igb_main.c 208.0 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2013 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
C
Carolyn Wyborny 已提交
60
#include <linux/i2c.h>
61 62
#include "igb.h"

C
Carolyn Wyborny 已提交
63
#define MAJ 4
C
Carolyn Wyborny 已提交
64 65
#define MIN 1
#define BUILD 2
C
Carolyn Wyborny 已提交
66
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67
__stringify(BUILD) "-k"
68 69 70 71
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
72 73
static const char igb_copyright[] =
				"Copyright (c) 2007-2013 Intel Corporation.";
74 75 76 77 78

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

79
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 81 82 83 84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 86 87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
89 90
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
92 93 94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
95 96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
97 98
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
100
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
102 103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
105
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
106
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
107 108 109 110 111 112 113 114 115 116 117 118 119 120
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
121
static void igb_setup_mrqc(struct igb_adapter *);
122
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123
static void igb_remove(struct pci_dev *pdev);
124 125 126
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
127
static void igb_configure(struct igb_adapter *);
128 129 130 131
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
132 133
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
134
static void igb_set_rx_mode(struct net_device *);
135 136 137
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
138
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
139 140
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
141 142
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
143
static void igb_set_uta(struct igb_adapter *adapter);
144 145 146
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
147
static irqreturn_t igb_msix_ring(int irq, void *);
148
#ifdef CONFIG_IGB_DCA
149
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
150
static void igb_setup_dca(struct igb_adapter *);
151
#endif /* CONFIG_IGB_DCA */
152
static int igb_poll(struct napi_struct *, int);
153
static bool igb_clean_tx_irq(struct igb_q_vector *);
154
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 156 157
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
158
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
159 160
static int igb_vlan_rx_add_vid(struct net_device *, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, u16);
161
static void igb_restore_vlan(struct igb_adapter *);
162
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
163 164 165
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
166
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
167
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
168 169 170 171 172 173
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
174
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
175 176

#ifdef CONFIG_PCI_IOV
177
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178
static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
R
RongQing Li 已提交
179
#endif
180 181

#ifdef CONFIG_PM
182
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
183
static int igb_suspend(struct device *);
184
#endif
Y
Yan, Zheng 已提交
185 186 187 188 189 190 191 192 193 194 195
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
196 197
#endif
static void igb_shutdown(struct pci_dev *);
198
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
199
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
200 201 202 203 204 205 206
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
207 208 209 210
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
211
#ifdef CONFIG_PCI_IOV
212 213 214 215 216 217
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

218 219 220 221 222
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

223
static const struct pci_error_handlers igb_err_handler = {
224 225 226 227 228
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

229
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230 231 232 233 234

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
235
	.remove   = igb_remove,
236
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
237
	.driver.pm = &igb_pm_ops,
238 239
#endif
	.shutdown = igb_shutdown,
240
	.sriov_configure = igb_pci_sriov_configure,
241 242 243 244 245 246 247 248
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

249 250 251 252 253
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

295
/* igb_regdump - register printout routine */
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
352
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
353 354 355 356
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
357 358
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
359 360
}

361
/* igb_dump - Print registers, Tx-rings and Rx-rings */
362 363 364 365 366 367 368 369 370 371 372
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
373
	u16 i, n;
374 375 376 377 378 379 380

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
381 382 383 384
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
385 386 387 388
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
389
	pr_info(" Register Name   Value\n");
390 391 392 393 394 395 396 397 398 399
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
400
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
401
	for (n = 0; n < adapter->num_tx_queues; n++) {
402
		struct igb_tx_buffer *buffer_info;
403
		tx_ring = adapter->tx_ring[n];
404
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
405 406
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
407 408
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
409 410
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
432 433 434 435 436 437
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
438 439

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
440
			const char *next_desc;
441
			struct igb_tx_buffer *buffer_info;
442
			tx_desc = IGB_TX_DESC(tx_ring, i);
443
			buffer_info = &tx_ring->tx_buffer_info[i];
444
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
445 446 447 448 449 450 451 452 453 454 455 456
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
457 458
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
459 460
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
461 462
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
463
				buffer_info->skb, next_desc);
464

465
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
466 467
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
468
					16, 1, buffer_info->skb->data,
469 470
					dma_unmap_len(buffer_info, len),
					true);
471 472 473 474 475 476
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
477
	pr_info("Queue [NTU] [NTC]\n");
478 479
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
480 481
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
513 514 515 516 517 518 519
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
520 521

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
522
			const char *next_desc;
523 524
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
525
			rx_desc = IGB_RX_DESC(rx_ring, i);
526 527
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
528 529 530 531 532 533 534 535

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

536 537
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
538 539
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
540 541
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
542
					next_desc);
543
			} else {
544 545
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
546 547 548
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
549
					next_desc);
550

551
				if (netif_msg_pktdata(adapter) &&
552
				    buffer_info->dma && buffer_info->page) {
553 554 555
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
556 557
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
558
					  IGB_RX_BUFSZ, true);
559 560 561 562 563 564 565 566 567
				}
			}
		}
	}

exit:
	return;
}

568 569
/**
 *  igb_get_i2c_data - Reads the I2C SDA data bit
C
Carolyn Wyborny 已提交
570 571 572 573
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
574
 **/
C
Carolyn Wyborny 已提交
575 576 577 578 579 580 581 582 583
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
}

584 585
/**
 *  igb_set_i2c_data - Sets the I2C data bit
C
Carolyn Wyborny 已提交
586 587 588 589
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
590
 **/
C
Carolyn Wyborny 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

609 610
/**
 *  igb_set_i2c_clk - Sets the I2C SCL clock
C
Carolyn Wyborny 已提交
611 612 613 614
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
615
 **/
C
Carolyn Wyborny 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

633 634
/**
 *  igb_get_i2c_clk - Gets the I2C SCL clock state
C
Carolyn Wyborny 已提交
635 636 637
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
638
 **/
C
Carolyn Wyborny 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

657
/**
658 659 660 661
 *  igb_get_hw_dev - return device
 *  @hw: pointer to hardware structure
 *
 *  used by hardware layer to print debugging information
662
 **/
663
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
664 665
{
	struct igb_adapter *adapter = hw->back;
666
	return adapter->netdev;
667
}
P
Patrick Ohly 已提交
668

669
/**
670
 *  igb_init_module - Driver Registration Routine
671
 *
672 673
 *  igb_init_module is the first routine called when the driver is
 *  loaded. All it does is register with the PCI subsystem.
674 675 676 677
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
678
	pr_info("%s - version %s\n",
679 680
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
681
	pr_info("%s\n", igb_copyright);
682

683
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
684 685
	dca_register_notify(&dca_notifier);
#endif
686
	ret = pci_register_driver(&igb_driver);
687 688 689 690 691 692
	return ret;
}

module_init(igb_init_module);

/**
693
 *  igb_exit_module - Driver Exit Cleanup Routine
694
 *
695 696
 *  igb_exit_module is called just before the driver is removed
 *  from memory.
697 698 699
 **/
static void __exit igb_exit_module(void)
{
700
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
701 702
	dca_unregister_notify(&dca_notifier);
#endif
703 704 705 706 707
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

708 709
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
710 711
 *  igb_cache_ring_register - Descriptor ring to register mapping
 *  @adapter: board private structure to initialize
712
 *
713 714
 *  Once we know the feature-set enabled for the device, we'll cache
 *  the register offset the descriptor ring is assigned to.
715 716 717
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
718
	int i = 0, j = 0;
719
	u32 rbase_offset = adapter->vfs_allocated_count;
720 721 722 723 724 725 726 727

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
728
		if (adapter->vfs_allocated_count) {
729
			for (; i < adapter->rss_queues; i++)
730
				adapter->rx_ring[i]->reg_idx = rbase_offset +
731
							       Q_IDX_82576(i);
732
		}
733
	case e1000_82575:
734
	case e1000_82580:
735
	case e1000_i350:
736 737
	case e1000_i210:
	case e1000_i211:
738
	default:
739
		for (; i < adapter->num_rx_queues; i++)
740
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741
		for (; j < adapter->num_tx_queues; j++)
742
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743 744 745 746
		break;
	}
}

A
Alexander Duyck 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

773
#define IGB_N0_QUEUE -1
774
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
775
{
776
	struct igb_adapter *adapter = q_vector->adapter;
777
	struct e1000_hw *hw = &adapter->hw;
778 779
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
780
	u32 msixbm = 0;
781

782 783 784 785
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
786 787 788

	switch (hw->mac.type) {
	case e1000_82575:
789
		/* The 82575 assigns vectors using a bitmask, which matches the
790 791 792 793
		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
		 * or more queues to a vector, we write the appropriate bits
		 * into the MSIXBM register for that vector.
		 */
794
		if (rx_queue > IGB_N0_QUEUE)
795
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
796
		if (tx_queue > IGB_N0_QUEUE)
797
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
798 799
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
800
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
801
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
802 803
		break;
	case e1000_82576:
804
		/* 82576 uses a table that essentially consists of 2 columns
A
Alexander Duyck 已提交
805 806 807 808 809 810 811 812 813 814 815 816
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
817
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
818
		break;
819
	case e1000_82580:
820
	case e1000_i350:
821 822
	case e1000_i210:
	case e1000_i211:
823
		/* On 82580 and newer adapters the scheme is similar to 82576
A
Alexander Duyck 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
837 838
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
839 840 841 842
	default:
		BUG();
		break;
	}
843 844 845 846 847 848

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
849 850 851
}

/**
852 853
 *  igb_configure_msix - Configure MSI-X hardware
 *  @adapter: board private structure to initialize
854
 *
855 856
 *  igb_configure_msix sets up the hardware to properly
 *  generate MSI-X interrupts.
857 858 859 860 861 862 863 864 865 866
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
867 868
	switch (hw->mac.type) {
	case e1000_82575:
869 870 871 872 873 874 875 876 877
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
878 879

		/* enable msix_other interrupt */
880
		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
881
		adapter->eims_other = E1000_EIMS_OTHER;
882

A
Alexander Duyck 已提交
883 884 885
		break;

	case e1000_82576:
886
	case e1000_82580:
887
	case e1000_i350:
888 889
	case e1000_i210:
	case e1000_i211:
890
		/* Turn on MSI-X capability first, or our settings
891 892
		 * won't stick.  And it will take days to debug.
		 */
893
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
894 895
		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
		     E1000_GPIE_NSICR);
896 897 898

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
899 900
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

901
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
902 903 904 905 906
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
907 908 909

	adapter->eims_enable_mask |= adapter->eims_other;

910 911
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
912

913 914 915 916
	wrfl();
}

/**
917 918
 *  igb_request_msix - Initialize MSI-X interrupts
 *  @adapter: board private structure to initialize
919
 *
920 921
 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 *  kernel.
922 923 924 925
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
926
	struct e1000_hw *hw = &adapter->hw;
927
	int i, err = 0, vector = 0, free_vector = 0;
928

929
	err = request_irq(adapter->msix_entries[vector].vector,
930
			  igb_msix_other, 0, netdev->name, adapter);
931
	if (err)
932
		goto err_out;
933 934 935 936

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

937 938
		vector++;

939 940
		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

941
		if (q_vector->rx.ring && q_vector->tx.ring)
942
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
943 944
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
945
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
946 947
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
948
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
949
				q_vector->rx.ring->queue_index);
950
		else
951 952
			sprintf(q_vector->name, "%s-unused", netdev->name);

953
		err = request_irq(adapter->msix_entries[vector].vector,
954 955
				  igb_msix_ring, 0, q_vector->name,
				  q_vector);
956
		if (err)
957
			goto err_free;
958 959 960 961
	}

	igb_configure_msix(adapter);
	return 0;
962 963 964 965 966 967 968 969 970 971 972

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
973 974 975 976 977 978 979 980 981
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
982
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
983
		pci_disable_msi(adapter->pdev);
984
	}
985 986
}

987
/**
988 989 990
 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be freed
991
 *
992 993 994
 *  This function frees the memory allocated to the q_vector.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	adapter->q_vector[v_idx] = NULL;
	netif_napi_del(&q_vector->napi);

1009
	/* ixgbe_get_stats64() might access the rings on this vector,
1010 1011 1012 1013 1014
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

1015
/**
1016 1017
 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 *  @adapter: board private structure to initialize
1018
 *
1019 1020 1021
 *  This function frees the memory allocated to the q_vectors.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1022 1023 1024
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
1025 1026 1027 1028
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
1029
	adapter->num_q_vectors = 0;
1030 1031 1032

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);
1033 1034 1035
}

/**
1036 1037
 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *  @adapter: board private structure to initialize
1038
 *
1039 1040
 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 *  MSI-X interrupts allocated.
1041 1042 1043 1044 1045 1046
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1047 1048

/**
1049 1050 1051
 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1052
 *
1053 1054
 *  Attempt to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1055
 **/
1056
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1057 1058 1059 1060
{
	int err;
	int numvecs, i;

1061 1062 1063
	if (!msix)
		goto msi_only;

1064
	/* Number of supported queues. */
1065
	adapter->num_rx_queues = adapter->rss_queues;
1066 1067 1068 1069
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1070

1071
	/* start with one vector for every Rx queue */
1072 1073
	numvecs = adapter->num_rx_queues;

1074
	/* if Tx handler is separate add 1 for every Tx queue */
1075 1076
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1077 1078 1079 1080 1081 1082

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1083 1084
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1096
		return;
1097 1098 1099 1100 1101

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1113
		wrfl();
1114 1115 1116 1117
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1118
	adapter->vfs_allocated_count = 0;
1119
	adapter->rss_queues = 1;
1120
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1121
	adapter->num_rx_queues = 1;
1122
	adapter->num_tx_queues = 1;
1123
	adapter->num_q_vectors = 1;
1124
	if (!pci_enable_msi(adapter->pdev))
1125
		adapter->flags |= IGB_FLAG_HAS_MSI;
1126 1127
}

