740 1741 1742
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

1753 1754 1755
	return 0;
}

S
Stephen Hemminger 已提交
1756
static const struct net_device_ops igb_netdev_ops = {
1757
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1758
	.ndo_stop		= igb_close,
1759
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1760
	.ndo_get_stats64	= igb_get_stats64,
1761
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1762 1763 1764 1765 1766 1767 1768
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1769 1770 1771 1772
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1773 1774 1775
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1776 1777
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1778 1779
};

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 *
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 eeprom_verh, eeprom_verl, comb_verh, comb_verl, comb_offset;
	u16 major, build, patch, fw_version;
	u32 etrack_id;

	hw->nvm.ops.read(hw, 5, 1, &fw_version);
	if (adapter->hw.mac.type != e1000_i211) {
		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh);
		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl);
		etrack_id = (eeprom_verh << IGB_ETRACK_SHIFT) | eeprom_verl;

		/* combo image version needs to be found */
		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
		if ((comb_offset != 0x0) &&
		    (comb_offset != IGB_NVM_VER_INVALID)) {
			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
					 + 1), 1, &comb_verh);
			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
					 1, &comb_verl);

			/* Only display Option Rom if it exists and is valid */
			if ((comb_verh && comb_verl) &&
			    ((comb_verh != IGB_NVM_VER_INVALID) &&
			     (comb_verl != IGB_NVM_VER_INVALID))) {
				major = comb_verl >> IGB_COMB_VER_SHFT;
				build = (comb_verl << IGB_COMB_VER_SHFT) |
					(comb_verh >> IGB_COMB_VER_SHFT);
				patch = comb_verh & IGB_COMB_VER_MASK;
				snprintf(adapter->fw_version,
					 sizeof(adapter->fw_version),
					 "%d.%d%d, 0x%08x, %d.%d.%d",
					 (fw_version & IGB_MAJOR_MASK) >>
					 IGB_MAJOR_SHIFT,
					 (fw_version & IGB_MINOR_MASK) >>
					 IGB_MINOR_SHIFT,
					 (fw_version & IGB_BUILD_MASK),
					 etrack_id, major, build, patch);
				goto out;
			}
		}
		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
			 "%d.%d%d, 0x%08x",
			 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
			 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
			 (fw_version & IGB_BUILD_MASK), etrack_id);
	} else {
		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
			 "%d.%d%d",
			 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
			 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
			 (fw_version & IGB_BUILD_MASK));
	}
out:
	return;
}

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1860
	u16 eeprom_data = 0;
1861
	s32 ret_val;
1862
	static int global_quad_port_a; /* global quad port a indication */
1863 1864
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1865
	int err, pci_using_dac;
1866
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1867
	u8 part_str[E1000_PBANUM_LENGTH];
1868

1869 1870 1871 1872 1873
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1874
			pci_name(pdev), pdev->vendor, pdev->device);
1875 1876 1877
		return -EINVAL;
	}

1878
	err = pci_enable_device_mem(pdev);
1879 1880 1881 1882
	if (err)
		return err;

	pci_using_dac = 0;
1883
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1884
	if (!err) {
1885
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1886 1887 1888
		if (!err)
			pci_using_dac = 1;
	} else {
1889
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1890
		if (err) {
1891
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1892 1893 1894 1895 1896 1897 1898 1899
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1900 1901 1902
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1903 1904 1905
	if (err)
		goto err_pci_reg;

1906
	pci_enable_pcie_error_reporting(pdev);
1907

1908
	pci_set_master(pdev);
1909
	pci_save_state(pdev);
1910 1911

	err = -ENOMEM;
1912
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1913
				   IGB_MAX_TX_QUEUES);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
1925
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
1926 1927 1928 1929 1930

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1931 1932
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1933 1934
		goto err_ioremap;

S
Stephen Hemminger 已提交
1935
	netdev->netdev_ops = &igb_netdev_ops;
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1958
		goto err_sw_init;
1959

1960
	/* setup the private structure */
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	/*
	 * features is initialized to 0 in allocation, it might have bits
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
1997
	netdev->hw_features |= NETIF_F_RXALL;
1998 1999 2000 2001 2002 2003 2004 2005 2006

	/* set this bit last since it cannot be part of hw_features */
	netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2007

2008 2009
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2010
	if (pci_using_dac) {
2011
		netdev->features |= NETIF_F_HIGHDMA;
2012 2013
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2014

2015 2016
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2017
		netdev->features |= NETIF_F_SCTP_CSUM;
2018
	}
2019

2020 2021
	netdev->priv_flags |= IFF_UNICAST_FLT;

2022
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2023 2024 2025 2026 2027

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	/*
	 * make sure the NVM is good , i211 parts have special NVM that
	 * doesn't contain a checksum
	 */
	if (hw->mac.type != e1000_i211) {
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2053 2054 2055
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2056
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2057
	            (unsigned long) adapter);
2058
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2059
	            (unsigned long) adapter);
2060 2061 2062 2063

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2064
	/* Initialize link properties that are user-changeable */
2065 2066 2067 2068
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2069 2070
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2071 2072 2073 2074 2075 2076 2077

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

2078
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
2079
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2080
	else if (hw->mac.type >= e1000_82580)
2081 2082 2083
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
2084 2085
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2098 2099
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2100 2101 2102 2103 2104
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
2105
	case E1000_DEV_ID_82576_QUAD_COPPER:
2106
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2107 2108 2109 2110 2111 2112 2113 2114 2115
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2116 2117 2118 2119
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
2120
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2134 2135 2136
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2137
#ifdef CONFIG_IGB_DCA
2138
	if (dca_add_requester(&pdev->dev) == 0) {
2139
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2140 2141 2142 2143
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2144
#endif
2145

2146
#ifdef CONFIG_IGB_PTP
A
Anders Berggren 已提交
2147
	/* do hw tstamp init after resetting */
2148
	igb_ptp_init(adapter);
2149
#endif /* CONFIG_IGB_PTP */
A
Anders Berggren 已提交
2150

2151 2152
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2153
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2154
		 netdev->name,
2155
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2156
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2157
		                                            "unknown"),
2158 2159 2160 2161
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2162
		 netdev->dev_addr);
2163

2164 2165 2166 2167
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2168 2169 2170
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2171
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2172
		adapter->num_rx_queues, adapter->num_tx_queues);
2173 2174
	switch (hw->mac.type) {
	case e1000_i350:
2175 2176
	case e1000_i210:
	case e1000_i211:
2177 2178 2179 2180 2181
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
Y
Yan, Zheng 已提交
2182 2183

	pm_runtime_put_noidle(&pdev->dev);
2184 2185 2186 2187 2188 2189
	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
2190
		igb_reset_phy(hw);
2191 2192 2193 2194

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2195
	igb_clear_interrupt_scheme(adapter);
2196 2197 2198 2199
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2200 2201
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2221
	struct e1000_hw *hw = &adapter->hw;
2222

Y
Yan, Zheng 已提交
2223
	pm_runtime_get_noresume(&pdev->dev);
2224
#ifdef CONFIG_IGB_PTP
2225
	igb_ptp_stop(adapter);
2226
#endif /* CONFIG_IGB_PTP */
Y
Yan, Zheng 已提交
2227

2228 2229 2230 2231
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2232 2233 2234 2235
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2236 2237
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2238

2239
#ifdef CONFIG_IGB_DCA
2240
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2241 2242
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2243
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2244
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2245 2246 2247
	}
#endif

2248 2249 2250 2251 2252 2253
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2254
	igb_clear_interrupt_scheme(adapter);
2255

2256 2257 2258 2259
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
2260 2261 2262
		if (igb_vfs_are_assigned(adapter)) {
			dev_info(&pdev->dev, "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
		} else {
2263 2264 2265
			pci_disable_sriov(pdev);
			msleep(500);
		}
2266 2267 2268 2269

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2270
		wrfl();
2271 2272 2273 2274
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
2275

2276 2277 2278
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2279 2280
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2281

2282
	kfree(adapter->shadow_vfta);
2283 2284
	free_netdev(netdev);

