hrtimer.c 46.2 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50

#include <asm/uaccess.h>

51 52
#include <trace/events/timer.h>

53 54
/*
 * The timer bases:
55
 *
56 57 58 59
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
60
 */
61
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
62
{
63 64

	.clock_base =
65
	{
66 67 68
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
69
			.resolution = KTIME_LOW_RES,
70 71 72 73
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
74
			.resolution = KTIME_LOW_RES,
75
		},
76 77 78 79 80
		{
			.index = CLOCK_BOOTTIME,
			.get_time = &ktime_get_boottime,
			.resolution = KTIME_LOW_RES,
		},
81
	}
82 83
};

84 85 86 87 88 89 90 91
static int hrtimer_clock_to_base_table[MAX_CLOCKS];

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}


92 93 94 95
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
96
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
97
{
98
	ktime_t xtim, mono, boot;
99
	struct timespec xts, tom, slp;
100

101
	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
102

J
john stultz 已提交
103
	xtim = timespec_to_ktime(xts);
104 105
	mono = ktime_add(xtim, timespec_to_ktime(tom));
	boot = ktime_add(mono, timespec_to_ktime(slp));
106
	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
107 108
	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
109 110
}

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
129 130 131
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
132
{
133
	struct hrtimer_clock_base *base;
134 135 136 137

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
138
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
139 140 141
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
142
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
143 144 145 146 147
		}
		cpu_relax();
	}
}

148 149 150 151 152 153 154

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
155 156
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
		return get_nohz_timer_target();
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

184 185 186
/*
 * Switch the timer base to the current CPU when possible.
 */
187
static inline struct hrtimer_clock_base *
188 189
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
190
{
191 192
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
193 194
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
195
	int basenum = hrtimer_clockid_to_base(base->index);
196

197 198
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
199
	new_base = &new_cpu_base->clock_base[basenum];
200 201 202

	if (base != new_base) {
		/*
203
		 * We are trying to move timer to new_base.
204 205 206 207 208 209 210
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
211
		if (unlikely(hrtimer_callback_running(timer)))
212 213 214 215
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
216 217
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
218

219 220
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
221 222
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
223 224
			timer->base = base;
			goto again;
225
		}
226 227 228 229 230 231 232
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

233
static inline struct hrtimer_clock_base *
234 235
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
236
	struct hrtimer_clock_base *base = timer->base;
237

238
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
239 240 241 242

	return base;
}

243
# define switch_hrtimer_base(t, b, p)	(b)
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
274 275

EXPORT_SYMBOL_GPL(ktime_add_ns);
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
300 301 302 303 304
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
305
u64 ktime_divns(const ktime_t kt, s64 div)
306
{
307
	u64 dclc;
308 309
	int sft = 0;

310
	dclc = ktime_to_ns(kt);
311 312 313 314 315 316 317 318
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
319
	return dclc;
320 321 322
}
#endif /* BITS_PER_LONG >= 64 */

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

340 341
EXPORT_SYMBOL_GPL(ktime_add_safe);

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
439
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
440 441 442 443 444 445 446 447 448 449 450 451

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
509
	return __this_cpu_read(hrtimer_bases.hres_active);
510 511 512 513 514 515 516
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
517 518
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
519 520 521
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
522
	ktime_t expires, expires_next;
523

524
	expires_next.tv64 = KTIME_MAX;
525 526 527

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;
528
		struct timerqueue_node *next;
529

530 531
		next = timerqueue_getnext(&base->active);
		if (!next)
532
			continue;
533 534
		timer = container_of(next, struct hrtimer, node);

535
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
536 537 538 539 540 541 542
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
543 544
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
545 546
	}

547 548 549 550 551
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
568
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
569
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
570 571
	int res;

572
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
573

574 575 576
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
577
	 * the callback is executed in the hrtimer_interrupt context. The
578 579 580 581 582 583
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

584 585 586 587 588 589 590 591 592
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

593 594 595 596 597 598 599 600 601 602
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
603 604 605 606 607 608 609
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
610
		cpu_base->expires_next = expires;
611 612 613 614 615 616 617 618 619 620 621 622
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
623
	struct timespec realtime_offset, wtm, sleep;
624 625 626 627

	if (!hrtimer_hres_active())
		return;