1128 1129 1130 1131 1132 1133 1134
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1135
/**
1136 1137 1138 1139 1140 1141 1142 1143
 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 *  @v_idx: index of vector in adapter struct
 *  @txr_count: total number of Tx rings to allocate
 *  @txr_idx: index of first Tx ring to allocate
 *  @rxr_count: total number of Rx rings to allocate
 *  @rxr_idx: index of first Rx ring to allocate
1144
 *
1145
 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1146
 **/
1147 1148 1149 1150
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1151 1152
{
	struct igb_q_vector *q_vector;
1153 1154
	struct igb_ring *ring;
	int ring_count, size;
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
	q_vector = kzalloc(size, GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	/* intialize ITR */
	if (rxr_count) {
		/* rx or rx/tx vector */
		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
			q_vector->itr_val = adapter->rx_itr_setting;
	} else {
		/* tx only vector */
		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
			q_vector->itr_val = adapter->tx_itr_setting;
	}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1222
	}
1223

1224 1225 1226 1227
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1228

1229 1230
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1231

1232 1233
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1234

1235 1236 1237
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1238

1239
		/* On i350, i210, and i211, loopback VLAN packets
1240
		 * have the tag byte-swapped.
1241
		 */
1242 1243
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1244

1245 1246 1247 1248 1249 1250 1251 1252 1253
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1254 1255
}

1256

1257
/**
1258 1259
 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 *  @adapter: board private structure to initialize
1260
 *
1261 1262
 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 *  return -ENOMEM.
1263
 **/
1264
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1265
{
1266 1267 1268 1269 1270
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1271

1272 1273 1274 1275
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1276

1277 1278 1279 1280 1281 1282
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1283 1284
		}
	}
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1302
	return 0;
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1313 1314 1315
}

/**
1316 1317 1318
 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1319
 *
1320
 *  This function initializes the interrupts and allocates all of the queues.
1321
 **/
1322
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1323 1324 1325 1326
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1327
	igb_set_interrupt_capability(adapter, msix);
1328 1329 1330 1331 1332 1333 1334

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1335
	igb_cache_ring_register(adapter);
1336 1337

	return 0;
1338

1339 1340 1341 1342 1343
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1344
/**
1345 1346
 *  igb_request_irq - initialize interrupts
 *  @adapter: board private structure to initialize
1347
 *
1348 1349
 *  Attempts to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1350 1351 1352 1353
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1354
	struct pci_dev *pdev = adapter->pdev;
1355 1356 1357 1358
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1359
		if (!err)
1360 1361
			goto request_done;
		/* fall back to MSI */
1362 1363
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1364

1365
		igb_clear_interrupt_scheme(adapter);
1366 1367
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
1368
			goto request_done;
1369

1370 1371
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1372
		igb_configure(adapter);
1373
	}
P
PJ Waskiewicz 已提交
1374

1375 1376
	igb_assign_vector(adapter->q_vector[0], 0);

1377
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1378
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1379
				  netdev->name, adapter);
1380 1381
		if (!err)
			goto request_done;
1382

1383 1384
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1385
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1386 1387
	}

1388
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1389
			  netdev->name, adapter);
1390

A
Andy Gospodarek 已提交
1391
	if (err)
1392
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1404
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1405

1406
		for (i = 0; i < adapter->num_q_vectors; i++)
1407
			free_irq(adapter->msix_entries[vector++].vector,
1408
				 adapter->q_vector[i]);
1409 1410
	} else {
		free_irq(adapter->pdev->irq, adapter);
1411 1412 1413 1414
	}
}

/**
1415 1416
 *  igb_irq_disable - Mask off interrupt generation on the NIC
 *  @adapter: board private structure
1417 1418 1419 1420 1421
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1422
	/* we need to be careful when disabling interrupts.  The VFs are also
1423 1424 1425
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1426
	if (adapter->msix_entries) {
1427 1428 1429 1430 1431
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1432
	}
P
PJ Waskiewicz 已提交
1433 1434

	wr32(E1000_IAM, 0);
1435 1436
	wr32(E1000_IMC, ~0);
	wrfl();
1437 1438 1439 1440 1441 1442 1443
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1444 1445 1446
}

/**
1447 1448
 *  igb_irq_enable - Enable default interrupt generation settings
 *  @adapter: board private structure
1449 1450 1451 1452 1453 1454
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1455
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1456 1457 1458 1459
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1460
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1461
		if (adapter->vfs_allocated_count) {
1462
			wr32(E1000_MBVFIMR, 0xFF);
1463 1464 1465
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1466
	} else {
1467 1468 1469 1470
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1471
	}
1472 1473 1474 1475
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1476
	struct e1000_hw *hw = &adapter->hw;
1477 1478
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1490
	    !test_bit(old_vid, adapter->active_vlans)) {
1491 1492
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1493 1494 1495 1496
	}
}

/**
1497 1498
 *  igb_release_hw_control - release control of the h/w to f/w
 *  @adapter: address of board private structure
1499
 *
1500 1501 1502
 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that the
 *  driver is no longer loaded.
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
1516 1517
 *  igb_get_hw_control - get control of the h/w from f/w
 *  @adapter: address of board private structure
1518
 *
1519 1520 1521
 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that
 *  the driver is loaded.
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
1535 1536
 *  igb_configure - configure the hardware for RX and TX
 *  @adapter: private board structure
1537 1538 1539 1540 1541 1542 1543
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1544
	igb_set_rx_mode(netdev);
1545 1546 1547

	igb_restore_vlan(adapter);

1548
	igb_setup_tctl(adapter);
1549
	igb_setup_mrqc(adapter);
1550
	igb_setup_rctl(adapter);
1551 1552

	igb_configure_tx(adapter);
1553
	igb_configure_rx(adapter);
1554 1555 1556

	igb_rx_fifo_flush_82575(&adapter->hw);

1557
	/* call igb_desc_unused which always leaves
1558
	 * at least 1 descriptor unused to make sure
1559 1560
	 * next_to_use != next_to_clean
	 */
1561
	for (i = 0; i < adapter->num_rx_queues; i++) {
1562
		struct igb_ring *ring = adapter->rx_ring[i];
1563
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1564 1565 1566
	}
}

1567
/**
1568 1569
 *  igb_power_up_link - Power up the phy/serdes link
 *  @adapter: address of board private structure
1570 1571 1572
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1573 1574
	igb_reset_phy(&adapter->hw);

1575 1576 1577 1578 1579 1580 1581
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
1582 1583
 *  igb_power_down_link - Power down the phy/serdes link
 *  @adapter: address of board private structure
1584 1585 1586 1587 1588 1589 1590 1591
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1592 1593

/**
1594 1595
 *  igb_up - Open the interface and prepare it to handle traffic
 *  @adapter: board private structure
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1607 1608 1609
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1610
	if (adapter->msix_entries)
1611
		igb_configure_msix(adapter);
1612 1613
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1614 1615 1616 1617 1618

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1619 1620 1621 1622 1623 1624 1625
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1626 1627
	netif_tx_start_all_queues(adapter->netdev);

1628 1629 1630 1631
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1632 1633 1634 1635 1636 1637
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1638
	struct e1000_hw *hw = &adapter->hw;
1639 1640 1641 1642
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
1643 1644
	 * reschedule our watchdog timer
	 */
1645 1646 1647 1648 1649 1650 1651
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1652
	netif_tx_stop_all_queues(netdev);
1653 1654 1655 1656 1657 1658 1659 1660 1661

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1662 1663
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_disable(&(adapter->q_vector[i]->napi));
1664 1665 1666 1667 1668 1669 1670

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1671 1672

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1673 1674 1675
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1676

1677 1678 1679
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1680 1681
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1682 1683
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1684 1685 1686 1687 1688
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1703
	struct pci_dev *pdev = adapter->pdev;
1704
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1705 1706
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1707
	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1708 1709 1710 1711

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1712
	switch (mac->type) {
1713
	case e1000_i350:
1714 1715 1716 1717
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1718
	case e1000_82576:
1719 1720
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1721 1722
		break;
	case e1000_82575:
1723 1724
	case e1000_i210:
	case e1000_i211:
1725 1726 1727
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1728
	}
1729

A
Alexander Duyck 已提交
1730 1731
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1732 1733 1734 1735 1736 1737 1738 1739
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
1740 1741
		 * expressed in KB.
		 */
1742 1743 1744 1745 1746
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
1747 1748 1749
		/* the Tx fifo also stores 16 bytes of information about the Tx
		 * but don't include ethernet FCS because hardware appends it
		 */
1750
		min_tx_space = (adapter->max_frame_size +
1751
				sizeof(union e1000_adv_tx_desc) -
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
1762 1763
		 * allocation, take space away from current Rx allocation
		 */
1764 1765 1766 1767
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

1768 1769 1770
			/* if short on Rx space, Rx wins and must trump Tx
			 * adjustment
			 */
1771 1772 1773
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1774
		wr32(E1000_PBA, pba);
1775 1776 1777 1778 1779 1780 1781
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
1782 1783
	 * - the full Rx FIFO size minus one full frame
	 */
1784
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1785
			((pba << 10) - 2 * adapter->max_frame_size));
1786

1787
	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1788
	fc->low_water = fc->high_water - 16;
1789 1790
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1791
	fc->current_mode = fc->requested_mode;
1792

1793 1794 1795 1796
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1797
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1798 1799

		/* ping all the active vfs to let them know we are going down */
1800
		igb_ping_all_vfs(adapter);
1801 1802 1803 1804 1805 1806

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1807
	/* Allow time for pending master requests to run */
1808
	hw->mac.ops.reset_hw(hw);
1809 1810
	wr32(E1000_WUC, 0);

1811
	if (hw->mac.ops.init_hw(hw))
1812
		dev_err(&pdev->dev, "Hardware Error\n");
1813

1814
	/* Flow control settings reset on hardware reset, so guarantee flow
1815 1816 1817 1818 1819
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1820
	igb_init_dmac(adapter, pba);
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
1833 1834 1835
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1836 1837 1838 1839 1840
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1841 1842 1843
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);

1844
	igb_get_phy_info(hw);
1845 1846
}

1847 1848
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1849
{
1850 1851
	/* Since there is no support for separate Rx/Tx vlan accel
	 * enable/disable make sure Tx flag is always in same state as Rx.
J
Jiri Pirko 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1861 1862
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1863
{
1864
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
1865
	struct igb_adapter *adapter = netdev_priv(netdev);
1866

J
Jiri Pirko 已提交
1867 1868 1869
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

1880 1881 1882
	return 0;
}

S
Stephen Hemminger 已提交
1883
static const struct net_device_ops igb_netdev_ops = {
1884
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1885
	.ndo_stop		= igb_close,
1886
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1887
	.ndo_get_stats64	= igb_get_stats64,
1888
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1889 1890 1891 1892 1893 1894 1895
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1896 1897 1898 1899
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1900 1901 1902
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1903 1904
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1905 1906
};

1907 1908 1909 1910 1911 1912 1913
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1914 1915 1916 1917 1918 1919
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
	case e1000_i211:
1920
		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
			 "%2d.%2d-%d",
			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
		break;

	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
		} else {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x",
				 fw.eep_major, fw.eep_minor, fw.etrack_id);
		}
		break;
1941 1942 1943 1944
	}
	return;
}

1945 1946
/**
 *  igb_init_i2c - Init I2C interface
C
Carolyn Wyborny 已提交
1947
 *  @adapter: pointer to adapter structure
1948
 **/
C
Carolyn Wyborny 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
	s32 status = E1000_SUCCESS;

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
		return E1000_SUCCESS;

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structue that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

1972
/**
1973 1974 1975
 *  igb_probe - Device Initialization Routine
 *  @pdev: PCI device information struct
 *  @ent: entry in igb_pci_tbl
1976
 *
1977
 *  Returns 0 on success, negative on failure
1978
 *
1979 1980 1981
 *  igb_probe initializes an adapter identified by a pci_dev structure.
 *  The OS initialization, configuring of the adapter private structure,
 *  and a hardware reset occur.
1982
 **/
1983
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1984 1985 1986 1987
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1988
	u16 eeprom_data = 0;
1989
	s32 ret_val;
1990
	static int global_quad_port_a; /* global quad port a indication */
1991 1992
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1993
	int err, pci_using_dac;
1994
	u8 part_str[E1000_PBANUM_LENGTH];
1995

1996 1997 1998 1999 2000
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2001
			pci_name(pdev), pdev->vendor, pdev->device);
2002 2003 2004
		return -EINVAL;
	}

2005
	err = pci_enable_device_mem(pdev);
2006 2007 2008 2009
	if (err)
		return err;

	pci_using_dac = 0;
2010
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2011
	if (!err) {
2012
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2013 2014 2015
		if (!err)
			pci_using_dac = 1;
	} else {
2016
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2017
		if (err) {
2018 2019
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
2020
			if (err) {
2021 2022
				dev_err(&pdev->dev,
					"No usable DMA configuration, aborting\n");
2023 2024 2025 2026 2027
				goto err_dma;
			}
		}
	}

2028
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2029 2030
					   IORESOURCE_MEM),
					   igb_driver_name);
2031 2032 2033
	if (err)
		goto err_pci_reg;

2034
	pci_enable_pcie_error_reporting(pdev);
2035

2036
	pci_set_master(pdev);
2037
	pci_save_state(pdev);
2038 2039

	err = -ENOMEM;
2040
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2041
				   IGB_MAX_TX_QUEUES);
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
2053
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2054 2055 2056 2057 2058

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
2059 2060
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
2061 2062
		goto err_ioremap;

S
Stephen Hemminger 已提交
2063
	netdev->netdev_ops = &igb_netdev_ops;
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
2086
		goto err_sw_init;
2087