2285
	pci_disable_pcie_error_reporting(pdev);
2286

2287 2288 2289
	pci_disable_device(pdev);
}

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2303
	struct e1000_hw *hw = &adapter->hw;
2304
	int old_vfs = pci_num_vf(adapter->pdev);
2305
	int i;
2306

2307 2308 2309 2310
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2311 2312 2313 2314
	if (old_vfs) {
		dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
			 "max_vfs setting of %d\n", old_vfs, max_vfs);
		adapter->vfs_allocated_count = old_vfs;
2315 2316
	}

2317 2318 2319 2320 2321
	if (!adapter->vfs_allocated_count)
		return;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);
2322

2323 2324
	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
2325
		adapter->vfs_allocated_count = 0;
2326 2327 2328
		dev_err(&pdev->dev, "Unable to allocate memory for VF "
			"Data Storage\n");
		goto out;
2329
	}
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348

	if (!old_vfs) {
		if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
			goto err_out;
	}
	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;
err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return;
2349 2350 2351
#endif /* CONFIG_PCI_IOV */
}

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
2365
	u32 max_rss_queues;
2366 2367 2368

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

2369
	/* set default ring sizes */
2370 2371
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2372 2373

	/* set default ITR values */
2374 2375 2376
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

2377 2378 2379
	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

2380 2381
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
2382 2383
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

E
Eric Dumazet 已提交
2384
	spin_lock_init(&adapter->stats64_lock);
2385
#ifdef CONFIG_PCI_IOV
2386 2387 2388
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
2389 2390 2391 2392 2393 2394
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
2395 2396 2397 2398
		break;
	default:
		break;
	}
2399
#endif /* CONFIG_PCI_IOV */
2400 2401

	/* Determine the maximum number of RSS queues supported. */
2402
	switch (hw->mac.type) {
2403 2404 2405 2406
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2407
	case e1000_i210:
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2426
		break;
2427 2428 2429 2430 2431 2432 2433
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2434
	case e1000_i211:
2435
		/* Device supports enough interrupts without queue pairing. */
2436
		break;
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	case e1000_82576:
		/*
		 * If VFs are going to be allocated with RSS queues then we
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
	case e1000_i210:
2450
	default:
2451 2452 2453 2454 2455 2456
		/*
		 * If rss_queues > half of max_rss_queues, pair the queues in
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2457 2458
		break;
	}
2459

2460 2461 2462 2463 2464
	/* Setup and initialize a copy of the hw vlan table array */
	adapter->shadow_vfta = kzalloc(sizeof(u32) *
				E1000_VLAN_FILTER_TBL_SIZE,
				GFP_ATOMIC);

2465
	/* This call may decrease the number of queues */
2466
	if (igb_init_interrupt_scheme(adapter)) {
2467 2468 2469 2470
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2471 2472
	igb_probe_vfs(adapter);

2473 2474 2475
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2476
	if (hw->mac.type >= e1000_i350)
2477 2478
		adapter->flags &= ~IGB_FLAG_DMAC;

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
Y
Yan, Zheng 已提交
2495
static int __igb_open(struct net_device *netdev, bool resuming)
2496 2497 2498
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2499
	struct pci_dev *pdev = adapter->pdev;
2500 2501 2502 2503
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2504 2505
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2506
		return -EBUSY;
Y
Yan, Zheng 已提交
2507 2508 2509 2510
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2511

2512 2513
	netif_carrier_off(netdev);

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2524
	igb_power_up_link(adapter);
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

2547 2548 2549
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2550 2551
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2552 2553 2554

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2555 2556 2557

	igb_irq_enable(adapter);

2558 2559 2560 2561 2562 2563 2564
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2565 2566
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2567 2568 2569
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2570 2571 2572
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2573 2574 2575

	return 0;

2576 2577
err_set_queues:
	igb_free_irq(adapter);
2578 2579
err_req_irq:
	igb_release_hw_control(adapter);
2580
	igb_power_down_link(adapter);
2581 2582 2583 2584 2585
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2586 2587
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2588 2589 2590 2591

	return err;
}

Y
Yan, Zheng 已提交
2592 2593 2594 2595 2596
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
Y
Yan, Zheng 已提交
2608
static int __igb_close(struct net_device *netdev, bool suspending)
2609 2610
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2611
	struct pci_dev *pdev = adapter->pdev;
2612 2613 2614

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2615 2616 2617 2618
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2619 2620 2621 2622 2623
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2624 2625
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2626 2627 2628
	return 0;
}

Y
Yan, Zheng 已提交
2629 2630 2631 2632 2633
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2634 2635 2636 2637 2638 2639
/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2640
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2641
{
2642
	struct device *dev = tx_ring->dev;
2643 2644
	int size;

2645
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2646 2647

	tx_ring->tx_buffer_info = vzalloc(size);
2648
	if (!tx_ring->tx_buffer_info)
2649 2650 2651
		goto err;

	/* round up to nearest 4K */
2652
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2653 2654
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2655 2656
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
2657 2658 2659 2660 2661
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2662

2663 2664 2665
	return 0;

err:
2666
	vfree(tx_ring->tx_buffer_info);
2667 2668
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2681
	struct pci_dev *pdev = adapter->pdev;
2682 2683 2684
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2685
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2686
		if (err) {
2687
			dev_err(&pdev->dev,
2688 2689
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2690
				igb_free_tx_resources(adapter->tx_ring[i]);
2691 2692 2693 2694 2695 2696 2697 2698
			break;
		}
	}

	return err;
}

/**
2699 2700
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2701
 **/
2702
void igb_setup_tctl(struct igb_adapter *adapter)
2703 2704 2705 2706
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2707 2708
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2724 2725 2726 2727 2728 2729 2730
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2731 2732
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2733 2734
{
	struct e1000_hw *hw = &adapter->hw;
2735
	u32 txdctl = 0;
2736 2737 2738 2739
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2740
	wr32(E1000_TXDCTL(reg_idx), 0);
2741 2742 2743 2744 2745 2746 2747 2748 2749
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2750
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2751
	wr32(E1000_TDH(reg_idx), 0);
2752
	writel(0, ring->tail);
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2773
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2774 2775
}

2776 2777 2778 2779 2780 2781
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2782
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2783
{
2784
	struct device *dev = rx_ring->dev;
2785
	int size;
2786

2787
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2788 2789

	rx_ring->rx_buffer_info = vzalloc(size);
2790
	if (!rx_ring->rx_buffer_info)
2791 2792 2793
		goto err;

	/* Round up to nearest 4K */
2794
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
2795 2796
	rx_ring->size = ALIGN(rx_ring->size, 4096);

2797 2798
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
2799 2800 2801
	if (!rx_ring->desc)
		goto err;

2802
	rx_ring->next_to_alloc = 0;
2803 2804 2805 2806 2807 2808
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
2809 2810
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
2811
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2824
	struct pci_dev *pdev = adapter->pdev;
2825 2826 2827
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2828
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2829
		if (err) {
2830
			dev_err(&pdev->dev,
2831 2832
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2833
				igb_free_rx_resources(adapter->rx_ring[i]);
2834 2835 2836 2837 2838 2839 2840
			break;
		}
	}

	return err;
}

2841 2842 2843 2844 2845 2846 2847 2848
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
2849
	u32 j, num_rx_queues, shift = 0;
2850 2851 2852 2853
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
2854 2855

	/* Fill out hash function seeds */
2856 2857
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
2858

2859
	num_rx_queues = adapter->rss_queues;
2860

2861 2862 2863 2864 2865 2866 2867
	switch (hw->mac.type) {
	case e1000_82575:
		shift = 6;
		break;
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count) {
2868 2869 2870
			shift = 3;
			num_rx_queues = 2;
		}
2871 2872 2873
		break;
	default:
		break;
2874 2875
	}

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
	/*
	 * Populate the indirection table 4 entries at a time.  To do this
	 * we are generating the results for n and n+2 and then interleaving
	 * those with the results with n+1 and n+3.
	 */
	for (j = 0; j < 32; j++) {
		/* first pass generates n and n+2 */
		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
		u32 reta = (base & 0x07800780) >> (7 - shift);