628 629
	get_xtime_and_monotonic_and_sleep_offset(&realtime_offset, &wtm,
							&sleep);
630
	set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
631 632 633 634

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
635
	raw_spin_lock(&base->lock);
636
	base->clock_base[HRTIMER_BASE_REALTIME].offset =
637 638
		timespec_to_ktime(realtime_offset);

639
	hrtimer_force_reprogram(base, 0);
640
	raw_spin_unlock(&base->lock);
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
657
	on_each_cpu(retrigger_next_event, NULL, 1);
658 659
}

660 661 662 663 664 665
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
666 667 668
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

669 670 671
	retrigger_next_event(NULL);
}

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

688

689 690 691 692 693 694 695
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
696 697
					    struct hrtimer_clock_base *base,
					    int wakeup)
698 699
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
700
		if (wakeup) {
701
			raw_spin_unlock(&base->cpu_base->lock);
702
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
703
			raw_spin_lock(&base->cpu_base->lock);
704 705 706
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

707
		return 1;
708
	}
709

710 711 712 713 714 715
	return 0;
}

/*
 * Switch to high resolution mode
 */
716
static int hrtimer_switch_to_hres(void)
717
{
I
Ingo Molnar 已提交
718 719
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
720 721 722
	unsigned long flags;

	if (base->hres_active)
723
		return 1;
724 725 726 727 728

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
729 730
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
731
		return 0;
732 733
	}
	base->hres_active = 1;
734 735
	base->clock_base[HRTIMER_BASE_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[HRTIMER_BASE_MONOTONIC].resolution = KTIME_HIGH_RES;
736
	base->clock_base[HRTIMER_BASE_BOOTTIME].resolution = KTIME_HIGH_RES;
737 738 739 740 741 742

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
743
	return 1;
744 745 746 747 748 749
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
750
static inline int hrtimer_switch_to_hres(void) { return 0; }
751 752
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
753
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
754 755
					    struct hrtimer_clock_base *base,
					    int wakeup)
756 757 758 759 760 761 762 763
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

764
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
765
{
766
#ifdef CONFIG_TIMER_STATS
767 768
	if (timer->start_site)
		return;
769
	timer->start_site = __builtin_return_address(0);
770 771
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
772 773 774 775 776 777 778 779
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
780
}
781 782 783 784 785 786 787 788

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
789
#endif
790
}
791

792
/*
793
 * Counterpart to lock_hrtimer_base above:
794 795 796 797
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
798
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
799 800 801 802 803
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
804
 * @now:	forward past this time
805 806 807
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
808
 * Returns the number of overruns.
809
 */
D
Davide Libenzi 已提交
810
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
811
{
D
Davide Libenzi 已提交
812
	u64 orun = 1;
813
	ktime_t delta;
814

815
	delta = ktime_sub(now, hrtimer_get_expires(timer));
816 817 818 819

	if (delta.tv64 < 0)
		return 0;

820 821 822
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

823
	if (unlikely(delta.tv64 >= interval.tv64)) {
824
		s64 incr = ktime_to_ns(interval);
825 826

		orun = ktime_divns(delta, incr);
827 828
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
829 830 831 832 833 834 835
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
836
	hrtimer_add_expires(timer, interval);
837 838 839

	return orun;
}
S
Stas Sergeev 已提交
840
EXPORT_SYMBOL_GPL(hrtimer_forward);
841 842 843 844 845 846

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
847 848
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
849
 */
850 851
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
852
{
853
	debug_activate(timer);
854

855
	timerqueue_add(&base->active, &timer->node);
856

857 858 859 860 861
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
862

863
	return (&timer->node == base->active.next);
864
}
865 866 867 868 869

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
870 871 872 873 874
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
875
 */
876
static void __remove_hrtimer(struct hrtimer *timer,
877
			     struct hrtimer_clock_base *base,
878
			     unsigned long newstate, int reprogram)
879
{
880 881 882
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