2088
	/* setup the private structure */
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

2108
	/* features is initialized to 0 in allocation, it might have bits
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
2124
	netdev->hw_features |= NETIF_F_RXALL;
2125 2126 2127 2128 2129 2130 2131 2132 2133

	/* set this bit last since it cannot be part of hw_features */
	netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2134

2135 2136
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2137
	if (pci_using_dac) {
2138
		netdev->features |= NETIF_F_HIGHDMA;
2139 2140
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2141

2142 2143
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2144
		netdev->features |= NETIF_F_SCTP_CSUM;
2145
	}
2146

2147 2148
	netdev->priv_flags |= IFF_UNICAST_FLT;

2149
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2150 2151

	/* before reading the NVM, reset the controller to put the device in a
2152 2153
	 * known good starting state
	 */
2154 2155
	hw->mac.ops.reset_hw(hw);

2156
	/* make sure the NVM is good , i211 parts have special NVM that
2157 2158 2159 2160 2161 2162 2163 2164
	 * doesn't contain a checksum
	 */
	if (hw->mac.type != e1000_i211) {
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2165 2166 2167 2168 2169 2170 2171 2172
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

2173
	if (!is_valid_ether_addr(netdev->dev_addr)) {
2174 2175 2176 2177 2178
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2179 2180 2181
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2182
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2183
		    (unsigned long) adapter);
2184
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2185
		    (unsigned long) adapter);
2186 2187 2188 2189

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2190
	/* Initialize link properties that are user-changeable */
2191 2192 2193 2194
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2195 2196
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2197 2198 2199

	igb_validate_mdi_setting(hw);

2200
	/* By default, support wake on port A */
2201
	if (hw->bus.func == 0)
2202 2203 2204 2205
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
2206
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2207 2208
				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				 &eeprom_data);
2209 2210
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2211

2212 2213
	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2214 2215 2216

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
2217 2218
	 * lan on a particular port
	 */
2219 2220
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2221
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2222 2223
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2224 2225
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2226
		/* Wake events only supported on port A for dual fiber
2227 2228
		 * regardless of eeprom setting
		 */
2229
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2230
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2231
		break;
2232
	case E1000_DEV_ID_82576_QUAD_COPPER:
2233
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2234 2235
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
2236
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2237 2238 2239 2240 2241 2242
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2243 2244 2245 2246
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2247 2248 2249
	}

	/* initialize the wol settings based on the eeprom settings */
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2262 2263 2264 2265

	/* reset the hardware with the new settings */
	igb_reset(adapter);

C
Carolyn Wyborny 已提交
2266 2267 2268 2269 2270 2271 2272
	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

2273 2274 2275 2276 2277 2278 2279 2280 2281
	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2282 2283 2284
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2285
#ifdef CONFIG_IGB_DCA
2286
	if (dca_add_requester(&pdev->dev) == 0) {
2287
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2288 2289 2290 2291
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2292
#endif
2293 2294 2295 2296
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;
2297

2298
		/* Read the NVM to determine if this i350 device supports an
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
A
Anders Berggren 已提交
2313
	/* do hw tstamp init after resetting */
2314
	igb_ptp_init(adapter);
A
Anders Berggren 已提交
2315

2316 2317
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2318
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2319
		 netdev->name,
2320
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2321
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2322
		   "unknown"),
2323 2324 2325 2326
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2327
		 netdev->dev_addr);
2328

2329 2330 2331 2332
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2333 2334 2335
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2336
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2337
		adapter->num_rx_queues, adapter->num_tx_queues);
2338 2339
	switch (hw->mac.type) {
	case e1000_i350:
2340 2341
	case e1000_i210:
	case e1000_i211:
2342 2343 2344 2345 2346
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
Y
Yan, Zheng 已提交
2347 2348

	pm_runtime_put_noidle(&pdev->dev);
2349 2350 2351 2352
	return 0;

err_register:
	igb_release_hw_control(adapter);
C
Carolyn Wyborny 已提交
2353
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2354 2355
err_eeprom:
	if (!igb_check_reset_block(hw))
2356
		igb_reset_phy(hw);
2357 2358 2359 2360

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2361
	igb_clear_interrupt_scheme(adapter);
2362 2363 2364 2365
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2366
	pci_release_selected_regions(pdev,
2367
				     pci_select_bars(pdev, IORESOURCE_MEM));
2368 2369 2370 2371 2372 2373
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
#ifdef CONFIG_PCI_IOV
static int  igb_disable_sriov(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		if (igb_vfs_are_assigned(adapter)) {
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	int err = 0;
	int i;

	if (!num_vfs)
		goto out;
	else if (old_vfs && old_vfs == num_vfs)
		goto out;
	else if (old_vfs && old_vfs != num_vfs)
		err = igb_disable_sriov(pdev);

	if (err)
		goto out;

	if (num_vfs > 7) {
		err = -EPERM;
		goto out;
	}

	adapter->vfs_allocated_count = num_vfs;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF Data Storage\n");
		err = -ENOMEM;
		goto out;
	}

	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
	if (err)
		goto err_out;

	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
2467
/**
C
Carolyn Wyborny 已提交
2468 2469
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
2470
 **/
C
Carolyn Wyborny 已提交
2471 2472 2473 2474 2475 2476
static void igb_remove_i2c(struct igb_adapter *adapter)
{
	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

2477
/**
2478 2479
 *  igb_remove - Device Removal Routine
 *  @pdev: PCI device information struct
2480
 *
2481 2482 2483 2484
 *  igb_remove is called by the PCI subsystem to alert the driver
 *  that it should release a PCI device.  The could be caused by a
 *  Hot-Plug event, or because the driver is going to be removed from
 *  memory.
2485
 **/
2486
static void igb_remove(struct pci_dev *pdev)
2487 2488 2489
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2490
	struct e1000_hw *hw = &adapter->hw;
2491

Y
Yan, Zheng 已提交
2492
	pm_runtime_get_noresume(&pdev->dev);
2493 2494 2495
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
C
Carolyn Wyborny 已提交
2496
	igb_remove_i2c(adapter);
2497
	igb_ptp_stop(adapter);
2498
	/* The watchdog timer may be rescheduled, so explicitly
2499 2500
	 * disable watchdog from being rescheduled.
	 */
2501 2502 2503 2504
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2505 2506
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2507

2508
#ifdef CONFIG_IGB_DCA
2509
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2510 2511
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2512
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2513
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2514 2515 2516
	}
#endif

2517
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2518 2519
	 * would have already happened in close and is redundant.
	 */
2520 2521 2522 2523
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2524
	igb_clear_interrupt_scheme(adapter);
2525

2526
#ifdef CONFIG_PCI_IOV
2527
	igb_disable_sriov(pdev);
2528
#endif
2529

2530 2531 2532
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2533
	pci_release_selected_regions(pdev,
2534
				     pci_select_bars(pdev, IORESOURCE_MEM));
2535

2536
	kfree(adapter->shadow_vfta);
2537 2538
	free_netdev(netdev);

2539
	pci_disable_pcie_error_reporting(pdev);
2540

2541 2542 2543
	pci_disable_device(pdev);
}

2544
/**
2545 2546
 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 *  @adapter: board private structure to initialize
2547
 *
2548 2549 2550 2551
 *  This function initializes the vf specific data storage and then attempts to
 *  allocate the VFs.  The reason for ordering it this way is because it is much
 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 *  the memory for the VFs.
2552
 **/
2553
static void igb_probe_vfs(struct igb_adapter *adapter)
2554 2555 2556
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2557
	struct e1000_hw *hw = &adapter->hw;
2558

2559 2560 2561 2562
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2563
	pci_sriov_set_totalvfs(pdev, 7);
A
Alex Williamson 已提交
2564
	igb_enable_sriov(pdev, max_vfs);
2565

2566 2567 2568
#endif /* CONFIG_PCI_IOV */
}

2569
static void igb_init_queue_configuration(struct igb_adapter *adapter)
2570 2571
{
	struct e1000_hw *hw = &adapter->hw;
2572
	u32 max_rss_queues;
2573

2574
	/* Determine the maximum number of RSS queues supported. */
2575
	switch (hw->mac.type) {
2576 2577 2578 2579
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2580
	case e1000_i210:
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2599
		break;
2600 2601 2602 2603 2604 2605 2606
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2607
	case e1000_i211:
2608
		/* Device supports enough interrupts without queue pairing. */
2609
		break;
2610
	case e1000_82576:
2611
		/* If VFs are going to be allocated with RSS queues then we
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
	case e1000_i210:
2622
	default:
2623
		/* If rss_queues > half of max_rss_queues, pair the queues in
2624 2625 2626 2627
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2628 2629
		break;
	}
2630 2631 2632
}

/**
2633 2634
 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 *  @adapter: board private structure to initialize
2635
 *
2636 2637 2638
 *  igb_sw_init initializes the Adapter private data structure.
 *  Fields are initialized based on PCI device information and
 *  OS network device settings (MTU size).
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
2671
			max_vfs = adapter->vfs_allocated_count = 7;
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	igb_init_queue_configuration(adapter);
2684

2685
	/* Setup and initialize a copy of the hw vlan table array */
2686 2687
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_ATOMIC);
2688

2689
	/* This call may decrease the number of queues */
2690
	if (igb_init_interrupt_scheme(adapter, true)) {
2691 2692 2693 2694
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2695 2696
	igb_probe_vfs(adapter);

2697 2698 2699
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2700
	if (hw->mac.type >= e1000_i350)
2701 2702
		adapter->flags &= ~IGB_FLAG_DMAC;

2703 2704 2705 2706 2707
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
2708 2709
 *  igb_open - Called when a network interface is made active
 *  @netdev: network interface device structure
2710
 *
2711
 *  Returns 0 on success, negative value on failure
2712
 *
2713 2714 2715 2716 2717
 *  The open entry point is called when a network interface is made
 *  active by the system (IFF_UP).  At this point all resources needed
 *  for transmit and receive operations are allocated, the interrupt
 *  handler is registered with the OS, the watchdog timer is started,
 *  and the stack is notified that the interface is ready.
2718
 **/
Y
Yan, Zheng 已提交
2719
static int __igb_open(struct net_device *netdev, bool resuming)
2720 2721 2722
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2723
	struct pci_dev *pdev = adapter->pdev;
2724 2725 2726 2727
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2728 2729
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2730
		return -EBUSY;
Y
Yan, Zheng 已提交
2731 2732 2733 2734
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2735

2736 2737
	netif_carrier_off(netdev);

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2748
	igb_power_up_link(adapter);
2749 2750 2751 2752

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
2753 2754
	 * clean_rx handler before we do so.
	 */
2755 2756 2757 2758 2759 2760
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

2772 2773 2774
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2775 2776
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2777 2778 2779

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2780 2781 2782

	igb_irq_enable(adapter);

2783 2784 2785 2786 2787 2788 2789
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2790 2791
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2792 2793 2794
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2795 2796 2797
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2798 2799 2800

	return 0;

2801 2802
err_set_queues:
	igb_free_irq(adapter);
2803 2804
err_req_irq:
	igb_release_hw_control(adapter);
2805
	igb_power_down_link(adapter);
2806 2807 2808 2809 2810
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2811 2812
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2813 2814 2815 2816

	return err;
}

Y
Yan, Zheng 已提交
2817 2818 2819 2820 2821
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2822
/**
2823 2824
 *  igb_close - Disables a network interface
 *  @netdev: network interface device structure
2825
 *
2826
 *  Returns 0, this is not allowed to fail
2827
 *
2828 2829 2830 2831
 *  The close entry point is called when an interface is de-activated
 *  by the OS.  The hardware is still under the driver's control, but
 *  needs to be disabled.  A global MAC reset is issued to stop the
 *  hardware, and all transmit and receive resources are freed.
2832
 **/
Y
Yan, Zheng 已提交
2833
static int __igb_close(struct net_device *netdev, bool suspending)
2834 2835
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2836
	struct pci_dev *pdev = adapter->pdev;
2837 2838 2839

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2840 2841 2842 2843
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2844 2845 2846 2847 2848
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2849 2850
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2851 2852 2853
	return 0;
}

Y
Yan, Zheng 已提交
2854 2855 2856 2857 2858
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2859
/**
2860 2861
 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2862
 *
2863
 *  Return 0 on success, negative on failure
2864
 **/
2865
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2866
{
2867
	struct device *dev = tx_ring->dev;
2868 2869
	int size;

2870
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2871 2872

	tx_ring->tx_buffer_info = vzalloc(size);
2873
	if (!tx_ring->tx_buffer_info)
2874 2875 2876
		goto err;

	/* round up to nearest 4K */
2877
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2878 2879
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2880 2881
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
2882 2883 2884 2885 2886
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2887

2888 2889 2890
	return 0;

err:
2891
	vfree(tx_ring->tx_buffer_info);
2892 2893
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2894 2895 2896 2897
	return -ENOMEM;
}