		/* second pass generates n+1 and n+3 */
		base += 0x00010001 * num_rx_queues;
		reta |= (base & 0x07800780) << (1 + shift);

		wr32(E1000_RETA(j), reta);
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
	/*
	 * Generate RSS hash based on TCP port numbers and/or
	 * IPv4/v6 src and dst addresses since UDP cannot be
	 * hashed reliably due to IP fragmentation
	 */

	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2932
		if (adapter->rss_queues > 1)
2933
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2934
		else
2935
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
2936
	} else {
2937 2938
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
2939 2940 2941 2942 2943 2944
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

2945 2946 2947 2948
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2949
void igb_setup_rctl(struct igb_adapter *adapter)
2950 2951 2952 2953 2954 2955 2956
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2957
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2958

2959
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2960
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2961

2962 2963 2964 2965
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2966
	 */
2967
	rctl |= E1000_RCTL_SECRC;
2968

2969
	/* disable store bad packets and clear size bits. */
2970
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2971

A
Alexander Duyck 已提交
2972 2973
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2974

2975 2976
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2977

2978 2979 2980 2981 2982 2983 2984 2985 2986
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
		 * in e1000e_set_rx_mode */
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3003 3004 3005
	wr32(E1000_RCTL, rctl);
}

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3026 3027 3028 3029 3030 3031 3032 3033
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3034
	u32 max_frame_size = adapter->max_frame_size;
3035 3036 3037 3038 3039
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3040 3041 3042 3043 3044 3045 3046
		/*
		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3047
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3048 3049 3050 3051 3052
	}

	wr32(E1000_RLPML, max_frame_size);
}

3053 3054
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3067 3068 3069 3070 3071
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3072 3073 3074 3075

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3076
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

3088 3089 3090 3091 3092 3093 3094
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
3095 3096
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3097 3098 3099 3100
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3101
	u32 srrctl = 0, rxdctl = 0;
3102 3103

	/* disable the queue */
3104
	wr32(E1000_RXDCTL(reg_idx), 0);
3105 3106 3107 3108 3109 3110 3111 3112 3113

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
3114
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3115
	wr32(E1000_RDH(reg_idx), 0);
3116
	writel(0, ring->tail);
3117

3118
	/* set descriptor configuration */
3119
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3120
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3121
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3122
#ifdef CONFIG_IGB_PTP
3123
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3124
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3125
#endif /* CONFIG_IGB_PTP */
3126 3127 3128
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3129 3130 3131

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3132
	/* set filtering for VMDQ pools */
3133
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3134

3135 3136 3137
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3138 3139 3140

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3141 3142 3143
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3144 3145 3146 3147 3148 3149 3150 3151
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3152
	int i;
3153

3154 3155 3156
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3157 3158 3159 3160
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

3161 3162 3163
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
3164
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3165 3166 3167 3168 3169 3170 3171 3172
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3173
void igb_free_tx_resources(struct igb_ring *tx_ring)
3174
{
3175
	igb_clean_tx_ring(tx_ring);
3176

3177 3178
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3179

3180 3181 3182 3183
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3184 3185
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3201
		igb_free_tx_resources(adapter->tx_ring[i]);
3202 3203
}

3204 3205 3206 3207 3208
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3209
		if (dma_unmap_len(tx_buffer, len))
3210
			dma_unmap_single(ring->dev,
3211 3212
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3213
					 DMA_TO_DEVICE);
3214
	} else if (dma_unmap_len(tx_buffer, len)) {
3215
		dma_unmap_page(ring->dev,
3216 3217
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3218 3219 3220 3221
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3222
	dma_unmap_len_set(tx_buffer, len, 0);
3223
	/* buffer_info must be completely set up in the transmit path */
3224 3225 3226 3227 3228 3229
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3230
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3231
{
3232
	struct igb_tx_buffer *buffer_info;
3233
	unsigned long size;
3234
	u16 i;
3235

3236
	if (!tx_ring->tx_buffer_info)
3237 3238 3239 3240
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3241
		buffer_info = &tx_ring->tx_buffer_info[i];
3242
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3243 3244
	}

3245 3246
	netdev_tx_reset_queue(txring_txq(tx_ring));

3247 3248
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3266
		igb_clean_tx_ring(adapter->tx_ring[i]);
3267 3268 3269 3270 3271 3272 3273 3274
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3275
void igb_free_rx_resources(struct igb_ring *rx_ring)
3276
{
3277
	igb_clean_rx_ring(rx_ring);
3278

3279 3280
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3281

3282 3283 3284 3285
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3286 3287
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3303
		igb_free_rx_resources(adapter->rx_ring[i]);
3304 3305 3306 3307 3308 3309
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3310
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3311 3312
{
	unsigned long size;
3313
	u16 i;
3314

3315 3316 3317 3318
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3319
	if (!rx_ring->rx_buffer_info)
3320
		return;
3321

3322 3323
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3324
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3325

3326 3327 3328 3329 3330 3331 3332 3333 3334
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3335
		buffer_info->page = NULL;
3336 3337
	}

3338 3339
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3340 3341 3342 3343

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3344
	rx_ring->next_to_alloc = 0;
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3358
		igb_clean_rx_ring(adapter->rx_ring[i]);
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3371
	struct e1000_hw *hw = &adapter->hw;
3372 3373 3374 3375 3376 3377
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3378
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3379

3380 3381 3382
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3383

3384 3385 3386 3387
	return 0;
}

/**
3388
 * igb_write_mc_addr_list - write multicast addresses to MTA
3389 3390
 * @netdev: network interface device structure
 *
3391 3392 3393 3394
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3395
 **/
3396
static int igb_write_mc_addr_list(struct net_device *netdev)
3397 3398 3399
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3400
	struct netdev_hw_addr *ha;
3401
	u8  *mta_list;
3402 3403
	int i;

3404
	if (netdev_mc_empty(netdev)) {
3405 3406 3407 3408 3409
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3410

3411
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3412 3413
	if (!mta_list)
		return -ENOMEM;
3414

3415
	/* The shared function expects a packed array of only addresses. */
3416
	i = 0;
3417 3418
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3419 3420 3421 3422

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3423
	return netdev_mc_count(netdev);
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3444
	if (netdev_uc_count(netdev) > rar_entries)
3445
		return -ENOMEM;
3446

3447
	if (!netdev_uc_empty(netdev) && rar_entries) {
3448
		struct netdev_hw_addr *ha;
3449 3450

		netdev_for_each_uc_addr(ha, netdev) {
3451 3452
			if (!rar_entries)
				break;
3453 3454
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3455 3456
			                 vfn);
			count++;
3457 3458 3459 3460 3461 3462 3463 3464 3465
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3502
			 * then we should just turn on promiscuous mode so
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3516
		 * unicast promiscuous mode
3517 3518 3519 3520 3521 3522 3523
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3524
	}
3525
	wr32(E1000_RCTL, rctl);
3526

3527 3528 3529 3530 3531 3532
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
3533
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3534
		return;
3535

3536 3537 3538
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3539
	igb_restore_vf_multicasts(adapter);
3540 3541
}

G
Greg Rose 已提交
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3581 3582 3583 3584 3585
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3586
	igb_get_phy_info(&adapter->hw);
3587 3588
}

A
Alexander Duyck 已提交
3589 3590 3591 3592
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3593
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3625 3626 3627 3628 3629
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

3630
	/* check for thermal sensor event on i350 copper only */
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
			ret = !!(thstat & event);
		}
	}

	return ret;
}

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3658 3659
	                                           struct igb_adapter,
                                                   watchdog_task);
3660 3661
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3662
	u32 link;
3663
	int i;
3664

A
Alexander Duyck 已提交
3665
	link = igb_has_link(adapter);
3666
	if (link) {
Y
Yan, Zheng 已提交
3667 3668 3669
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3670 3671
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3672 3673 3674
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3675 3676

			ctrl = rd32(E1000_CTRL);
3677
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3678 3679
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3680 3681 3682
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3683 3684 3685 3686 3687
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3688