883
	if (&timer->node == timerqueue_getnext(&base->active)) {
884 885 886 887 888 889 890 891 892
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
893
		}
894
#endif
895
	}
896
	timerqueue_del(&base->active, &timer->node);
897
out:
898
	timer->state = newstate;
899 900 901 902 903 904
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
905
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
906
{
907
	if (hrtimer_is_queued(timer)) {
908
		unsigned long state;
909 910 911 912 913 914 915 916 917 918
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
919
		debug_deactivate(timer);
920
		timer_stats_hrtimer_clear_start_info(timer);
921
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
922 923 924 925 926 927 928
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
929 930 931 932 933
		return 1;
	}
	return 0;
}

934 935 936
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
937
{
938
	struct hrtimer_clock_base *base, *new_base;
939
	unsigned long flags;
940
	int ret, leftmost;
941 942 943 944 945 946 947

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
948
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
949

950
	if (mode & HRTIMER_MODE_REL) {
951
		tim = ktime_add_safe(tim, new_base->get_time());
952 953 954 955 956 957 958 959
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
960
		tim = ktime_add_safe(tim, base->resolution);
961 962
#endif
	}
963

964
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
965

966 967
	timer_stats_hrtimer_set_start_info(timer);

968 969
	leftmost = enqueue_hrtimer(timer, new_base);

970 971 972
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
973 974
	 *
	 * XXX send_remote_softirq() ?
975
	 */
976
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
977
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
978 979 980 981 982

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1000 1001 1002
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1003
 * hrtimer_start - (re)start an hrtimer on the current CPU
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1015
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1016
}
1017
EXPORT_SYMBOL_GPL(hrtimer_start);
1018

1019

1020 1021 1022 1023 1024 1025 1026 1027
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1028
 *    cannot be stopped
1029 1030 1031
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1032
	struct hrtimer_clock_base *base;
1033 1034 1035 1036 1037
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1038
	if (!hrtimer_callback_running(timer))
1039 1040 1041 1042 1043 1044 1045
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1046
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1063
		cpu_relax();
1064 1065
	}
}
1066
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1077
	lock_hrtimer_base(timer, &flags);
1078
	rem = hrtimer_expires_remaining(timer);
1079 1080 1081 1082
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1083
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1084

1085
#ifdef CONFIG_NO_HZ
1086 1087 1088 1089 1090 1091 1092 1093
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1094 1095
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1096 1097 1098 1099
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1100
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1101

1102 1103 1104
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1105
			struct timerqueue_node *next;
1106

1107 1108
			next = timerqueue_getnext(&base->active);
			if (!next)
1109
				continue;
1110

1111
			timer = container_of(next, struct hrtimer, node);
1112
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1113 1114 1115 1116
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1117
	}
1118

1119
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1120

1121 1122 1123 1124 1125 1126
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1127 1128
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1129
{
1130
	struct hrtimer_cpu_base *cpu_base;
1131
	int base;
1132

1133 1134
	memset(timer, 0, sizeof(struct hrtimer));

1135
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1136

1137
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1138 1139
		clock_id = CLOCK_MONOTONIC;

1140 1141
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1142
	hrtimer_init_timer_hres(timer);
1143
	timerqueue_init(&timer->node);
1144 1145 1146 1147 1148 1149

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1150
}
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1161
	debug_init(timer, clock_id, mode);
1162 1163
	__hrtimer_init(timer, clock_id, mode);
}
1164
EXPORT_SYMBOL_GPL(hrtimer_init);
1165 1166 1167 1168 1169 1170

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1171 1172
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1173 1174 1175
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1176
	struct hrtimer_cpu_base *cpu_base;
1177
	int base = hrtimer_clockid_to_base(which_clock);
1178

1179
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1180
	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1181 1182 1183

	return 0;
}
1184
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1185

1186
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1187 1188 1189 1190 1191 1192
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1193 1194
	WARN_ON(!irqs_disabled());

1195
	debug_deactivate(timer);
1196 1197 1198
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1199 1200 1201 1202 1203 1204

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1205
	raw_spin_unlock(&cpu_base->lock);
1206
	trace_hrtimer_expire_entry(timer, now);
1207
	restart = fn(timer);
1208
	trace_hrtimer_expire_exit(timer);
1209
	raw_spin_lock(&cpu_base->lock);
1210 1211