/**
2898 2899 2900
 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
2901
 *
2902
 *  Return 0 on success, negative on failure
2903 2904 2905
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2906
	struct pci_dev *pdev = adapter->pdev;
2907 2908 2909
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2910
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2911
		if (err) {
2912
			dev_err(&pdev->dev,
2913 2914
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2915
				igb_free_tx_resources(adapter->tx_ring[i]);
2916 2917 2918 2919 2920 2921 2922 2923
			break;
		}
	}

	return err;
}

/**
2924 2925
 *  igb_setup_tctl - configure the transmit control registers
 *  @adapter: Board private structure
2926
 **/
2927
void igb_setup_tctl(struct igb_adapter *adapter)
2928 2929 2930 2931
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2932 2933
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2949
/**
2950 2951 2952
 *  igb_configure_tx_ring - Configure transmit ring after Reset
 *  @adapter: board private structure
 *  @ring: tx ring to configure
2953
 *
2954
 *  Configure a transmit ring after a reset.
2955
 **/
2956 2957
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2958 2959
{
	struct e1000_hw *hw = &adapter->hw;
2960
	u32 txdctl = 0;
2961 2962 2963 2964
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2965
	wr32(E1000_TXDCTL(reg_idx), 0);
2966 2967 2968 2969
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
2970
	     ring->count * sizeof(union e1000_adv_tx_desc));
2971
	wr32(E1000_TDBAL(reg_idx),
2972
	     tdba & 0x00000000ffffffffULL);
2973 2974
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2975
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2976
	wr32(E1000_TDH(reg_idx), 0);
2977
	writel(0, ring->tail);
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
2988 2989
 *  igb_configure_tx - Configure transmit Unit after Reset
 *  @adapter: board private structure
2990
 *
2991
 *  Configure the Tx unit of the MAC after a reset.
2992 2993 2994 2995 2996 2997
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2998
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2999 3000
}

3001
/**
3002 3003
 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3004
 *
3005
 *  Returns 0 on success, negative on failure
3006
 **/
3007
int igb_setup_rx_resources(struct igb_ring *rx_ring)
3008
{
3009
	struct device *dev = rx_ring->dev;
3010
	int size;
3011

3012
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3013 3014

	rx_ring->rx_buffer_info = vzalloc(size);
3015
	if (!rx_ring->rx_buffer_info)
3016 3017 3018
		goto err;

	/* Round up to nearest 4K */
3019
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3020 3021
	rx_ring->size = ALIGN(rx_ring->size, 4096);

3022 3023
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
3024 3025 3026
	if (!rx_ring->desc)
		goto err;

3027
	rx_ring->next_to_alloc = 0;
3028 3029 3030 3031 3032 3033
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
3034 3035
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3036
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3037 3038 3039 3040
	return -ENOMEM;
}

/**
3041 3042 3043
 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
3044
 *
3045
 *  Return 0 on success, negative on failure
3046 3047 3048
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
3049
	struct pci_dev *pdev = adapter->pdev;
3050 3051 3052
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
3053
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3054
		if (err) {
3055
			dev_err(&pdev->dev,
3056 3057
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3058
				igb_free_rx_resources(adapter->rx_ring[i]);
3059 3060 3061 3062 3063 3064 3065
			break;
		}
	}

	return err;
}

3066
/**
3067 3068
 *  igb_setup_mrqc - configure the multiple receive queue control registers
 *  @adapter: Board private structure
3069 3070 3071 3072 3073
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
3074
	u32 j, num_rx_queues, shift = 0;
3075 3076 3077 3078
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
3079 3080

	/* Fill out hash function seeds */
3081 3082
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
3083

3084
	num_rx_queues = adapter->rss_queues;
3085

3086 3087 3088 3089 3090 3091 3092
	switch (hw->mac.type) {
	case e1000_82575:
		shift = 6;
		break;
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count) {
3093 3094 3095
			shift = 3;
			num_rx_queues = 2;
		}
3096 3097 3098
		break;
	default:
		break;
3099 3100
	}

3101
	/* Populate the indirection table 4 entries at a time.  To do this
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	 * we are generating the results for n and n+2 and then interleaving
	 * those with the results with n+1 and n+3.
	 */
	for (j = 0; j < 32; j++) {
		/* first pass generates n and n+2 */
		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
		u32 reta = (base & 0x07800780) >> (7 - shift);

		/* second pass generates n+1 and n+3 */
		base += 0x00010001 * num_rx_queues;
		reta |= (base & 0x07800780) << (1 + shift);

		wr32(E1000_RETA(j), reta);
3115 3116
	}

3117
	/* Disable raw packet checksumming so that RSS hash is placed in
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
3130

3131 3132 3133
	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
3134 3135 3136 3137 3138
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3139

3140 3141 3142 3143 3144
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

3145 3146
	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
3147 3148
	 * if we are only using one queue
	 */
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
3159
		if (adapter->rss_queues > 1)
3160
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3161
		else
3162
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3163
	} else {
3164 3165
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3166 3167 3168 3169 3170 3171
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

3172
/**
3173 3174
 *  igb_setup_rctl - configure the receive control registers
 *  @adapter: Board private structure
3175
 **/
3176
void igb_setup_rctl(struct igb_adapter *adapter)
3177 3178 3179 3180 3181 3182 3183
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3184
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3185

3186
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3187
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3188

3189
	/* enable stripping of CRC. It's unlikely this will break BMC
3190 3191
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
3192
	 */
3193
	rctl |= E1000_RCTL_SECRC;
3194

3195
	/* disable store bad packets and clear size bits. */
3196
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3197

A
Alexander Duyck 已提交
3198 3199
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
3200

3201 3202
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
3203

3204 3205 3206 3207 3208 3209 3210 3211 3212
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
3213 3214 3215
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
3216 3217
		 * in e1000e_set_rx_mode
		 */
B
Ben Greear 已提交
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3230 3231 3232
	wr32(E1000_RCTL, rctl);
}

3233 3234 3235 3236 3237 3238 3239
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
3240 3241
	 * increase the size to support vlan tags
	 */
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3254
/**
3255 3256
 *  igb_rlpml_set - set maximum receive packet size
 *  @adapter: board private structure
3257
 *
3258
 *  Configure maximum receivable packet size.
3259 3260 3261
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3262
	u32 max_frame_size = adapter->max_frame_size;
3263 3264 3265 3266 3267
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3268
		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3269 3270 3271 3272 3273
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3274
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3275 3276 3277 3278 3279
	}

	wr32(E1000_RLPML, max_frame_size);
}

3280 3281
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3282 3283 3284 3285
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

3286
	/* This register exists only on 82576 and newer so if we are older then
3287 3288 3289 3290 3291 3292
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3293
	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3294
	if (aupe)
3295
		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3296 3297
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3298 3299 3300 3301

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3302
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3303
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3304
	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3305 3306 3307
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
3308
		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3309 3310 3311 3312

	wr32(E1000_VMOLR(vfn), vmolr);
}

3313
/**
3314 3315 3316
 *  igb_configure_rx_ring - Configure a receive ring after Reset
 *  @adapter: board private structure
 *  @ring: receive ring to be configured
3317
 *
3318
 *  Configure the Rx unit of the MAC after a reset.
3319
 **/
3320
void igb_configure_rx_ring(struct igb_adapter *adapter,
3321
			   struct igb_ring *ring)
3322 3323 3324 3325
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3326
	u32 srrctl = 0, rxdctl = 0;
3327 3328

	/* disable the queue */
3329
	wr32(E1000_RXDCTL(reg_idx), 0);
3330 3331 3332 3333 3334 3335

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
3336
	     ring->count * sizeof(union e1000_adv_rx_desc));
3337 3338

	/* initialize head and tail */
3339
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3340
	wr32(E1000_RDH(reg_idx), 0);
3341
	writel(0, ring->tail);
3342

3343
	/* set descriptor configuration */
3344
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3345
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3346
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3347
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3348
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3349 3350 3351
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3352 3353 3354

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3355
	/* set filtering for VMDQ pools */
3356
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3357

3358 3359 3360
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3361 3362 3363

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3364 3365 3366
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
				  struct igb_ring *rx_ring)
{
#define IGB_MAX_BUILD_SKB_SIZE \
	(SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) - \
	 (NET_SKB_PAD + NET_IP_ALIGN + IGB_TS_HDR_LEN))

	/* set build_skb flag */
	if (adapter->max_frame_size <= IGB_MAX_BUILD_SKB_SIZE)
		set_ring_build_skb_enabled(rx_ring);
	else
		clear_ring_build_skb_enabled(rx_ring);
}

3381
/**
3382 3383
 *  igb_configure_rx - Configure receive Unit after Reset
 *  @adapter: board private structure
3384
 *
3385
 *  Configure the Rx unit of the MAC after a reset.
3386 3387 3388
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3389
	int i;
3390

3391 3392 3393
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3394 3395
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3396
			 adapter->vfs_allocated_count);
3397

3398
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3399 3400
	 * the Base and Length of the Rx Descriptor Ring
	 */
3401 3402 3403 3404 3405
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *rx_ring = adapter->rx_ring[i];
		igb_set_rx_buffer_len(adapter, rx_ring);
		igb_configure_rx_ring(adapter, rx_ring);
	}
3406 3407 3408
}

/**
3409 3410
 *  igb_free_tx_resources - Free Tx Resources per Queue
 *  @tx_ring: Tx descriptor ring for a specific queue
3411
 *
3412
 *  Free all transmit software resources
3413
 **/
3414
void igb_free_tx_resources(struct igb_ring *tx_ring)
3415
{
3416
	igb_clean_tx_ring(tx_ring);
3417

3418 3419
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3420

3421 3422 3423 3424
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3425 3426
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3427 3428 3429 3430 3431

	tx_ring->desc = NULL;
}

/**
3432 3433
 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 *  @adapter: board private structure
3434
 *
3435
 *  Free all transmit software resources
3436 3437 3438 3439 3440 3441
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3442
		igb_free_tx_resources(adapter->tx_ring[i]);
3443 3444
}

3445 3446 3447 3448 3449
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3450
		if (dma_unmap_len(tx_buffer, len))
3451
			dma_unmap_single(ring->dev,
3452 3453
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3454
					 DMA_TO_DEVICE);
3455
	} else if (dma_unmap_len(tx_buffer, len)) {
3456
		dma_unmap_page(ring->dev,
3457 3458
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3459 3460 3461 3462
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3463
	dma_unmap_len_set(tx_buffer, len, 0);
3464
	/* buffer_info must be completely set up in the transmit path */
3465 3466 3467
}

/**
3468 3469
 *  igb_clean_tx_ring - Free Tx Buffers
 *  @tx_ring: ring to be cleaned
3470
 **/
3471
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3472
{
3473
	struct igb_tx_buffer *buffer_info;
3474
	unsigned long size;
3475
	u16 i;
3476

3477
	if (!tx_ring->tx_buffer_info)
3478 3479 3480 3481
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3482
		buffer_info = &tx_ring->tx_buffer_info[i];
3483
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3484 3485
	}

3486 3487
	netdev_tx_reset_queue(txring_txq(tx_ring));

3488 3489
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3490 3491 3492 3493 3494 3495 3496 3497 3498

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
3499 3500
 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 *  @adapter: board private structure
3501 3502 3503 3504 3505 3506
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3507
		igb_clean_tx_ring(adapter->tx_ring[i]);
3508 3509 3510
}

/**
3511 3512
 *  igb_free_rx_resources - Free Rx Resources
 *  @rx_ring: ring to clean the resources from
3513
 *
3514
 *  Free all receive software resources
3515
 **/
3516
void igb_free_rx_resources(struct igb_ring *rx_ring)
3517
{
3518
	igb_clean_rx_ring(rx_ring);
3519

3520 3521
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3522

3523 3524 3525 3526
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3527 3528
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3529 3530 3531 3532 3533

	rx_ring->desc = NULL;
}

/**
3534 3535
 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 *  @adapter: board private structure
3536
 *
3537
 *  Free all receive software resources
3538 3539 3540 3541 3542 3543
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3544
		igb_free_rx_resources(adapter->rx_ring[i]);
3545 3546 3547
}

/**
3548 3549
 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 *  @rx_ring: ring to free buffers from
3550
 **/
3551
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3552 3553
{
	unsigned long size;
3554
	u16 i;
3555

3556 3557 3558 3559
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3560
	if (!rx_ring->rx_buffer_info)
3561
		return;
3562

3563 3564
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3565
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3566

3567 3568 3569 3570 3571 3572 3573 3574 3575
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3576
		buffer_info->page = NULL;
3577 3578
	}

3579 3580
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3581 3582 3583 3584

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3585
	rx_ring->next_to_alloc = 0;
3586 3587 3588 3589 3590
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
3591 3592
 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 *  @adapter: board private structure
3593 3594 3595 3596 3597 3598
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3599
		igb_clean_rx_ring(adapter->rx_ring[i]);
3600 3601 3602
}

/**
3603 3604 3605
 *  igb_set_mac - Change the Ethernet Address of the NIC
 *  @netdev: network interface device structure
 *  @p: pointer to an address structure
3606
 *
3607
 *  Returns 0 on success, negative on failure
3608 3609 3610 3611
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3612
	struct e1000_hw *hw = &adapter->hw;
3613 3614 3615 3616 3617 3618
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3619
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3620

3621 3622
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3623
			 adapter->vfs_allocated_count);
3624

3625 3626 3627 3628
	return 0;
}

/**
3629 3630
 *  igb_write_mc_addr_list - write multicast addresses to MTA
 *  @netdev: network interface device structure
3631
 *
3632 3633 3634 3635
 *  Writes multicast address list to the MTA hash table.
 *  Returns: -ENOMEM on failure
 *           0 on no addresses written
 *           X on writing X addresses to MTA
3636
 **/
3637
static int igb_write_mc_addr_list(struct net_device *netdev)
3638 3639 3640
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3641
	struct netdev_hw_addr *ha;
3642
	u8  *mta_list;
3643 3644
	int i;

3645
	if (netdev_mc_empty(netdev)) {
3646 3647 3648 3649 3650
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3651

3652
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3653 3654
	if (!mta_list)
		return -ENOMEM;
3655

3656
	/* The shared function expects a packed array of only addresses. */
3657
	i = 0;
3658 3659
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3660 3661 3662 3663

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3664
	return netdev_mc_count(netdev);
3665 3666 3667
}

/**
3668 3669
 *  igb_write_uc_addr_list - write unicast addresses to RAR table
 *  @netdev: network interface device structure
3670
 *
3671 3672 3673 3674
 *  Writes unicast address list to the RAR table.
 *  Returns: -ENOMEM on failure/insufficient address space
 *           0 on no addresses written
 *           X on writing X addresses to the RAR table
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3685
	if (netdev_uc_count(netdev) > rar_entries)
3686
		return -ENOMEM;
3687