3689
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3690 3691 3692 3693 3694
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3695
			}
3696

3697
			/* adjust timeout factor according to speed/duplex */
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3710
			igb_ping_all_vfs(adapter);
3711
			igb_check_vf_rate_limit(adapter);
3712

3713
			/* link state has changed, schedule phy info update */
3714 3715 3716 3717 3718 3719 3720 3721
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3722 3723

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3724 3725 3726 3727
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
3728
			}
3729

3730 3731 3732
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3733
			netif_carrier_off(netdev);
3734

3735 3736
			igb_ping_all_vfs(adapter);

3737
			/* link state has changed, schedule phy info update */
3738 3739 3740
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
3741 3742 3743

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
3744 3745 3746
		}
	}

E
Eric Dumazet 已提交
3747 3748 3749
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3750

3751
	for (i = 0; i < adapter->num_tx_queues; i++) {
3752
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3753
		if (!netif_carrier_ok(netdev)) {
3754 3755 3756 3757
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3758 3759 3760 3761 3762 3763
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3764 3765
		}

3766
		/* Force detection of hung controller every watchdog period */
3767
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3768
	}
3769

3770
	/* Cause software interrupt to ensure rx ring is cleaned */
3771
	if (adapter->msix_entries) {
3772
		u32 eics = 0;
3773 3774
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
3775 3776 3777 3778
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3779

G
Greg Rose 已提交
3780 3781
	igb_spoof_check(adapter);

3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3795 3796 3797 3798 3799 3800
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
3801
 *      receive rings.  The divisors and thresholds used by this function
3802 3803 3804 3805 3806 3807 3808
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3809
 * @q_vector: pointer to q_vector
3810
 **/
3811
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3812
{
3813
	int new_val = q_vector->itr_val;
3814
	int avg_wire_size = 0;
3815
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
3816
	unsigned int packets;
3817

3818 3819 3820 3821
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3822
		new_val = IGB_4K_ITR;
3823
		goto set_itr_val;
3824
	}
3825

3826 3827 3828
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
3829

3830 3831 3832 3833
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
3834 3835 3836 3837

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3838

3839 3840 3841 3842 3843
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3844

3845 3846 3847 3848 3849
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3850

3851 3852 3853 3854 3855
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
3856

3857
set_itr_val:
3858 3859 3860
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3861
	}
3862
clear_counts:
3863 3864 3865 3866
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
3882 3883
 * @q_vector: pointer to q_vector
 * @ring_container: ring info to update the itr for
3884
 **/
3885 3886
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
3887
{
3888 3889 3890
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
3891

3892
	/* no packets, exit with status unchanged */
3893
	if (packets == 0)
3894
		return;
3895

3896
	switch (itrval) {
3897 3898 3899
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
3900
			itrval = bulk_latency;
3901
		else if ((packets < 5) && (bytes > 512))
3902
			itrval = low_latency;
3903 3904 3905 3906 3907
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
3908
				itrval = bulk_latency;
3909
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
3910
				itrval = bulk_latency;
3911
			} else if ((packets > 35)) {
3912
				itrval = lowest_latency;
3913 3914
			}
		} else if (bytes/packets > 2000) {
3915
			itrval = bulk_latency;
3916
		} else if (packets <= 2 && bytes < 512) {
3917
			itrval = lowest_latency;
3918 3919 3920 3921 3922
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
3923
				itrval = low_latency;
3924
		} else if (bytes < 1500) {
3925
			itrval = low_latency;
3926 3927 3928 3929
		}
		break;
	}

3930 3931 3932 3933 3934 3935
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
3936 3937
}

3938
static void igb_set_itr(struct igb_q_vector *q_vector)
3939
{
3940
	struct igb_adapter *adapter = q_vector->adapter;
3941
	u32 new_itr = q_vector->itr_val;
3942
	u8 current_itr = 0;
3943 3944 3945 3946

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
3947
		new_itr = IGB_4K_ITR;
3948 3949 3950
		goto set_itr_now;
	}

3951 3952
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
3953

3954
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3955

3956
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3957 3958 3959
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3960 3961
		current_itr = low_latency;

3962 3963 3964
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3965
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3966 3967
		break;
	case low_latency:
3968
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3969 3970
		break;
	case bulk_latency:
3971
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3972 3973 3974 3975 3976 3977
		break;
	default:
		break;
	}

set_itr_now:
3978
	if (new_itr != q_vector->itr_val) {
3979 3980 3981
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3982 3983 3984
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
3985
				 new_itr) :
3986 3987 3988 3989 3990 3991 3992
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3993 3994
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3995 3996 3997
	}
}

3998 3999
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4013
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4014 4015 4016 4017 4018 4019 4020 4021
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4022 4023 4024
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4025
{
4026
	struct sk_buff *skb = first->skb;
4027 4028 4029 4030 4031
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

	if (!skb_is_gso(skb))
		return 0;
4032 4033

	if (skb_header_cloned(skb)) {
4034
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4035 4036 4037 4038
		if (err)
			return err;
	}

4039 4040
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4041

4042
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4043 4044 4045 4046 4047 4048 4049
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4050
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4051 4052 4053
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4054
	} else if (skb_is_gso_v6(skb)) {
4055 4056 4057 4058
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4059 4060
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4061 4062
	}

4063
	/* compute header lengths */
4064 4065
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4066

4067 4068 4069 4070
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4071
	/* MSS L4LEN IDX */
4072 4073
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4074

4075 4076 4077
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4078
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4079

4080
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4081

4082
	return 1;
4083 4084
}

4085
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4086
{
4087
	struct sk_buff *skb = first->skb;
4088 4089 4090
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4091

4092
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4093 4094
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4095 4096
	} else {
		u8 l4_hdr = 0;
4097
		switch (first->protocol) {
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but proto=%x!\n",
4111
				 first->protocol);
4112
			}
4113 4114
			break;
		}
4115

4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but l4 proto=%x!\n",
				 l4_hdr);
4136
			}
4137
			break;
4138
		}
4139 4140 4141

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4142
	}
4143

4144
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4145
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4146

4147
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4148 4149
}

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
static __le32 igb_tx_cmd_type(u32 tx_flags)
{
	/* set type for advanced descriptor with frame checksum insertion */
	__le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
				      E1000_ADVTXD_DCMD_IFCS |
				      E1000_ADVTXD_DCMD_DEXT);

	/* set HW vlan bit if vlan is present */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);

4161
#ifdef CONFIG_IGB_PTP
4162
	/* set timestamp bit if present */
4163
	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP))
4164
		cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4165
#endif /* CONFIG_IGB_PTP */
4166 4167 4168 4169 4170 4171 4172 4173

	/* set segmentation bits for TSO */
	if (tx_flags & IGB_TX_FLAGS_TSO)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);

	return cmd_type;
}

4174 4175 4176
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4177 4178 4179 4180 4181
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

	/* 82575 requires a unique index per ring if any offload is enabled */
	if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4182
	    test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
	if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert IPv4 checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
	}

4194
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4195 4196
}

4197 4198 4199 4200 4201
/*
 * The largest size we can write to the descriptor is 65535.  In order to
 * maintain a power of two alignment we have to limit ourselves to 32K.
 */
#define IGB_MAX_TXD_PWR	15
4202
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4203

4204 4205
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4206
		       const u8 hdr_len)
4207
{
4208
	struct sk_buff *skb = first->skb;
4209
	struct igb_tx_buffer *tx_buffer;
4210 4211 4212 4213 4214 4215 4216
	union e1000_adv_tx_desc *tx_desc;
	dma_addr_t dma;
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	unsigned int paylen = skb->len - hdr_len;
	__le32 cmd_type;
4217
	u32 tx_flags = first->tx_flags;
4218 4219 4220 4221
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4222
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4223 4224 4225 4226
	cmd_type = igb_tx_cmd_type(tx_flags);

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
	if (dma_mapping_error(tx_ring->dev, dma))
4227
		goto dma_error;
4228