	/*
T
Thomas Gleixner 已提交
1212 1213 1214
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1215 1216 1217
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1218
		enqueue_hrtimer(timer, base);
1219
	}
1220 1221 1222

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1223 1224 1225
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
1236 1237
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1238 1239 1240 1241 1242

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1243 1244
	entry_time = now = ktime_get();
retry:
1245 1246
	expires_next.tv64 = KTIME_MAX;

1247
	raw_spin_lock(&cpu_base->lock);
1248 1249 1250 1251 1252 1253 1254 1255 1256
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1257 1258 1259 1260
	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
1261
		struct timerqueue_node *node;
1262 1263 1264

		basenow = ktime_add(now, base->offset);

1265
		while ((node = timerqueue_getnext(&base->active))) {
1266 1267
			struct hrtimer *timer;

1268
			timer = container_of(node, struct hrtimer, node);
1269

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1284 1285
				ktime_t expires;

1286
				expires = ktime_sub(hrtimer_get_expires(timer),
1287 1288 1289 1290 1291 1292
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1293
			__run_hrtimer(timer, &basenow);
1294 1295 1296 1297
		}
		base++;
	}

1298 1299 1300 1301
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1302
	cpu_base->expires_next = expires_next;
1303
	raw_spin_unlock(&cpu_base->lock);
1304 1305

	/* Reprogramming necessary ? */
1306 1307 1308 1309
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1310
	}
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
	 */
	now = ktime_get();
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1348 1349
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1377
	unsigned long flags;
1378

1379
	local_irq_save(flags);
1380
	__hrtimer_peek_ahead_timers();
1381 1382 1383
	local_irq_restore(flags);
}

1384 1385 1386 1387 1388
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1389 1390 1391 1392 1393
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1394

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1417 1418
}

1419
/*
1420
 * Called from hardirq context every jiffy
1421
 */
1422
void hrtimer_run_queues(void)
1423
{
1424
	struct timerqueue_node *node;
1425 1426 1427
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1428

1429
	if (hrtimer_hres_active())
1430 1431
		return;

1432 1433
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1434
		if (!timerqueue_getnext(&base->active))
1435
			continue;
1436

1437
		if (gettime) {
1438 1439
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1440
		}
1441

1442
		raw_spin_lock(&cpu_base->lock);
1443

1444
		while ((node = timerqueue_getnext(&base->active))) {
1445
			struct hrtimer *timer;
1446

1447
			timer = container_of(node, struct hrtimer, node);
1448 1449
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1450 1451
				break;

1452
			__run_hrtimer(timer, &base->softirq_time);
1453
		}
1454
		raw_spin_unlock(&cpu_base->lock);
1455
	}
1456 1457
}

1458 1459 1460
/*
 * Sleep related functions:
 */
1461
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1474
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1475 1476 1477 1478
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1479
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1480

1481
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1482
{
1483
	hrtimer_init_sleeper(t, current);
1484

1485 1486
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1487
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1488 1489
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1490

1491 1492
		if (likely(t->task))
			schedule();
1493

1494
		hrtimer_cancel(&t->timer);
1495
		mode = HRTIMER_MODE_ABS;
1496 1497

	} while (t->task && !signal_pending(current));
1498

1499 1500
	__set_current_state(TASK_RUNNING);

1501
	return t->task == NULL;
1502 1503
}

1504 1505 1506 1507 1508
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1509
	rem = hrtimer_expires_remaining(timer);
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1520
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1521
{
1522
	struct hrtimer_sleeper t;
1523
	struct timespec __user  *rmtp;
1524
	int ret = 0;
1525

1526 1527
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1528
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1529

1530
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1531
		goto out;
1532

1533
	rmtp = restart->nanosleep.rmtp;
1534
	if (rmtp) {
1535
		ret = update_rmtp(&t.timer, rmtp);
1536
		if (ret <= 0)
1537
			goto out;
1538
	}
1539 1540

	/* The other values in restart are already filled in */
1541 1542 1543 1544
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1545 1546
}

1547
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1548 1549 1550
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1551
	struct hrtimer_sleeper t;
1552
	int ret = 0;
1553 1554 1555 1556 1557
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1558

1559
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1560
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1561
	if (do_nanosleep(&t, mode))
1562
		goto out;
1563