3688
	if (!netdev_uc_empty(netdev) && rar_entries) {
3689
		struct netdev_hw_addr *ha;
3690 3691

		netdev_for_each_uc_addr(ha, netdev) {
3692 3693
			if (!rar_entries)
				break;
3694
			igb_rar_set_qsel(adapter, ha->addr,
3695 3696
					 rar_entries--,
					 vfn);
3697
			count++;
3698 3699 3700 3701 3702 3703 3704 3705 3706
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3707 3708 3709 3710
	return count;
}

/**
3711 3712
 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 *  @netdev: network interface device structure
3713
 *
3714 3715 3716 3717
 *  The set_rx_mode entry point is called whenever the unicast or multicast
 *  address lists or the network interface flags are updated.  This routine is
 *  responsible for configuring the hardware for proper unicast, multicast,
 *  promiscuous mode, and all-multi behavior.
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
3741
			/* Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3742
			 * then we should just turn on promiscuous mode so
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
3753
		/* Write addresses to available RAR registers, if there is not
3754
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3755
		 * unicast promiscuous mode
3756 3757 3758 3759 3760 3761 3762
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3763
	}
3764
	wr32(E1000_RCTL, rctl);
3765

3766
	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3767 3768 3769 3770
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
3771
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3772
		return;
3773

3774
	vmolr |= rd32(E1000_VMOLR(vfn)) &
3775
		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3776
	wr32(E1000_VMOLR(vfn), vmolr);
3777
	igb_restore_vf_multicasts(adapter);
3778 3779
}

G
Greg Rose 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3819
/* Need to wait a few seconds after link up to get diagnostic information from
3820 3821
 * the phy
 */
3822 3823 3824
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3825
	igb_get_phy_info(&adapter->hw);
3826 3827
}

A
Alexander Duyck 已提交
3828
/**
3829 3830
 *  igb_has_link - check shared code for link and determine up/down
 *  @adapter: pointer to driver private info
A
Alexander Duyck 已提交
3831
 **/
3832
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3864 3865 3866 3867 3868
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

3869
	/* check for thermal sensor event on i350 copper only */
3870 3871 3872 3873 3874
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
3875
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3876 3877 3878 3879 3880 3881
			ret = !!(thstat & event);
	}

	return ret;
}

3882
/**
3883 3884
 *  igb_watchdog - Timer Call-back
 *  @data: pointer to adapter cast into an unsigned long
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3896 3897
						   struct igb_adapter,
						   watchdog_task);
3898 3899
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3900
	u32 link;
3901
	int i;
3902

A
Alexander Duyck 已提交
3903
	link = igb_has_link(adapter);
3904
	if (link) {
Y
Yan, Zheng 已提交
3905 3906 3907
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3908 3909
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3910
			hw->mac.ops.get_speed_and_duplex(hw,
3911 3912
							 &adapter->link_speed,
							 &adapter->link_duplex);
3913 3914

			ctrl = rd32(E1000_CTRL);
3915
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3916 3917
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3918 3919 3920
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3921 3922 3923 3924 3925
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3926

3927
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3928 3929 3930 3931 3932
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3933
			}
3934

3935
			/* adjust timeout factor according to speed/duplex */
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3948
			igb_ping_all_vfs(adapter);
3949
			igb_check_vf_rate_limit(adapter);
3950

3951
			/* link state has changed, schedule phy info update */
3952 3953 3954 3955 3956 3957 3958 3959
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3960 3961

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3962 3963 3964 3965
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
3966
			}
3967

3968 3969 3970
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3971
			netif_carrier_off(netdev);
3972

3973 3974
			igb_ping_all_vfs(adapter);

3975
			/* link state has changed, schedule phy info update */
3976 3977 3978
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
3979 3980 3981

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
3982 3983 3984
		}
	}

E
Eric Dumazet 已提交
3985 3986 3987
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3988

3989
	for (i = 0; i < adapter->num_tx_queues; i++) {
3990
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3991
		if (!netif_carrier_ok(netdev)) {
3992 3993 3994
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
3995 3996
			 * (Do the reset outside of interrupt context).
			 */
3997 3998 3999 4000 4001 4002
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
4003 4004
		}

4005
		/* Force detection of hung controller every watchdog period */
4006
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4007
	}
4008

4009
	/* Cause software interrupt to ensure Rx ring is cleaned */
4010
	if (adapter->msix_entries) {
4011
		u32 eics = 0;
4012 4013
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
4014 4015 4016 4017
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
4018

G
Greg Rose 已提交
4019
	igb_spoof_check(adapter);
4020
	igb_ptp_rx_hang(adapter);
G
Greg Rose 已提交
4021

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

4035
/**
4036 4037
 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 *  @q_vector: pointer to q_vector
4038
 *
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
 *  Stores a new ITR value based on strictly on packet size.  This
 *  algorithm is less sophisticated than that used in igb_update_itr,
 *  due to the difficulty of synchronizing statistics across multiple
 *  receive rings.  The divisors and thresholds used by this function
 *  were determined based on theoretical maximum wire speed and testing
 *  data, in order to minimize response time while increasing bulk
 *  throughput.
 *  This functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  This function is called only when operating in a multiqueue
 *         receive environment.
4050
 **/
4051
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4052
{
4053
	int new_val = q_vector->itr_val;
4054
	int avg_wire_size = 0;
4055
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
4056
	unsigned int packets;
4057

4058 4059 4060 4061
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
4062
		new_val = IGB_4K_ITR;
4063
		goto set_itr_val;
4064
	}
4065

4066 4067 4068
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
4069

4070 4071 4072 4073
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
4074 4075 4076 4077

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
4078

4079 4080 4081 4082 4083
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
4084

4085 4086 4087 4088 4089
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
4090

4091 4092 4093 4094 4095
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
4096

4097
set_itr_val:
4098 4099 4100
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
4101
	}
4102
clear_counts:
4103 4104 4105 4106
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
4107 4108 4109
}

/**
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
 *  igb_update_itr - update the dynamic ITR value based on statistics
 *  @q_vector: pointer to q_vector
 *  @ring_container: ring info to update the itr for
 *
 *  Stores a new ITR value based on packets and byte
 *  counts during the last interrupt.  The advantage of per interrupt
 *  computation is faster updates and more accurate ITR for the current
 *  traffic pattern.  Constants in this function were computed
 *  based on theoretical maximum wire speed and thresholds were set based
 *  on testing data as well as attempting to minimize response time
 *  while increasing bulk throughput.
 *  this functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  These calculations are only valid when operating in a single-
 *         queue environment.
4125
 **/
4126 4127
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
4128
{
4129 4130 4131
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
4132

4133
	/* no packets, exit with status unchanged */
4134
	if (packets == 0)
4135
		return;
4136

4137
	switch (itrval) {
4138 4139 4140
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
4141
			itrval = bulk_latency;
4142
		else if ((packets < 5) && (bytes > 512))
4143
			itrval = low_latency;
4144 4145 4146 4147 4148
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
4149
				itrval = bulk_latency;
4150
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4151
				itrval = bulk_latency;
4152
			} else if ((packets > 35)) {
4153
				itrval = lowest_latency;
4154 4155
			}
		} else if (bytes/packets > 2000) {
4156
			itrval = bulk_latency;
4157
		} else if (packets <= 2 && bytes < 512) {
4158
			itrval = lowest_latency;
4159 4160 4161 4162 4163
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
4164
				itrval = low_latency;
4165
		} else if (bytes < 1500) {
4166
			itrval = low_latency;
4167 4168 4169 4170
		}
		break;
	}

4171 4172 4173 4174 4175 4176
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
4177 4178
}

4179
static void igb_set_itr(struct igb_q_vector *q_vector)
4180
{
4181
	struct igb_adapter *adapter = q_vector->adapter;
4182
	u32 new_itr = q_vector->itr_val;
4183
	u8 current_itr = 0;
4184 4185 4186 4187

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
4188
		new_itr = IGB_4K_ITR;
4189 4190 4191
		goto set_itr_now;
	}

4192 4193
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
4194

4195
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4196

4197
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4198 4199 4200
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4201 4202
		current_itr = low_latency;

4203 4204 4205
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
4206
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4207 4208
		break;
	case low_latency:
4209
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4210 4211
		break;
	case bulk_latency:
4212
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4213 4214 4215 4216 4217 4218
		break;
	default:
		break;
	}

set_itr_now:
4219
	if (new_itr != q_vector->itr_val) {
4220 4221
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
4222 4223
		 * increasing
		 */
4224
		new_itr = new_itr > q_vector->itr_val ?
4225 4226 4227
			  max((new_itr * q_vector->itr_val) /
			  (new_itr + (q_vector->itr_val >> 2)),
			  new_itr) : new_itr;
4228 4229 4230 4231 4232 4233
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4234 4235
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4236 4237 4238
	}
}

4239 4240
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4254
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4255 4256 4257 4258 4259 4260 4261 4262
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4263 4264 4265
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4266
{
4267
	struct sk_buff *skb = first->skb;
4268 4269 4270
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

4271 4272 4273
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

4274 4275
	if (!skb_is_gso(skb))
		return 0;
4276 4277

	if (skb_header_cloned(skb)) {
4278
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4279 4280 4281 4282
		if (err)
			return err;
	}

4283 4284
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4285

4286
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4287 4288 4289 4290 4291 4292 4293
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4294
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4295 4296 4297
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4298
	} else if (skb_is_gso_v6(skb)) {
4299 4300 4301 4302
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4303 4304
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4305 4306
	}

4307
	/* compute header lengths */
4308 4309
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4310

4311 4312 4313 4314
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4315
	/* MSS L4LEN IDX */
4316 4317
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4318

4319 4320 4321
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4322
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4323

4324
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4325

4326
	return 1;
4327 4328
}

4329
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4330
{
4331
	struct sk_buff *skb = first->skb;
4332 4333 4334
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4335

4336
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4337 4338
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4339 4340
	} else {
		u8 l4_hdr = 0;
4341
		switch (first->protocol) {
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4354 4355
					 "partial checksum but proto=%x!\n",
					 first->protocol);
4356
			}
4357 4358
			break;
		}
4359

4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4378 4379
					 "partial checksum but l4 proto=%x!\n",
					 l4_hdr);
4380
			}
4381
			break;
4382
		}
4383 4384 4385

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4386
	}
4387

4388
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4389
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4390

4391
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4392 4393
}

4394 4395 4396 4397 4398 4399
#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4400 4401
{
	/* set type for advanced descriptor with frame checksum insertion */
4402 4403 4404
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;
4405 4406

	/* set HW vlan bit if vlan is present */
4407 4408 4409 4410 4411 4412
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));
4413 4414

	/* set timestamp bit if present */
4415 4416
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));
4417

4418 4419
	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4420 4421 4422 4423

	return cmd_type;
}

4424 4425 4426
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4427 4428 4429
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

4430 4431
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4432 4433 4434
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
4435 4436 4437
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));
4438

4439 4440 4441 4442
	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));
4443

4444
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4445 4446
}

4447 4448
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4449
		       const u8 hdr_len)
4450
{
4451
	struct sk_buff *skb = first->skb;
4452
	struct igb_tx_buffer *tx_buffer;
4453
	union e1000_adv_tx_desc *tx_desc;
4454
	struct skb_frag_struct *frag;
4455
	dma_addr_t dma;
4456
	unsigned int data_len, size;
4457
	u32 tx_flags = first->tx_flags;
4458
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4459 4460 4461 4462
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4463 4464 4465 4466
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;
4467 4468

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4469

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4481 4482 4483

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
4484
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4485 4486 4487 4488 4489 4490 4491

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
4492
			tx_desc->read.olinfo_status = 0;
4493 4494 4495 4496 4497 4498 4499 4500 4501

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4502

4503
		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4504

4505
		i++;
4506 4507 4508
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4509
			i = 0;
4510
		}
4511
		tx_desc->read.olinfo_status = 0;
4512

E
Eric Dumazet 已提交
4513
		size = skb_frag_size(frag);
4514 4515 4516
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4517
				       size, DMA_TO_DEVICE);
4518

4519
		tx_buffer = &tx_ring->tx_buffer_info[i];
4520 4521
	}

4522
	/* write last descriptor with RS and EOP bits */
4523 4524
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4525

4526 4527
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4528 4529 4530
	/* set the timestamp */
	first->time_stamp = jiffies;

4531
	/* Force memory writes to complete before letting h/w know there
4532 4533 4534 4535 4536 4537 4538 4539
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4540
	/* set next_to_watch value indicating a packet is present */
4541
	first->next_to_watch = tx_desc;
4542

4543 4544 4545
	i++;
	if (i == tx_ring->count)
		i = 0;
4546

4547
	tx_ring->next_to_use = i;
4548

4549
	writel(i, tx_ring->tail);
4550

4551
	/* we need this if more than one processor can write to our tail
4552 4553
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4554 4555 4556 4557 4558 4559 4560 4561 4562
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4563 4564 4565
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4566
			break;
4567 4568
		if (i == 0)
			i = tx_ring->count;
4569 4570 4571
		i--;
	}

4572 4573 4574
	tx_ring->next_to_use = i;
}

4575
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4576
{
4577 4578
	struct net_device *netdev = tx_ring->netdev;

4579 4580
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4581 4582
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
4583 4584
	 * but since that doesn't exist yet, just open code it.
	 */
4585 4586 4587
	smp_mb();

	/* We need to check again in a case another CPU has just
4588 4589
	 * made room available.
	 */
4590
	if (igb_desc_unused(tx_ring) < size)
4591 4592 4593
		return -EBUSY;

	/* A reprieve! */
4594
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4595 4596 4597 4598 4599