4229
	/* record length, and DMA address */
4230 4231
	dma_unmap_len_set(first, len, size);
	dma_unmap_addr_set(first, dma, dma);
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
	tx_desc->read.buffer_addr = cpu_to_le64(dma);

	for (;;) {
		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
				cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.olinfo_status = 0;
			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4255

4256
		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4257

4258
		i++;
4259 4260 4261
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4262
			i = 0;
4263
		}
4264

E
Eric Dumazet 已提交
4265
		size = skb_frag_size(frag);
4266 4267 4268 4269 4270
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
				   size, DMA_TO_DEVICE);
		if (dma_mapping_error(tx_ring->dev, dma))
4271 4272
			goto dma_error;

4273 4274 4275
		tx_buffer = &tx_ring->tx_buffer_info[i];
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);
4276 4277 4278 4279 4280

		tx_desc->read.olinfo_status = 0;
		tx_desc->read.buffer_addr = cpu_to_le64(dma);

		frag++;
4281 4282
	}

4283 4284
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4285 4286
	/* write last descriptor with RS and EOP bits */
	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4287 4288
	if (unlikely(skb->no_fcs))
		cmd_type &= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS));
4289
	tx_desc->read.cmd_type_len = cmd_type;
4290 4291 4292 4293

	/* set the timestamp */
	first->time_stamp = jiffies;

4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
	/*
	 * Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4304
	/* set next_to_watch value indicating a packet is present */
4305
	first->next_to_watch = tx_desc;
4306

4307 4308 4309
	i++;
	if (i == tx_ring->count)
		i = 0;
4310

4311
	tx_ring->next_to_use = i;
4312

4313
	writel(i, tx_ring->tail);
4314

4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4326 4327 4328
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4329
			break;
4330 4331
		if (i == 0)
			i = tx_ring->count;
4332 4333 4334
		i--;
	}

4335 4336 4337
	tx_ring->next_to_use = i;
}

4338
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4339
{
4340 4341
	struct net_device *netdev = tx_ring->netdev;

4342 4343
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4344 4345 4346 4347 4348 4349 4350
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4351
	if (igb_desc_unused(tx_ring) < size)
4352 4353 4354
		return -EBUSY;

	/* A reprieve! */
4355
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4356 4357 4358 4359 4360

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4361 4362 4363
	return 0;
}

4364
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4365
{
4366
	if (igb_desc_unused(tx_ring) >= size)
4367
		return 0;
4368
	return __igb_maybe_stop_tx(tx_ring, size);
4369 4370
}

4371 4372
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4373
{
4374 4375 4376
#ifdef CONFIG_IGB_PTP
	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
#endif /* CONFIG_IGB_PTP */
4377
	struct igb_tx_buffer *first;
4378
	int tso;
N
Nick Nunley 已提交
4379
	u32 tx_flags = 0;
4380
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4381
	u8 hdr_len = 0;
4382 4383 4384 4385 4386 4387

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4388
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4389 4390 4391
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4392

4393 4394 4395 4396 4397 4398
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4399
#ifdef CONFIG_IGB_PTP
4400 4401
	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
		     !(adapter->ptp_tx_skb))) {
4402
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4403
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4404 4405 4406 4407

		adapter->ptp_tx_skb = skb_get(skb);
		if (adapter->hw.mac.type == e1000_82576)
			schedule_work(&adapter->ptp_tx_work);
4408
	}
4409
#endif /* CONFIG_IGB_PTP */
4410

4411
	if (vlan_tx_tag_present(skb)) {
4412 4413 4414 4415
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4416 4417 4418
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4419

4420 4421
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4422
		goto out_drop;
4423 4424
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4425

4426
	igb_tx_map(tx_ring, first, hdr_len);
4427 4428

	/* Make sure there is space in the ring for the next send. */
4429
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4430

4431
	return NETDEV_TX_OK;
4432 4433

out_drop:
4434 4435
	igb_unmap_and_free_tx_resource(tx_ring, first);

4436
	return NETDEV_TX_OK;
4437 4438
}

4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4450 4451
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4452 4453
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4465 4466 4467 4468
	/*
	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
4469 4470
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
4471 4472
			return NETDEV_TX_OK;
		skb->len = 17;
4473
		skb_set_tail_pointer(skb, 17);
4474
	}
4475

4476
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4490

4491
	if (hw->mac.type >= e1000_82580)
4492 4493
		hw->dev_spec._82575.global_device_reset = true;

4494
	schedule_work(&adapter->reset_task);
4495 4496
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4497 4498 4499 4500 4501 4502 4503
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4504 4505
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4506 4507 4508 4509
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4510
 * igb_get_stats64 - Get System Network Statistics
4511
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4512
 * @stats: rtnl_link_stats64 pointer
4513 4514
 *
 **/
E
Eric Dumazet 已提交
4515 4516
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4517
{
E
Eric Dumazet 已提交
4518 4519 4520 4521 4522 4523 4524 4525
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4538
	struct pci_dev *pdev = adapter->pdev;
4539
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4540

4541
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4542
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4543 4544 4545
		return -EINVAL;
	}

4546
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4547
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4548
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4549 4550 4551 4552 4553
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4554

4555 4556
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4557

4558 4559
	if (netif_running(netdev))
		igb_down(adapter);
4560

4561
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4580 4581
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4582 4583 4584
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4585
	u32 reg, mpc;
4586
	u16 phy_tmp;
4587 4588
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4589 4590
	unsigned int start;
	u64 _bytes, _packets;
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4603 4604 4605
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
4606
		u32 rqdpc = rd32(E1000_RQDPC(i));
4607
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4608

4609 4610 4611 4612
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
4613 4614 4615 4616 4617 4618 4619 4620

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4621 4622
	}

4623 4624
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4625 4626 4627 4628

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4629
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4630 4631 4632 4633 4634 4635 4636
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4637
	}
4638 4639
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4640 4641

	/* read stats registers */
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4659 4660 4661
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4676
	adapter->stats.rnbc += rd32(E1000_RNBC);
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4694 4695
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4696 4697

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4698 4699 4700 4701
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4702 4703 4704 4705 4706

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
4707 4708
	}

4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4723 4724
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4725 4726 4727 4728

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4729
	 * our own version based on RUC and ROC */
4730
	net_stats->rx_errors = adapter->stats.rxerrc +
4731 4732 4733
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4734 4735 4736 4737 4738
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4739 4740

	/* Tx Errors */
4741 4742 4743 4744 4745
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4746 4747 4748 4749 4750 4751

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4752
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4753 4754 4755 4756 4757 4758 4759 4760 4761
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4762 4763 4764 4765 4766 4767 4768 4769 4770

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
4771 4772 4773 4774
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4775
	struct igb_adapter *adapter = data;
4776
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4777 4778
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4779

4780 4781 4782
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4783
	if (icr & E1000_ICR_DOUTSYNC) {
4784 4785
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
4786 4787 4788 4789
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
4790
	}
4791

4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
#ifdef CONFIG_IGB_PTP
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}
#endif /* CONFIG_IGB_PTP */

P
PJ Waskiewicz 已提交
4816
	wr32(E1000_EIMS, adapter->eims_other);
4817 4818 4819 4820

	return IRQ_HANDLED;
}

4821
static void igb_write_itr(struct igb_q_vector *q_vector)
4822
{
4823
	struct igb_adapter *adapter = q_vector->adapter;
4824
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4825

4826 4827
	if (!q_vector->set_itr)
		return;
4828

4829 4830
	if (!itr_val)
		itr_val = 0x4;
4831

4832 4833
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4834
	else
4835
		itr_val |= E1000_EITR_CNT_IGNR;
4836

4837 4838
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4839 4840
}

4841
static irqreturn_t igb_msix_ring(int irq, void *data)
4842
{
4843
	struct igb_q_vector *q_vector = data;
4844

4845 4846
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4847

4848
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4849

4850
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4851 4852
}

4853
#ifdef CONFIG_IGB_DCA
4854
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4855
{
4856
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4857 4858 4859
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4860 4861 4862
	if (q_vector->cpu == cpu)
		goto out_no_update;