1564
	/* Absolute timers do not update the rmtp value and restart: */
1565 1566 1567 1568
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1569

1570
	if (rmtp) {
1571
		ret = update_rmtp(&t.timer, rmtp);
1572
		if (ret <= 0)
1573
			goto out;
1574
	}
1575 1576

	restart = &current_thread_info()->restart_block;
1577
	restart->fn = hrtimer_nanosleep_restart;
1578 1579
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1580
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1581

1582 1583 1584 1585
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1586 1587
}

1588 1589
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1590
{
1591
	struct timespec tu;
1592 1593 1594 1595 1596 1597 1598

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1599
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1600 1601
}

1602 1603 1604
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1605
static void __cpuinit init_hrtimers_cpu(int cpu)
1606
{
1607
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1608 1609
	int i;

1610
	raw_spin_lock_init(&cpu_base->lock);
1611

1612
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1613
		cpu_base->clock_base[i].cpu_base = cpu_base;
1614 1615
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1616

1617
	hrtimer_init_hres(cpu_base);
1618 1619 1620 1621
}

#ifdef CONFIG_HOTPLUG_CPU

1622
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1623
				struct hrtimer_clock_base *new_base)
1624 1625
{
	struct hrtimer *timer;
1626
	struct timerqueue_node *node;
1627

1628 1629
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1630
		BUG_ON(hrtimer_callback_running(timer));
1631
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1632 1633 1634 1635 1636 1637 1638

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1639
		timer->base = new_base;
1640
		/*
T
Thomas Gleixner 已提交
1641 1642 1643 1644 1645 1646
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1647
		 */
1648
		enqueue_hrtimer(timer, new_base);
1649

T
Thomas Gleixner 已提交
1650 1651
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1652 1653 1654
	}
}

1655
static void migrate_hrtimers(int scpu)
1656
{
1657
	struct hrtimer_cpu_base *old_base, *new_base;
1658
	int i;
1659

1660 1661
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1662 1663 1664 1665

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1666 1667 1668 1669
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1670 1671
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1672

1673
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1674
		migrate_hrtimer_list(&old_base->clock_base[i],
1675
				     &new_base->clock_base[i]);
1676 1677
	}

1678 1679
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1680

1681 1682 1683
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1684
}
1685

1686 1687
#endif /* CONFIG_HOTPLUG_CPU */

1688
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1689 1690
					unsigned long action, void *hcpu)
{
1691
	int scpu = (long)hcpu;
1692 1693 1694 1695

	switch (action) {

	case CPU_UP_PREPARE:
1696
	case CPU_UP_PREPARE_FROZEN:
1697
		init_hrtimers_cpu(scpu);
1698 1699 1700
		break;

#ifdef CONFIG_HOTPLUG_CPU
1701 1702 1703 1704
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1705
	case CPU_DEAD:
1706
	case CPU_DEAD_FROZEN:
1707
	{
1708
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1709
		migrate_hrtimers(scpu);
1710
		break;
1711
	}
1712 1713 1714 1715 1716 1717 1718 1719 1720
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1721
static struct notifier_block __cpuinitdata hrtimers_nb = {
1722 1723 1724 1725 1726
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
1727 1728
	hrtimer_clock_to_base_table[CLOCK_REALTIME] = HRTIMER_BASE_REALTIME;
	hrtimer_clock_to_base_table[CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC;
1729
	hrtimer_clock_to_base_table[CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME;
1730

1731 1732 1733
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1734 1735 1736
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1737 1738
}

1739
/**
1740
 * schedule_hrtimeout_range_clock - sleep until timeout
1741
 * @expires:	timeout value (ktime_t)
1742
 * @delta:	slack in expires timeout (ktime_t)
1743
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1744
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1745
 */
1746 1747 1748
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1762
	 * A NULL parameter means "infinite"
1763 1764 1765 1766 1767 1768 1769
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1770
	hrtimer_init_on_stack(&t.timer, clock, mode);
1771
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1772 1773 1774

	hrtimer_init_sleeper(&t, current);

1775
	hrtimer_start_expires(&t.timer, mode);
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1853
EXPORT_SYMBOL_GPL(schedule_hrtimeout);