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4600 4601 4602
	return 0;
}

4603
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4604
{
4605
	if (igb_desc_unused(tx_ring) >= size)
4606
		return 0;
4607
	return __igb_maybe_stop_tx(tx_ring, size);
4608 4609
}

4610 4611
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4612
{
4613
	struct igb_tx_buffer *first;
4614
	int tso;
N
Nick Nunley 已提交
4615
	u32 tx_flags = 0;
4616
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4617
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4618
	u8 hdr_len = 0;
4619

4620 4621
	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4622 4623
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for context descriptor,
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
	 * otherwise try next time
	 */
	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
		unsigned short f;
		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
	} else {
		count += skb_shinfo(skb)->nr_frags;
	}

	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4635 4636 4637
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4638

4639 4640 4641 4642 4643 4644
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4645 4646
	skb_tx_timestamp(skb);

4647 4648
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4649

4650 4651 4652 4653 4654 4655 4656 4657 4658
		if (!(adapter->ptp_tx_skb)) {
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
			tx_flags |= IGB_TX_FLAGS_TSTAMP;

			adapter->ptp_tx_skb = skb_get(skb);
			adapter->ptp_tx_start = jiffies;
			if (adapter->hw.mac.type == e1000_82576)
				schedule_work(&adapter->ptp_tx_work);
		}
4659
	}
4660

4661
	if (vlan_tx_tag_present(skb)) {
4662 4663 4664 4665
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4666 4667 4668
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4669

4670 4671
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4672
		goto out_drop;
4673 4674
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4675

4676
	igb_tx_map(tx_ring, first, hdr_len);
4677 4678

	/* Make sure there is space in the ring for the next send. */
4679
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4680

4681
	return NETDEV_TX_OK;
4682 4683

out_drop:
4684 4685
	igb_unmap_and_free_tx_resource(tx_ring, first);

4686
	return NETDEV_TX_OK;
4687 4688
}

4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4700 4701
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4702 4703
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4715
	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4716 4717
	 * in order to meet this minimum size requirement.
	 */
4718 4719
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
4720 4721
			return NETDEV_TX_OK;
		skb->len = 17;
4722
		skb_set_tail_pointer(skb, 17);
4723
	}
4724

4725
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4726 4727 4728
}

/**
4729 4730
 *  igb_tx_timeout - Respond to a Tx Hang
 *  @netdev: network interface device structure
4731 4732 4733 4734 4735 4736 4737 4738
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4739

4740
	if (hw->mac.type >= e1000_82580)
4741 4742
		hw->dev_spec._82575.global_device_reset = true;

4743
	schedule_work(&adapter->reset_task);
4744 4745
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4746 4747 4748 4749 4750 4751 4752
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4753 4754
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4755 4756 4757 4758
	igb_reinit_locked(adapter);
}

/**
4759 4760 4761
 *  igb_get_stats64 - Get System Network Statistics
 *  @netdev: network interface device structure
 *  @stats: rtnl_link_stats64 pointer
4762
 **/
E
Eric Dumazet 已提交
4763
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4764
						struct rtnl_link_stats64 *stats)
4765
{
E
Eric Dumazet 已提交
4766 4767 4768 4769 4770 4771 4772 4773
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4774 4775 4776
}

/**
4777 4778 4779
 *  igb_change_mtu - Change the Maximum Transfer Unit
 *  @netdev: network interface device structure
 *  @new_mtu: new value for maximum frame size
4780
 *
4781
 *  Returns 0 on success, negative on failure
4782 4783 4784 4785
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4786
	struct pci_dev *pdev = adapter->pdev;
4787
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4788

4789
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4790
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4791 4792 4793
		return -EINVAL;
	}

4794
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4795
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4796
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4797 4798 4799 4800 4801
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4802

4803 4804
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4805

4806 4807
	if (netif_running(netdev))
		igb_down(adapter);
4808

4809
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
4824 4825
 *  igb_update_stats - Update the board statistics counters
 *  @adapter: board private structure
4826
 **/
E
Eric Dumazet 已提交
4827 4828
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4829 4830 4831
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4832
	u32 reg, mpc;
4833
	u16 phy_tmp;
4834 4835
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4836 4837
	unsigned int start;
	u64 _bytes, _packets;
4838 4839 4840

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

4841
	/* Prevent stats update while adapter is being reset, or if the pci
4842 4843 4844 4845 4846 4847 4848
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4849 4850 4851
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
4852
		u32 rqdpc = rd32(E1000_RQDPC(i));
4853
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4854

4855 4856 4857 4858
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
4859 4860 4861 4862 4863 4864 4865 4866

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4867 4868
	}

4869 4870
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4871 4872 4873 4874

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4875
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4876 4877 4878 4879 4880 4881 4882
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4883
	}
4884 4885
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4886 4887

	/* read stats registers */
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4905 4906 4907
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4922
	adapter->stats.rnbc += rd32(E1000_RNBC);
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4940 4941
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4942 4943

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4944 4945 4946 4947
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4948 4949 4950 4951 4952

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
4953 4954
	}

4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4969 4970
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4971 4972 4973 4974

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4975 4976
	 * our own version based on RUC and ROC
	 */
4977
	net_stats->rx_errors = adapter->stats.rxerrc +
4978 4979 4980
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4981 4982 4983 4984 4985
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4986 4987

	/* Tx Errors */
4988 4989 4990 4991 4992
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4993 4994 4995 4996 4997 4998

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4999
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5000 5001 5002 5003 5004 5005 5006 5007 5008
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5009 5010 5011 5012 5013 5014 5015 5016 5017

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
5018 5019 5020 5021
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
5022
	struct igb_adapter *adapter = data;
5023
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
5024 5025
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
5026

5027 5028 5029
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5030
	if (icr & E1000_ICR_DOUTSYNC) {
5031 5032
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
5033 5034
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
5035 5036
		 * see if it is really a spoof event.
		 */
G
Greg Rose 已提交
5037
		igb_check_wvbr(adapter);
5038
	}
5039

5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

P
PJ Waskiewicz 已提交
5062
	wr32(E1000_EIMS, adapter->eims_other);
5063 5064 5065 5066

	return IRQ_HANDLED;
}

5067
static void igb_write_itr(struct igb_q_vector *q_vector)
5068
{
5069
	struct igb_adapter *adapter = q_vector->adapter;
5070
	u32 itr_val = q_vector->itr_val & 0x7FFC;
5071

5072 5073
	if (!q_vector->set_itr)
		return;
5074

5075 5076
	if (!itr_val)
		itr_val = 0x4;
5077

5078 5079
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
5080
	else
5081
		itr_val |= E1000_EITR_CNT_IGNR;
5082

5083 5084
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
5085 5086
}

5087
static irqreturn_t igb_msix_ring(int irq, void *data)
5088
{
5089
	struct igb_q_vector *q_vector = data;
5090

5091 5092
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
5093

5094
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
5095

5096
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
5097 5098
}

5099
#ifdef CONFIG_IGB_DCA
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

5110
	/* We can enable relaxed ordering for reads, but not writes when
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

5131
	/* We can enable relaxed ordering for reads, but not writes when
5132 5133 5134 5135 5136 5137 5138 5139 5140
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

5141
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
5142
{
5143
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
5144 5145
	int cpu = get_cpu();

5146 5147 5148
	if (q_vector->cpu == cpu)
		goto out_no_update;

5149 5150 5151 5152 5153 5154
	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

5155 5156
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
5157 5158 5159 5160 5161
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
5162
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
5163 5164
	int i;

5165
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
5166 5167
		return;

5168 5169 5170
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

5171
	for (i = 0; i < adapter->num_q_vectors; i++) {
5172 5173
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
5174 5175 5176 5177 5178 5179 5180
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
5181
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
5182 5183 5184 5185 5186 5187
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
5188
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
5189 5190
			break;
		if (dca_add_requester(dev) == 0) {
5191
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5192
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
5193 5194 5195 5196 5197
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
5198
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
5199
			/* without this a class_device is left
5200 5201
			 * hanging around in the sysfs model
			 */
J
Jeb Cramer 已提交
5202
			dca_remove_requester(dev);
5203
			dev_info(&pdev->dev, "DCA disabled\n");
5204
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
5205
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
5206 5207 5208
		}
		break;
	}
5209

J
Jeb Cramer 已提交
5210
	return 0;
5211 5212
}

J
Jeb Cramer 已提交
5213
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5214
			  void *p)
J
Jeb Cramer 已提交
5215 5216 5217 5218
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5219
					 __igb_notify_dca);
J
Jeb Cramer 已提交
5220 5221 5222

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
5223
#endif /* CONFIG_IGB_DCA */
5224

5225 5226 5227 5228 5229
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

5230
	eth_zero_addr(mac_addr);
5231 5232
	igb_set_vf_mac(adapter, vf, mac_addr);

5233
	return 0;
5234 5235
}

5236
static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5237 5238
{
	struct pci_dev *pdev = adapter->pdev;
5239 5240
	struct pci_dev *vfdev;
	int dev_id;
5241 5242 5243

	switch (adapter->hw.mac.type) {
	case e1000_82576:
5244
		dev_id = IGB_82576_VF_DEV_ID;
5245 5246
		break;
	case e1000_i350:
5247
		dev_id = IGB_I350_VF_DEV_ID;
5248 5249
		break;
	default:
5250
		return false;
5251 5252
	}

5253 5254 5255 5256 5257 5258 5259
	/* loop through all the VFs to see if we own any that are assigned */
	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
	while (vfdev) {
		/* if we don't own it we don't care */
		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
			/* if it is assigned we cannot release it */
			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5260 5261
				return true;
		}
5262 5263

		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5264
	}
5265

5266 5267 5268 5269
	return false;
}

#endif
5270 5271 5272 5273 5274 5275 5276 5277
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5278
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5279 5280 5281 5282 5283
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5284 5285 5286 5287 5288 5289
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5290
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5291
			    IGB_VF_FLAG_MULTI_PROMISC);
5292 5293 5294 5295
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5296
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5297 5298
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
5299
		/* if we have hashes and we are clearing a multicast promisc
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;
}

5322 5323 5324 5325 5326 5327 5328 5329
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5330
	/* salt away the number of multicast addresses assigned
5331 5332 5333 5334 5335
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5336 5337 5338 5339 5340
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5341
	for (i = 0; i < n; i++)
5342
		vf_data->vf_mc_hashes[i] = hash_list[i];
5343 5344

	/* Flush and reset the mta with the new values */
5345
	igb_set_rx_mode(adapter->netdev);
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5357 5358 5359
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5360
		vf_data = &adapter->vf_data[i];
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5399 5400

	adapter->vf_data[vf].vlans_enabled = 0;
5401 5402 5403 5404 5405 5406 5407
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5408 5409 5410 5411 5412
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5442 5443
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5444 5445
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5446 5447
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5448
			wr32(E1000_VLVF(i), reg);
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5464
			adapter->vf_data[vf].vlans_enabled++;
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5491 5492
		}
	}
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
5526
				 "The VF VLAN has been set, but the PF device is not up.\n");
5527
			dev_warn(&adapter->pdev->dev,
5528
				 "Bring the PF device up before attempting to use the VF device.\n");
5529 5530 5531
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5532
			     false, vf);
5533 5534 5535 5536
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
5537
	}
5538
out:
5539
	return err;
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5550
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5551
{
G
Greg Rose 已提交
5552 5553
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5554
	adapter->vf_data[vf].last_nack = jiffies;
5555 5556

	/* reset offloads to defaults */
5557
	igb_set_vmolr(adapter, vf, true);
5558 5559 5560

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5561 5562 5563 5564 5565 5566
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5567 5568 5569 5570 5571

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5572
	igb_set_rx_mode(adapter->netdev);
5573 5574
}

5575 5576 5577 5578
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

5579
	/* clear mac address as we were hotplug removed/added */
5580
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5581
		eth_zero_addr(vf_mac);
5582 5583 5584 5585 5586 5587

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5588 5589 5590
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5591
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5592 5593 5594 5595
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5596
	igb_vf_reset(adapter, vf);
5597 5598

	/* set vf mac address */
5599
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5600 5601 5602 5603 5604 5605 5606

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5607
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5608 5609 5610 5611 5612 5613 5614 5615 5616

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
5617
	/* The VF MAC Address is stored in a packed array of bytes
G
Greg Rose 已提交
5618 5619
	 * starting at the second 32 bit word of the msg array
	 */
5620 5621
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5622

5623 5624
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5625

5626
	return err;
5627 5628 5629 5630 5631
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5632
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5633 5634 5635
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5636 5637
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5638
		igb_write_mbx(hw, &msg, 1, vf);
5639
		vf_data->last_nack = jiffies;
5640 5641 5642
	}
}

5643
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5644
{
5645 5646
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5647
	struct e1000_hw *hw = &adapter->hw;
5648
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5649 5650
	s32 retval;

5651
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5652

5653 5654
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5655
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5656 5657 5658 5659 5660
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5661 5662 5663

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5664
		return;
5665

5666
	/* until the vf completes a reset it should not be
5667 5668 5669 5670
	 * allowed to start any configuration.
	 */
	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5671
		return;
5672 5673
	}

5674
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5675 5676 5677 5678
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5679 5680 5681 5682
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5683 5684 5685 5686 5687
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
5688 5689
				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
				 vf);
5690
		break;
5691 5692 5693
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5694 5695 5696 5697 5698 5699 5700
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5701 5702 5703
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
5704 5705
				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
				 vf);
5706 5707
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5708 5709
		break;
	default:
5710
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5711 5712 5713 5714
		retval = -1;
		break;
	}

5715 5716
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5717 5718 5719 5720 5721 5722 5723
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5724
}
5725

5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5744 5745
}

5746 5747 5748 5749 5750 5751 5752
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5753 5754
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5773
/**
5774 5775 5776
 *  igb_intr_msi - Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5777 5778 5779
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5780 5781
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5782 5783 5784 5785
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5786
	igb_write_itr(q_vector);
5787