4863 4864
	if (q_vector->tx.ring) {
		int q = q_vector->tx.ring->reg_idx;
4865 4866 4867 4868
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4869
		} else {
4870 4871 4872 4873 4874 4875 4876
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
4877 4878
	if (q_vector->rx.ring) {
		int q = q_vector->rx.ring->reg_idx;
4879 4880
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4881
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4882
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4883 4884 4885 4886
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4887
		}
J
Jeb Cramer 已提交
4888 4889 4890 4891 4892
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4893 4894
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4895 4896 4897 4898 4899
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4900
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4901 4902
	int i;

4903
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4904 4905
		return;

4906 4907 4908
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4909
	for (i = 0; i < adapter->num_q_vectors; i++) {
4910 4911
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4912 4913 4914 4915 4916 4917 4918
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4919
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4920 4921 4922 4923 4924 4925
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4926
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4927 4928
			break;
		if (dca_add_requester(dev) == 0) {
4929
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4930
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4931 4932 4933 4934 4935
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4936
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4937
			/* without this a class_device is left
4938
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4939
			dca_remove_requester(dev);
4940
			dev_info(&pdev->dev, "DCA disabled\n");
4941
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4942
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4943 4944 4945
		}
		break;
	}
4946

J
Jeb Cramer 已提交
4947
	return 0;
4948 4949
}

J
Jeb Cramer 已提交
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4960
#endif /* CONFIG_IGB_DCA */
4961

4962 4963 4964 4965 4966
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

J
Joe Perches 已提交
4967
	eth_random_addr(mac_addr);
4968 4969
	igb_set_vf_mac(adapter, vf, mac_addr);

4970
	return 0;
4971 4972
}

4973
static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
4974 4975
{
	struct pci_dev *pdev = adapter->pdev;
4976 4977
	struct pci_dev *vfdev;
	int dev_id;
4978 4979 4980

	switch (adapter->hw.mac.type) {
	case e1000_82576:
4981
		dev_id = IGB_82576_VF_DEV_ID;
4982 4983
		break;
	case e1000_i350:
4984
		dev_id = IGB_I350_VF_DEV_ID;
4985 4986
		break;
	default:
4987
		return false;
4988 4989
	}

4990 4991 4992 4993 4994 4995 4996
	/* loop through all the VFs to see if we own any that are assigned */
	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
	while (vfdev) {
		/* if we don't own it we don't care */
		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
			/* if it is assigned we cannot release it */
			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
4997 4998
				return true;
		}
4999 5000

		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5001
	}
5002

5003 5004 5005 5006
	return false;
}

#endif
5007 5008 5009 5010 5011 5012 5013 5014
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5015
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5016 5017 5018 5019 5020
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5021 5022 5023 5024 5025 5026
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5027
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5028 5029 5030 5031 5032
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5033
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

5061 5062 5063 5064 5065 5066 5067 5068
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5069
	/* salt away the number of multicast addresses assigned
5070 5071 5072 5073 5074
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5075 5076 5077 5078 5079
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5080
	for (i = 0; i < n; i++)
5081
		vf_data->vf_mc_hashes[i] = hash_list[i];
5082 5083

	/* Flush and reset the mta with the new values */
5084
	igb_set_rx_mode(adapter->netdev);
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5096 5097 5098
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5099
		vf_data = &adapter->vf_data[i];
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5138 5139

	adapter->vf_data[vf].vlans_enabled = 0;
5140 5141 5142 5143 5144 5145 5146
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5147 5148 5149 5150 5151
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5181 5182
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5183 5184
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5185 5186
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5187
			wr32(E1000_VLVF(i), reg);
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5203
			adapter->vf_data[vf].vlans_enabled++;
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5230 5231
		}
	}
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5291
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5292
{
G
Greg Rose 已提交
5293 5294
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5295
	adapter->vf_data[vf].last_nack = jiffies;
5296 5297

	/* reset offloads to defaults */
5298
	igb_set_vmolr(adapter, vf, true);
5299 5300 5301

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5302 5303 5304 5305 5306 5307
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5308 5309 5310 5311 5312

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5313
	igb_set_rx_mode(adapter->netdev);
5314 5315
}

5316 5317 5318 5319 5320
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
5321
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
J
Joe Perches 已提交
5322
		eth_random_addr(vf_mac);
5323 5324 5325 5326 5327 5328

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5329 5330 5331
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5332
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5333 5334 5335 5336
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5337
	igb_vf_reset(adapter, vf);
5338 5339

	/* set vf mac address */
5340
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5341 5342 5343 5344 5345 5346 5347

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5348
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5349 5350 5351 5352 5353 5354 5355 5356 5357

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5358 5359 5360 5361
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5362 5363
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5364

5365 5366
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5367

5368
	return err;
5369 5370 5371 5372 5373
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5374
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5375 5376 5377
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5378 5379
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5380
		igb_write_mbx(hw, &msg, 1, vf);
5381
		vf_data->last_nack = jiffies;
5382 5383 5384
	}
}

5385
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5386
{
5387 5388
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5389
	struct e1000_hw *hw = &adapter->hw;
5390
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5391 5392
	s32 retval;

5393
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5394

5395 5396
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5397
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5398 5399 5400 5401 5402
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5403 5404 5405

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5406
		return;
5407 5408 5409 5410 5411 5412 5413 5414

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5415
		return;
5416 5417
	}

5418
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5419 5420 5421 5422
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5423 5424 5425 5426
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5427 5428 5429 5430 5431 5432 5433 5434
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5435
		break;
5436 5437 5438
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5439 5440 5441 5442 5443 5444 5445
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5446 5447 5448 5449 5450 5451
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5452 5453
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5454 5455
		break;
	default:
5456
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5457 5458 5459 5460
		retval = -1;
		break;
	}

5461 5462
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5463 5464 5465 5466 5467 5468 5469
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5470
}
5471

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5490 5491
}

5492 5493 5494 5495 5496 5497 5498
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5499 5500
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5519 5520 5521 5522 5523 5524 5525
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5526 5527
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5528 5529 5530 5531
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5532
	igb_write_itr(q_vector);
5533

5534 5535 5536
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5537
	if (icr & E1000_ICR_DOUTSYNC) {
5538 5539 5540 5541
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5542 5543 5544 5545 5546 5547
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
#ifdef CONFIG_IGB_PTP
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}
#endif /* CONFIG_IGB_PTP */

5561
	napi_schedule(&q_vector->napi);
5562 5563 5564 5565 5566

	return IRQ_HANDLED;
}

/**
5567
 * igb_intr - Legacy Interrupt Handler
5568 5569 5570 5571 5572
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5573 5574
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5585 5586
	igb_write_itr(q_vector);

5587 5588 5589
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5590
	if (icr & E1000_ICR_DOUTSYNC) {
5591 5592 5593 5594
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5595 5596 5597 5598 5599 5600 5601
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
#ifdef CONFIG_IGB_PTP
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}
#endif /* CONFIG_IGB_PTP */

5615
	napi_schedule(&q_vector->napi);
5616 5617 5618 5619

	return IRQ_HANDLED;
}

5620
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5621
{
5622
	struct igb_adapter *adapter = q_vector->adapter;
5623
	struct e1000_hw *hw = &adapter->hw;
5624

5625 5626 5627 5628
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5629
		else
5630
			igb_update_ring_itr(q_vector);
5631 5632
	}

5633 5634
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5635
			wr32(E1000_EIMS, q_vector->eims_value);
5636 5637 5638
		else
			igb_irq_enable(adapter);
	}
5639 5640
}

5641 5642 5643 5644 5645 5646
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5647
{
5648 5649 5650
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
5651
	bool clean_complete = true;
5652

5653
#ifdef CONFIG_IGB_DCA
5654 5655
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5656
#endif
5657
	if (q_vector->tx.ring)
5658
		clean_complete = igb_clean_tx_irq(q_vector);
5659

5660
	if (q_vector->rx.ring)
5661
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5662

5663 5664 5665
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5666

5667
	/* If not enough Rx work done, exit the polling mode */
5668 5669
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5670

5671
	return 0;
5672
}
A
Al Viro 已提交
5673

5674 5675
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5676
 * @q_vector: pointer to q_vector containing needed info
5677
 *
5678 5679
 * returns true if ring is completely cleaned
 **/
5680
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5681
{
5682
	struct igb_adapter *adapter = q_vector->adapter;
5683
	struct igb_ring *tx_ring = q_vector->tx.ring;
5684
	struct igb_tx_buffer *tx_buffer;
5685
	union e1000_adv_tx_desc *tx_desc;
5686
	unsigned int total_bytes = 0, total_packets = 0;
5687
	unsigned int budget = q_vector->tx.work_limit;
5688
	unsigned int i = tx_ring->next_to_clean;
5689

5690 5691
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5692

5693
	tx_buffer = &tx_ring->tx_buffer_info[i];
5694
	tx_desc = IGB_TX_DESC(tx_ring, i);
5695
	i -= tx_ring->count;
5696

5697 5698
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5699 5700 5701 5702

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5703

5704 5705 5706
		/* prevent any other reads prior to eop_desc */
		rmb();

5707 5708 5709 5710
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5711 5712
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5713

5714 5715 5716
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5717

5718 5719
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
5720

5721 5722
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
5723 5724
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
5725 5726
				 DMA_TO_DEVICE);

5727 5728 5729 5730
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

5731 5732
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
5733 5734
			tx_buffer++;
			tx_desc++;
5735
			i++;
5736 5737
			if (unlikely(!i)) {
				i -= tx_ring->count;
5738
				tx_buffer = tx_ring->tx_buffer_info;
5739 5740
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5741 5742

			/* unmap any remaining paged data */
5743
			if (dma_unmap_len(tx_buffer, len)) {
5744
				dma_unmap_page(tx_ring->dev,
5745 5746
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
5747
					       DMA_TO_DEVICE);
5748
				dma_unmap_len_set(tx_buffer, len, 0);
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
5761 5762 5763 5764 5765 5766 5767

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
5768

5769 5770
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
5771
	i += tx_ring->count;
5772
	tx_ring->next_to_clean = i;
5773 5774 5775 5776
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
5777 5778
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
5779

5780
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5781
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
5782

5783 5784
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
5785
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5786
		if (tx_buffer->next_to_watch &&
5787
		    time_after(jiffies, tx_buffer->time_stamp +
5788 5789
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5790 5791

			/* detected Tx unit hang */
5792
			dev_err(tx_ring->dev,
5793
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5794
				"  Tx Queue             <%d>\n"
5795 5796 5797 5798 5799 5800
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
5801
				"  next_to_watch        <%p>\n"
5802 5803
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5804
				tx_ring->queue_index,
5805
				rd32(E1000_TDH(tx_ring->reg_idx)),
5806
				readl(tx_ring->tail),
5807 5808
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5809
				tx_buffer->time_stamp,
5810
				tx_buffer->next_to_watch,
5811
				jiffies,
5812
				tx_buffer->next_to_watch->wb.status);
5813 5814 5815 5816 5817
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
5818 5819
		}
	}
5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840

	if (unlikely(total_packets &&
		     netif_carrier_ok(tx_ring->netdev) &&
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
5841 5842
}

5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
/**
 * igb_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
5868
					 IGB_RX_BUFSZ,
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
					 DMA_FROM_DEVICE);
}

/**
 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @rx_desc: descriptor containing length of buffer written by hardware
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

#ifdef CONFIG_IGB_PTP
		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

#endif
		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
5918
			rx_buffer->page_offset, size, IGB_RX_BUFSZ);
5919 5920 5921 5922 5923

	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

5924
#if (PAGE_SIZE < 8192)
5925 5926 5927 5928 5929
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
5930
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
5931 5932 5933 5934 5935 5936 5937

	/*
	 * since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += SKB_DATA_ALIGN(size);

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif
5948 5949 5950 5951

	return true;
}

5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	/*
	 * This memory barrier is needed to keep us from reading
	 * any other fields out of the rx_desc until we know the
	 * RXD_STAT_DD bit is set
	 */
	rmb();

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

		/*
		 * we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6001
				      IGB_RX_BUFSZ,
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6020
static inline void igb_rx_checksum(struct igb_ring *ring,
6021 6022
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6023
{
6024
	skb_checksum_none_assert(skb);
6025

6026
	/* Ignore Checksum bit is set */
6027
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6028 6029 6030 6031
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6032
		return;
6033

6034
	/* TCP/UDP checksum error bit is set */
6035 6036 6037
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6038 6039 6040 6041 6042
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6043 6044
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6045
			u64_stats_update_begin(&ring->rx_syncp);
6046
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6047 6048
			u64_stats_update_end(&ring->rx_syncp);
		}
6049 6050 6051 6052
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6053 6054
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6055 6056
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6057 6058
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6059 6060
}

6061 6062 6063 6064 6065 6066 6067 6068
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
/**
 * igb_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
/**
 * igb_get_headlen - determine size of header for LRO/GRO
 * @data: pointer to the start of the headers
 * @max_len: total length of section to find headers in
 *
 * This function is meant to determine the length of headers that will
 * be recognized by hardware for LRO, and GRO offloads.  The main
 * motivation of doing this is to only perform one pull for IPv4 TCP
 * packets so that we can do basic things like calculating the gso_size
 * based on the average data per packet.
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

		/* record next protocol */
		nexthdr = hdr.ipv4->protocol;
		hdr.network += hlen;
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
		hdr.network += sizeof(struct ipv6hdr);
	} else {
		return hdr.network - data;
	}

	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

	/*
	 * If everything has gone correctly hdr.network should be the
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
 * igb_pull_tail - igb specific version of skb_pull_tail
 * @rx_ring: rx descriptor ring packet is being transacted on
6205
 * @rx_desc: pointer to the EOP Rx descriptor
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
 * @skb: pointer to current skb being adjusted
 *
 * This function is an igb specific version of __pskb_pull_tail.  The
 * main difference between this version and the original function is that
 * this function can make several assumptions about the state of things
 * that allow for significant optimizations versus the standard function.
 * As a result we can do things like drop a frag and maintain an accurate
 * truesize for the skb.
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6218
{
6219 6220 6221 6222 6223 6224 6225 6226
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

	/*
	 * it is valid to use page_address instead of kmap since we are
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6227
	 */
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303
	va = skb_frag_address(frag);

#ifdef CONFIG_IGB_PTP
	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

#endif
	/*
	 * we need the header to contain the greater of either ETH_HLEN or
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
 * igb_cleanup_headers - Correct corrupted or empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being fixed
 *
 * Address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{

	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6304 6305
}

6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
/**
 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 * other fields within the skb.
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

#ifdef CONFIG_IGB_PTP
	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
#endif /* CONFIG_IGB_PTP */

	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, vid);
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6347
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6348
{
6349
	struct igb_ring *rx_ring = q_vector->rx.ring;
6350
	struct sk_buff *skb = rx_ring->skb;
6351
	unsigned int total_bytes = 0, total_packets = 0;
6352
	u16 cleaned_count = igb_desc_unused(rx_ring);
6353

6354 6355
	do {
		union e1000_adv_rx_desc *rx_desc;
6356

6357 6358 6359 6360 6361
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6362

6363
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6364

6365 6366
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6367

6368 6369
		/* retrieve a buffer from the ring */
		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6370

6371 6372 6373
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6374

6375
		cleaned_count++;
6376

6377 6378 6379
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6380 6381 6382 6383 6384

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6385 6386
		}

6387
		/* probably a little skewed due to removing CRC */
6388 6389
		total_bytes += skb->len;

6390 6391
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6392

J
Jiri Pirko 已提交
6393
		napi_gro_receive(&q_vector->napi, skb);
6394

6395 6396 6397
		/* reset skb pointer */
		skb = NULL;

6398 6399 6400
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
6401

6402 6403 6404
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
6405
	u64_stats_update_begin(&rx_ring->rx_syncp);
6406 6407
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6408
	u64_stats_update_end(&rx_ring->rx_syncp);
6409 6410
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6411 6412

	if (cleaned_count)
6413
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6414