5788 5789 5790
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5791
	if (icr & E1000_ICR_DOUTSYNC) {
5792 5793 5794 5795
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5796 5797 5798 5799 5800 5801
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5813
	napi_schedule(&q_vector->napi);
5814 5815 5816 5817 5818

	return IRQ_HANDLED;
}

/**
5819 5820 5821
 *  igb_intr - Legacy Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5822 5823 5824
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5825 5826
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5827 5828
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5829 5830
	 * need for the IMC write
	 */
5831 5832 5833
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5834 5835
	 * not set, then the adapter didn't send an interrupt
	 */
5836 5837 5838
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5839 5840
	igb_write_itr(q_vector);

5841 5842 5843
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5844
	if (icr & E1000_ICR_DOUTSYNC) {
5845 5846 5847 5848
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5849 5850 5851 5852 5853 5854 5855
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5867
	napi_schedule(&q_vector->napi);
5868 5869 5870 5871

	return IRQ_HANDLED;
}

5872
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5873
{
5874
	struct igb_adapter *adapter = q_vector->adapter;
5875
	struct e1000_hw *hw = &adapter->hw;
5876

5877 5878 5879 5880
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5881
		else
5882
			igb_update_ring_itr(q_vector);
5883 5884
	}

5885 5886
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5887
			wr32(E1000_EIMS, q_vector->eims_value);
5888 5889 5890
		else
			igb_irq_enable(adapter);
	}
5891 5892
}

5893
/**
5894 5895 5896
 *  igb_poll - NAPI Rx polling callback
 *  @napi: napi polling structure
 *  @budget: count of how many packets we should handle
5897 5898
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5899
{
5900
	struct igb_q_vector *q_vector = container_of(napi,
5901 5902
						     struct igb_q_vector,
						     napi);
5903
	bool clean_complete = true;
5904

5905
#ifdef CONFIG_IGB_DCA
5906 5907
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5908
#endif
5909
	if (q_vector->tx.ring)
5910
		clean_complete = igb_clean_tx_irq(q_vector);
5911

5912
	if (q_vector->rx.ring)
5913
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5914

5915 5916 5917
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5918

5919
	/* If not enough Rx work done, exit the polling mode */
5920 5921
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5922

5923
	return 0;
5924
}
A
Al Viro 已提交
5925

5926
/**
5927 5928
 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 *  @q_vector: pointer to q_vector containing needed info
5929
 *
5930
 *  returns true if ring is completely cleaned
5931
 **/
5932
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5933
{
5934
	struct igb_adapter *adapter = q_vector->adapter;
5935
	struct igb_ring *tx_ring = q_vector->tx.ring;
5936
	struct igb_tx_buffer *tx_buffer;
5937
	union e1000_adv_tx_desc *tx_desc;
5938
	unsigned int total_bytes = 0, total_packets = 0;
5939
	unsigned int budget = q_vector->tx.work_limit;
5940
	unsigned int i = tx_ring->next_to_clean;
5941

5942 5943
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5944

5945
	tx_buffer = &tx_ring->tx_buffer_info[i];
5946
	tx_desc = IGB_TX_DESC(tx_ring, i);
5947
	i -= tx_ring->count;
5948

5949 5950
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5951 5952 5953 5954

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5955

5956
		/* prevent any other reads prior to eop_desc */
5957
		read_barrier_depends();
5958

5959 5960 5961 5962
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5963 5964
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5965

5966 5967 5968
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5969

5970 5971
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
5972

5973 5974
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
5975 5976
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
5977 5978
				 DMA_TO_DEVICE);

5979 5980 5981 5982
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

5983 5984
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
5985 5986
			tx_buffer++;
			tx_desc++;
5987
			i++;
5988 5989
			if (unlikely(!i)) {
				i -= tx_ring->count;
5990
				tx_buffer = tx_ring->tx_buffer_info;
5991 5992
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5993 5994

			/* unmap any remaining paged data */
5995
			if (dma_unmap_len(tx_buffer, len)) {
5996
				dma_unmap_page(tx_ring->dev,
5997 5998
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
5999
					       DMA_TO_DEVICE);
6000
				dma_unmap_len_set(tx_buffer, len, 0);
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
6013 6014 6015 6016 6017 6018 6019

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
6020

6021 6022
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
6023
	i += tx_ring->count;
6024
	tx_ring->next_to_clean = i;
6025 6026 6027 6028
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
6029 6030
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
6031

6032
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6033
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
6034

6035
		/* Detect a transmit hang in hardware, this serializes the
6036 6037
		 * check with the clearing of time_stamp and movement of i
		 */
6038
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6039
		if (tx_buffer->next_to_watch &&
6040
		    time_after(jiffies, tx_buffer->time_stamp +
6041 6042
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6043 6044

			/* detected Tx unit hang */
6045
			dev_err(tx_ring->dev,
6046
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
6047
				"  Tx Queue             <%d>\n"
6048 6049 6050 6051 6052 6053
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
6054
				"  next_to_watch        <%p>\n"
6055 6056
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
6057
				tx_ring->queue_index,
6058
				rd32(E1000_TDH(tx_ring->reg_idx)),
6059
				readl(tx_ring->tail),
6060 6061
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
6062
				tx_buffer->time_stamp,
6063
				tx_buffer->next_to_watch,
6064
				jiffies,
6065
				tx_buffer->next_to_watch->wb.status);
6066 6067 6068 6069 6070
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
6071 6072
		}
	}
6073

6074
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6075
	if (unlikely(total_packets &&
6076 6077
	    netif_carrier_ok(tx_ring->netdev) &&
	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
6095 6096
}

6097
/**
6098 6099 6100
 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 *  @rx_ring: rx descriptor ring to store buffers on
 *  @old_buff: donor buffer to have page reused
6101
 *
6102
 *  Synchronizes page for reuse by the adapter
6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
6122
					 IGB_RX_BUFSZ,
6123 6124 6125
					 DMA_FROM_DEVICE);
}

6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
				  struct page *page,
				  unsigned int truesize)
{
	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;

	/* since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif

	return true;
}

6161
/**
6162 6163 6164 6165 6166
 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 *  @rx_ring: rx descriptor ring to transact packets on
 *  @rx_buffer: buffer containing page to add
 *  @rx_desc: descriptor containing length of buffer written by hardware
 *  @skb: sk_buff to place the data into
6167
 *
6168 6169 6170 6171
 *  This function will add the data contained in rx_buffer->page to the skb.
 *  This is done either through a direct copy if the data in the buffer is
 *  less than the skb header size, otherwise it will just attach the page as
 *  a frag to the skb.
6172
 *
6173 6174
 *  The function will then update the page offset if necessary and return
 *  true if the buffer can be reused by the adapter.
6175 6176 6177 6178 6179 6180 6181 6182
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6183 6184 6185 6186 6187
#if (PAGE_SIZE < 8192)
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6210
			rx_buffer->page_offset, size, truesize);
6211

6212 6213
	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
}
6214

6215 6216 6217 6218 6219 6220 6221 6222
static struct sk_buff *igb_build_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc)
{
	struct igb_rx_buffer *rx_buffer;
	struct sk_buff *skb;
	struct page *page;
	void *page_addr;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6223
#if (PAGE_SIZE < 8192)
6224 6225 6226 6227 6228 6229 6230
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
				SKB_DATA_ALIGN(NET_SKB_PAD +
					       NET_IP_ALIGN +
					       size);
#endif
6231

6232 6233
	/* If we spanned a buffer we have a huge mess so test for it */
	BUG_ON(unlikely(!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)));
6234

6235 6236 6237
	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
	page = rx_buffer->page;
	prefetchw(page);
6238

6239 6240 6241 6242 6243 6244
	page_addr = page_address(page) + rx_buffer->page_offset;

	/* prefetch first cache line of first page */
	prefetch(page_addr + NET_SKB_PAD + NET_IP_ALIGN);
#if L1_CACHE_BYTES < 128
	prefetch(page_addr + L1_CACHE_BYTES + NET_SKB_PAD + NET_IP_ALIGN);
6245
#endif
6246

6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
	/* build an skb to around the page buffer */
	skb = build_skb(page_addr, truesize);
	if (unlikely(!skb)) {
		rx_ring->rx_stats.alloc_failed++;
		return NULL;
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      IGB_RX_BUFSZ,
				      DMA_FROM_DEVICE);

	/* update pointers within the skb to store the data */
	skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD);
	__skb_put(skb, size);

	/* pull timestamp out of packet data */
	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
		__skb_pull(skb, IGB_TS_HDR_LEN);
	}

	if (igb_can_reuse_rx_page(rx_buffer, page, truesize)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of buffer_info */
	rx_buffer->dma = 0;
	rx_buffer->page = NULL;

	return skb;
6285 6286
}

6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

6317
		/* we will be copying header into skb->data in
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6328
				      IGB_RX_BUFSZ,
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6347
static inline void igb_rx_checksum(struct igb_ring *ring,
6348 6349
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6350
{
6351
	skb_checksum_none_assert(skb);
6352

6353
	/* Ignore Checksum bit is set */
6354
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6355 6356 6357 6358
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6359
		return;
6360

6361
	/* TCP/UDP checksum error bit is set */
6362 6363 6364
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6365
		/* work around errata with sctp packets where the TCPE aka
6366 6367 6368
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6369 6370
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6371
			u64_stats_update_begin(&ring->rx_syncp);
6372
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6373 6374
			u64_stats_update_end(&ring->rx_syncp);
		}
6375 6376 6377 6378
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6379 6380
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6381 6382
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6383 6384
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6385 6386
}

6387 6388 6389 6390 6391 6392 6393 6394
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

6395
/**
6396 6397 6398 6399
 *  igb_is_non_eop - process handling of non-EOP buffers
 *  @rx_ring: Rx ring being processed
 *  @rx_desc: Rx descriptor for current buffer
 *  @skb: current socket buffer containing buffer in progress
6400
 *
6401 6402 6403 6404
 *  This function updates next to clean.  If the buffer is an EOP buffer
 *  this function exits returning false, otherwise it will place the
 *  sk_buff in the next buffer to be chained and return true indicating
 *  that this is in fact a non-EOP buffer.
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6423
/**
6424 6425 6426
 *  igb_get_headlen - determine size of header for LRO/GRO
 *  @data: pointer to the start of the headers
 *  @max_len: total length of section to find headers in
6427
 *
6428 6429 6430 6431 6432
 *  This function is meant to determine the length of headers that will
 *  be recognized by hardware for LRO, and GRO offloads.  The main
 *  motivation of doing this is to only perform one pull for IPv4 TCP
 *  packets so that we can do basic things like calculating the gso_size
 *  based on the average data per packet.
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

6482
		/* record next protocol if header is present */
6483
		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6484
			nexthdr = hdr.ipv4->protocol;
6485 6486 6487 6488 6489 6490
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
6491
		hlen = sizeof(struct ipv6hdr);
6492 6493 6494 6495
	} else {
		return hdr.network - data;
	}

6496 6497 6498
	/* relocate pointer to start of L4 header */
	hdr.network += hlen;

6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

6519
	/* If everything has gone correctly hdr.network should be the
6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
6531 6532 6533 6534
 *  igb_pull_tail - igb specific version of skb_pull_tail
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being adjusted
6535
 *
6536 6537 6538 6539 6540 6541
 *  This function is an igb specific version of __pskb_pull_tail.  The
 *  main difference between this version and the original function is that
 *  this function can make several assumptions about the state of things
 *  that allow for significant optimizations versus the standard function.
 *  As a result we can do things like drop a frag and maintain an accurate
 *  truesize for the skb.
6542 6543 6544 6545
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6546
{
6547 6548 6549 6550
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

6551
	/* it is valid to use page_address instead of kmap since we are
6552 6553
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6554
	 */
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570
	va = skb_frag_address(frag);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

6571
	/* we need the header to contain the greater of either ETH_HLEN or
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
6587 6588 6589 6590
 *  igb_cleanup_headers - Correct corrupted or empty headers
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being fixed
6591
 *
6592 6593
 *  Address the case where we are pulling data in on pages only
 *  and as such no data is present in the skb header.
6594
 *
6595 6596
 *  In addition if skb is not at least 60 bytes we need to pad it so that
 *  it is large enough to qualify as a valid Ethernet frame.
6597
 *
6598
 *  Returns true if an error was encountered and skb was freed.
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{
	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6627 6628
}

6629
/**
6630 6631 6632 6633
 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being populated
6634
 *
6635 6636 6637
 *  This function checks the ring, descriptor, and packet information in
 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 *  other fields within the skb.
6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);

	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, vid);
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6668
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6669
{
6670
	struct igb_ring *rx_ring = q_vector->rx.ring;
6671
	struct sk_buff *skb = rx_ring->skb;
6672
	unsigned int total_bytes = 0, total_packets = 0;
6673
	u16 cleaned_count = igb_desc_unused(rx_ring);
6674

6675 6676
	do {
		union e1000_adv_rx_desc *rx_desc;
6677

6678 6679 6680 6681 6682
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6683

6684
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6685

6686 6687
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6688

6689 6690 6691 6692 6693 6694
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();

6695
		/* retrieve a buffer from the ring */
6696 6697 6698 6699
		if (ring_uses_build_skb(rx_ring))
			skb = igb_build_rx_buffer(rx_ring, rx_desc);
		else
			skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6700

6701 6702 6703
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6704

6705
		cleaned_count++;
6706

6707 6708 6709
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6710 6711 6712 6713 6714

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6715 6716
		}

6717
		/* probably a little skewed due to removing CRC */
6718 6719
		total_bytes += skb->len;

6720 6721
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6722

J
Jiri Pirko 已提交
6723
		napi_gro_receive(&q_vector->napi, skb);
6724

6725 6726 6727
		/* reset skb pointer */
		skb = NULL;

6728 6729 6730
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
6731

6732 6733 6734
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
6735
	u64_stats_update_begin(&rx_ring->rx_syncp);
6736 6737
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6738
	u64_stats_update_end(&rx_ring->rx_syncp);
6739 6740
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6741 6742

	if (cleaned_count)
6743
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6744

6745
	return (total_packets < budget);
6746 6747
}

6748
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6749
				  struct igb_rx_buffer *bi)
6750 6751
{
	struct page *page = bi->page;
6752
	dma_addr_t dma;
6753

6754 6755
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
6756 6757
		return true;

6758 6759 6760 6761 6762
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
6763 6764
	}

6765 6766
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6767

6768
	/* if mapping failed free memory back to system since
6769 6770
	 * there isn't much point in holding memory we can't use
	 */
6771
	if (dma_mapping_error(rx_ring->dev, dma)) {
6772 6773
		__free_page(page);

6774 6775 6776 6777
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

6778
	bi->dma = dma;
6779 6780
	bi->page = page;
	bi->page_offset = 0;
6781

6782 6783 6784
	return true;
}

6785 6786 6787 6788 6789 6790 6791 6792
static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
{
	if (ring_uses_build_skb(rx_ring))
		return NET_SKB_PAD + NET_IP_ALIGN;
	else
		return 0;
}

6793
/**
6794 6795
 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
 *  @adapter: address of board private structure
6796
 **/
6797
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6798 6799
{
	union e1000_adv_rx_desc *rx_desc;
6800
	struct igb_rx_buffer *bi;
6801
	u16 i = rx_ring->next_to_use;
6802

6803 6804 6805 6806
	/* nothing to do */
	if (!cleaned_count)
		return;

6807
	rx_desc = IGB_RX_DESC(rx_ring, i);
6808
	bi = &rx_ring->rx_buffer_info[i];
6809
	i -= rx_ring->count;
6810

6811
	do {
6812
		if (!igb_alloc_mapped_page(rx_ring, bi))
6813
			break;
6814

6815
		/* Refresh the desc even if buffer_addrs didn't change
6816 6817
		 * because each write-back erases this info.
		 */
6818 6819 6820
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma +
						     bi->page_offset +
						     igb_rx_offset(rx_ring));
6821

6822 6823
		rx_desc++;
		bi++;
6824
		i++;
6825
		if (unlikely(!i)) {
6826
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6827
			bi = rx_ring->rx_buffer_info;
6828 6829 6830 6831 6832
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6833 6834 6835

		cleaned_count--;
	} while (cleaned_count);
6836

6837 6838
	i += rx_ring->count;

6839
	if (rx_ring->next_to_use != i) {
6840
		/* record the next descriptor to use */
6841 6842
		rx_ring->next_to_use = i;

6843 6844 6845
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

6846
		/* Force memory writes to complete before letting h/w
6847 6848
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
6849 6850
		 * such as IA-64).
		 */
6851
		wmb();
6852
		writel(i, rx_ring->tail);
6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6875 6876
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6899
	case SIOCSHWTSTAMP:
6900
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6901 6902 6903 6904 6905
	default:
		return -EOPNOTSUPP;
	}
}

6906 6907 6908 6909
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6910
	if (pcie_capability_read_word(adapter->pdev, reg, value))
6911 6912 6913 6914 6915 6916 6917 6918 6919
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6920
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6921 6922 6923 6924 6925
		return -E1000_ERR_CONFIG;

	return 0;
}

6926
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6927 6928 6929 6930
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6931
	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6932

6933
	if (enable) {
6934 6935 6936 6937 6938
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6939
		/* Disable CFI check */
6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6950
	igb_rlpml_set(adapter);
6951 6952
}

6953
static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6954 6955 6956
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6957
	int pf_id = adapter->vfs_allocated_count;
6958

6959 6960
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6961

6962 6963
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6964 6965

	set_bit(vid, adapter->active_vlans);
6966 6967

	return 0;
6968 6969
}

6970
static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6971 6972 6973
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6974
	int pf_id = adapter->vfs_allocated_count;
6975
	s32 err;
6976

6977 6978
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6979

6980 6981
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6982
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6983 6984

	clear_bit(vid, adapter->active_vlans);
6985 6986

	return 0;
6987 6988 6989 6990
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6991
	u16 vid;
6992

6993 6994
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6995 6996
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
6997 6998
}

6999
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7000
{
7001
	struct pci_dev *pdev = adapter->pdev;
7002 7003 7004 7005
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

7006
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7007 7008
	 * for the switch() below to work
	 */
7009 7010 7011
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
	/* Fiber NIC's only allow 1000 gbps Full duplex
	 * and 100Mbps Full duplex for 100baseFx sfp
	 */
	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
		switch (spd + dplx) {
		case SPEED_10 + DUPLEX_HALF:
		case SPEED_10 + DUPLEX_FULL:
		case SPEED_100 + DUPLEX_HALF:
			goto err_inval;
		default:
			break;
		}
	}
7025

7026
	switch (spd + dplx) {
7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
7045
		goto err_inval;
7046
	}
7047 7048 7049 7050

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

7051
	return 0;
7052 7053 7054 7055

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
7056 7057
}

Y
Yan, Zheng 已提交
7058 7059
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
7060 7061 7062 7063
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
7064
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
7065
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7066 7067 7068 7069 7070 7071
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
7072
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
7073
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
7074

7075
	igb_clear_interrupt_scheme(adapter);
7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
7089
		igb_set_rx_mode(netdev);
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
7107
		igb_disable_pcie_master(hw);
7108 7109 7110 7111 7112 7113 7114 7115

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

7116 7117
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
7118 7119 7120
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
7121 7122

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7123 7124
	 * would have already happened in close and is redundant.
	 */
7125 7126 7127 7128 7129 7130 7131 7132
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
7133
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
7134
static int igb_suspend(struct device *dev)
7135 7136 7137
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
7138
	struct pci_dev *pdev = to_pci_dev(dev);
7139

Y
Yan, Zheng 已提交
7140
	retval = __igb_shutdown(pdev, &wake, 0);
7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
7153
#endif /* CONFIG_PM_SLEEP */
7154

Y
Yan, Zheng 已提交
7155
static int igb_resume(struct device *dev)
7156
{
Y
Yan, Zheng 已提交
7157
	struct pci_dev *pdev = to_pci_dev(dev);
7158 7159 7160 7161 7162 7163 7164
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
7165
	pci_save_state(pdev);
T
Taku Izumi 已提交
7166

7167
	err = pci_enable_device_mem(pdev);
7168 7169 7170 7171 7172 7173 7174 7175 7176 7177
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

7178
	if (igb_init_interrupt_scheme(adapter, true)) {
A
Alexander Duyck 已提交
7179 7180
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
7181 7182 7183
	}

	igb_reset(adapter);
7184 7185

	/* let the f/w know that the h/w is now under the control of the
7186 7187
	 * driver.
	 */
7188 7189
	igb_get_hw_control(adapter);

7190 7191
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
7192
	if (netdev->flags & IFF_UP) {
7193
		rtnl_lock();
Y
Yan, Zheng 已提交
7194
		err = __igb_open(netdev, true);
7195
		rtnl_unlock();
A
Alexander Duyck 已提交
7196 7197 7198
		if (err)
			return err;
	}
7199 7200

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7233 7234 7235

	return 0;
}
Y
Yan, Zheng 已提交
7236 7237 7238 7239 7240 7241

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
7242 7243 7244 7245
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
7246 7247
	bool wake;

Y
Yan, Zheng 已提交
7248
	__igb_shutdown(pdev, &wake, 0);
7249 7250 7251 7252 7253

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7254 7255
}

7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

7322
#ifdef CONFIG_NET_POLL_CONTROLLER
7323
/* Polling 'interrupt' - used by things like netconsole to send skbs
7324 7325 7326 7327 7328 7329
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
7330
	struct e1000_hw *hw = &adapter->hw;
7331
	struct igb_q_vector *q_vector;
7332 7333
	int i;

7334
	for (i = 0; i < adapter->num_q_vectors; i++) {
7335 7336 7337 7338 7339
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
7340
		napi_schedule(&q_vector->napi);
7341
	}
7342 7343 7344 7345
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
7346 7347 7348
 *  igb_io_error_detected - called when PCI error is detected
 *  @pdev: Pointer to PCI device
 *  @state: The current pci connection state
7349
 *
7350 7351 7352
 *  This function is called after a PCI bus error affecting
 *  this device has been detected.
 **/
7353 7354 7355 7356 7357 7358 7359 7360
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

7361 7362 7363
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

7364 7365 7366 7367 7368 7369 7370 7371 7372
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
7373 7374
 *  igb_io_slot_reset - called after the pci bus has been reset.
 *  @pdev: Pointer to PCI device
7375
 *
7376 7377 7378
 *  Restart the card from scratch, as if from a cold-boot. Implementation
 *  resembles the first-half of the igb_resume routine.
 **/
7379 7380 7381 7382 7383
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7384
	pci_ers_result_t result;
T
Taku Izumi 已提交
7385
	int err;
7386

7387
	if (pci_enable_device_mem(pdev)) {
7388 7389
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
7390 7391 7392 7393
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
7394
		pci_save_state(pdev);
7395

7396 7397
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
7398

7399 7400 7401 7402
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
7403

7404 7405
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
7406 7407 7408
		dev_err(&pdev->dev,
			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
			err);
7409 7410
		/* non-fatal, continue */
	}
7411 7412

	return result;
7413 7414 7415
}

/**
7416 7417
 *  igb_io_resume - called when traffic can start flowing again.
 *  @pdev: Pointer to PCI device
7418
 *
7419 7420 7421
 *  This callback is called when the error recovery driver tells us that
 *  its OK to resume normal operation. Implementation resembles the
 *  second-half of the igb_resume routine.
7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
7438 7439
	 * driver.
	 */
7440 7441 7442
	igb_get_hw_control(adapter);
}

7443
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7444
			     u8 qsel)
7445 7446 7447 7448 7449 7450 7451 7452
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7453
		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7470
static int igb_set_vf_mac(struct igb_adapter *adapter,
7471
			  int vf, unsigned char *mac_addr)
7472 7473
{
	struct e1000_hw *hw = &adapter->hw;
7474
	/* VF MAC addresses start at end of receive addresses and moves
7475 7476
	 * towards the first, as a result a collision should not be possible
	 */
7477
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7478

7479
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7480

7481
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7482 7483 7484 7485

	return 0;
}

7486 7487 7488 7489 7490 7491 7492
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7493 7494
	dev_info(&adapter->pdev->dev,
		 "Reload the VF driver to make this change effective.");
7495
	if (test_bit(__IGB_DOWN, &adapter->state)) {
7496 7497 7498 7499
		dev_warn(&adapter->pdev->dev,
			 "The VF MAC address has been set, but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev,
			 "Bring the PF device up before attempting to use the VF device.\n");
7500 7501 7502 7503
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
7526 7527
		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
			 tx_rate;
7528 7529

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7530 7531
		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
			      E1000_RTTBCNRC_RF_INT_MASK);
7532 7533 7534 7535 7536 7537
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7538
	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
L
Lior Levy 已提交
7539 7540 7541
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
7560
			 "Link speed has been changed. VF Transmit rate is disabled\n");
7561 7562 7563 7564 7565 7566 7567
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
7568 7569
				      adapter->vf_data[i].tx_rate,
				      actual_link_speed);
7570 7571 7572
	}
}

7573 7574
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7603
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7604 7605 7606 7607 7608
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

7609 7610 7611
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7612
	u32 reg;
7613

7614 7615
	switch (hw->mac.type) {
	case e1000_82575:
7616 7617
	case e1000_i210:
	case e1000_i211:
7618 7619
	default:
		/* replication is not supported for 82575 */
7620
		return;
7621 7622 7623 7624 7625 7626 7627 7628 7629 7630
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7631 7632
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7633 7634
		break;
	}
7635

7636 7637 7638
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7639
		igb_vmdq_set_anti_spoofing_pf(hw, true,
7640
					      adapter->vfs_allocated_count);
7641 7642 7643 7644
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7645 7646
}

7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

7660
			/* DMA Coalescing high water mark needs to be greater
7661 7662
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7663
			 */
7664 7665 7666 7667 7668 7669 7670 7671 7672
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

7673
			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7674 7675 7676 7677 7678
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7679 7680 7681 7682 7683 7684 7685 7686 7687 7688
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7689 7690 7691

			/* Disable BMC-to-OS Watchdog Enable */
			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7692 7693
			wr32(E1000_DMACR, reg);

7694
			/* no lower threshold to disable
7695 7696 7697 7698 7699 7700 7701 7702
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

7703
			/* free space in tx packet buffer to wake from
7704 7705 7706 7707 7708
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

7709
			/* make low power state decision controlled
7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

7723 7724
/**
 *  igb_read_i2c_byte - Reads 8 bit word over I2C
C
Carolyn Wyborny 已提交
7725 7726 7727 7728 7729 7730 7731
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
7732
 **/
C
Carolyn Wyborny 已提交
7733
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7734
		      u8 dev_addr, u8 *data)
C
Carolyn Wyborny 已提交
7735 7736
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7737
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
	    != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
		return E1000_SUCCESS;
	}
}

7761 7762
/**
 *  igb_write_i2c_byte - Writes 8 bit word over I2C
C
Carolyn Wyborny 已提交
7763 7764 7765 7766 7767 7768 7769
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
7770
 **/
C
Carolyn Wyborny 已提交
7771
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7772
		       u8 dev_addr, u8 data)
C
Carolyn Wyborny 已提交
7773 7774
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7775
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
		return E1000_SUCCESS;

}
7793
/* igb_main.c */