6415
	return (total_packets < budget);
6416 6417
}

6418
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6419
				  struct igb_rx_buffer *bi)
6420 6421
{
	struct page *page = bi->page;
6422
	dma_addr_t dma;
6423

6424 6425
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
6426 6427
		return true;

6428 6429 6430 6431 6432
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
6433 6434
	}

6435 6436
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6437

6438 6439 6440 6441
	/*
	 * if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
	 */
6442
	if (dma_mapping_error(rx_ring->dev, dma)) {
6443 6444
		__free_page(page);

6445 6446 6447 6448
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

6449
	bi->dma = dma;
6450 6451
	bi->page = page;
	bi->page_offset = 0;
6452

6453 6454 6455
	return true;
}

6456
/**
6457
 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6458 6459
 * @adapter: address of board private structure
 **/
6460
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6461 6462
{
	union e1000_adv_rx_desc *rx_desc;
6463
	struct igb_rx_buffer *bi;
6464
	u16 i = rx_ring->next_to_use;
6465

6466 6467 6468 6469
	/* nothing to do */
	if (!cleaned_count)
		return;

6470
	rx_desc = IGB_RX_DESC(rx_ring, i);
6471
	bi = &rx_ring->rx_buffer_info[i];
6472
	i -= rx_ring->count;
6473

6474
	do {
6475
		if (!igb_alloc_mapped_page(rx_ring, bi))
6476
			break;
6477

6478 6479 6480 6481 6482
		/*
		 * Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6483

6484 6485
		rx_desc++;
		bi++;
6486
		i++;
6487
		if (unlikely(!i)) {
6488
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6489
			bi = rx_ring->rx_buffer_info;
6490 6491 6492 6493 6494
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6495 6496 6497

		cleaned_count--;
	} while (cleaned_count);
6498

6499 6500
	i += rx_ring->count;

6501
	if (rx_ring->next_to_use != i) {
6502
		/* record the next descriptor to use */
6503 6504
		rx_ring->next_to_use = i;

6505 6506 6507 6508 6509
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

		/*
		 * Force memory writes to complete before letting h/w
6510 6511
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
6512 6513
		 * such as IA-64).
		 */
6514
		wmb();
6515
		writel(i, rx_ring->tail);
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6538 6539
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6562
#ifdef CONFIG_IGB_PTP
6563
	case SIOCSHWTSTAMP:
6564
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6565
#endif /* CONFIG_IGB_PTP */
6566 6567 6568 6569 6570
	default:
		return -EOPNOTSUPP;
	}
}

6571 6572 6573 6574
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6575
	if (pcie_capability_read_word(adapter->pdev, reg, value))
6576 6577 6578 6579 6580 6581 6582 6583 6584
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6585
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6586 6587 6588 6589 6590
		return -E1000_ERR_CONFIG;

	return 0;
}

6591
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6592 6593 6594 6595
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6596
	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6597

6598
	if (enable) {
6599 6600 6601 6602 6603
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6604
		/* Disable CFI check */
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6615
	igb_rlpml_set(adapter);
6616 6617
}

6618
static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6619 6620 6621
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6622
	int pf_id = adapter->vfs_allocated_count;
6623

6624 6625
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6626

6627 6628
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6629 6630

	set_bit(vid, adapter->active_vlans);
6631 6632

	return 0;
6633 6634
}

6635
static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6636 6637 6638
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6639
	int pf_id = adapter->vfs_allocated_count;
6640
	s32 err;
6641

6642 6643
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6644

6645 6646
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6647
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6648 6649

	clear_bit(vid, adapter->active_vlans);
6650 6651

	return 0;
6652 6653 6654 6655
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6656
	u16 vid;
6657

6658 6659
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6660 6661
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
6662 6663
}

6664
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6665
{
6666
	struct pci_dev *pdev = adapter->pdev;
6667 6668 6669 6670
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6671 6672 6673 6674 6675
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6676 6677
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6678 6679 6680
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL)
		goto err_inval;
6681

6682
	switch (spd + dplx) {
6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6701
		goto err_inval;
6702
	}
6703 6704 6705 6706

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

6707
	return 0;
6708 6709 6710 6711

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
6712 6713
}

Y
Yan, Zheng 已提交
6714 6715
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
6716 6717 6718 6719
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6720
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
6721
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6722 6723 6724 6725 6726 6727
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6728
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
6729
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
6730

6731
	igb_clear_interrupt_scheme(adapter);
6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6745
		igb_set_rx_mode(netdev);
6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6763
		igb_disable_pcie_master(hw);
6764 6765 6766 6767 6768 6769 6770 6771

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6772 6773
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6774 6775 6776
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
6788
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
6789
static int igb_suspend(struct device *dev)
6790 6791 6792
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
6793
	struct pci_dev *pdev = to_pci_dev(dev);
6794

Y
Yan, Zheng 已提交
6795
	retval = __igb_shutdown(pdev, &wake, 0);
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
6808
#endif /* CONFIG_PM_SLEEP */
6809

Y
Yan, Zheng 已提交
6810
static int igb_resume(struct device *dev)
6811
{
Y
Yan, Zheng 已提交
6812
	struct pci_dev *pdev = to_pci_dev(dev);
6813 6814 6815 6816 6817 6818 6819
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
6820
	pci_save_state(pdev);
T
Taku Izumi 已提交
6821

6822
	err = pci_enable_device_mem(pdev);
6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

6833
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
6834 6835
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
6836 6837 6838
	}

	igb_reset(adapter);
6839 6840 6841 6842 6843

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

6844 6845
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
6846
	if (netdev->flags & IFF_UP) {
6847
		rtnl_lock();
Y
Yan, Zheng 已提交
6848
		err = __igb_open(netdev, true);
6849
		rtnl_unlock();
A
Alexander Duyck 已提交
6850 6851 6852
		if (err)
			return err;
	}
6853 6854

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6887 6888 6889

	return 0;
}
Y
Yan, Zheng 已提交
6890 6891 6892 6893 6894 6895

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
6896 6897 6898 6899
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
6900 6901
	bool wake;

Y
Yan, Zheng 已提交
6902
	__igb_shutdown(pdev, &wake, 0);
6903 6904 6905 6906 6907

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
6919
	struct e1000_hw *hw = &adapter->hw;
6920
	struct igb_q_vector *q_vector;
6921 6922
	int i;

6923
	for (i = 0; i < adapter->num_q_vectors; i++) {
6924 6925 6926 6927 6928
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
6929
		napi_schedule(&q_vector->napi);
6930
	}
6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

6950 6951 6952
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6973
	pci_ers_result_t result;
T
Taku Izumi 已提交
6974
	int err;
6975

6976
	if (pci_enable_device_mem(pdev)) {
6977 6978
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
6979 6980 6981 6982
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
6983
		pci_save_state(pdev);
6984

6985 6986
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
6987

6988 6989 6990 6991
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
6992

6993 6994 6995 6996 6997 6998
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
6999 7000

	return result;
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7057 7058 7059 7060
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
7061 7062 7063
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7064

7065
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7066

7067
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7068 7069 7070 7071

	return 0;
}

7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
L
Lior Levy 已提交
7123 7124 7125 7126 7127
	/*
	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

7160 7161
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7190
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7191 7192 7193 7194 7195
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

7196 7197 7198
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7199
	u32 reg;
7200

7201 7202
	switch (hw->mac.type) {
	case e1000_82575:
7203 7204
	case e1000_i210:
	case e1000_i211:
7205 7206
	default:
		/* replication is not supported for 82575 */
7207
		return;
7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7218 7219
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7220 7221
		break;
	}
7222

7223 7224 7225
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7226 7227
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
7228 7229 7230 7231
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7232 7233
}

7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

			/*
7248 7249 7250
			 * DMA Coalescing high water mark needs to be greater
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7251
			 */
7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

			/*
			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7278 7279 7280

			/* Disable BMC-to-OS Watchdog Enable */
			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314
			wr32(E1000_DMACR, reg);

			/*
			 * no lower threshold to disable
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

			/*
			 * free space in tx packet buffer to wake from
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

			/*
			 * make low power state decision controlled
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

7315
/* igb_main.c */