i915_gem.c 101.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38

39
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43 44
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
45 46
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
47
				struct drm_i915_gem_pwrite *args,
48
				struct drm_file *file);
49

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57
				    struct shrink_control *sc);
58
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
59

60 61 62 63 64 65 66 67
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
68
	obj->fence_dirty = false;
69 70 71
	obj->fence_reg = I915_FENCE_REG_NONE;
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

87 88
static int
i915_gem_wait_for_error(struct drm_device *dev)
89 90 91 92 93 94 95 96 97 98 99 100 101
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

102 103 104 105 106 107 108 109 110 111 112
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
113 114
}

115
int i915_mutex_lock_interruptible(struct drm_device *dev)
116 117 118
{
	int ret;

119
	ret = i915_gem_wait_for_error(dev);
120 121 122 123 124 125 126
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

127
	WARN_ON(i915_verify_lists(dev));
128 129
	return 0;
}
130

131
static inline bool
132
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
133
{
134
	return !obj->active;
135 136
}

J
Jesse Barnes 已提交
137 138
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
139
		    struct drm_file *file)
J
Jesse Barnes 已提交
140 141
{
	struct drm_i915_gem_init *args = data;
142

143 144 145
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

146 147 148
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
149

150 151 152 153
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
154
	mutex_lock(&dev->struct_mutex);
155 156
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
157 158
	mutex_unlock(&dev->struct_mutex);

159
	return 0;
160 161
}

162 163
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164
			    struct drm_file *file)
165
{
166
	struct drm_i915_private *dev_priv = dev->dev_private;
167
	struct drm_i915_gem_get_aperture *args = data;
168 169
	struct drm_i915_gem_object *obj;
	size_t pinned;
170

171
	pinned = 0;
172
	mutex_lock(&dev->struct_mutex);
173 174 175
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
176
	mutex_unlock(&dev->struct_mutex);
177

178
	args->aper_size = dev_priv->mm.gtt_total;
179
	args->aper_available_size = args->aper_size - pinned;
180

181 182 183
	return 0;
}

184 185 186 187 188
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
189
{
190
	struct drm_i915_gem_object *obj;
191 192
	int ret;
	u32 handle;
193

194
	size = roundup(size, PAGE_SIZE);
195 196
	if (size == 0)
		return -EINVAL;
197 198

	/* Allocate the new object */
199
	obj = i915_gem_alloc_object(dev, size);
200 201 202
	if (obj == NULL)
		return -ENOMEM;

203
	ret = drm_gem_handle_create(file, &obj->base, &handle);
204
	if (ret) {
205 206
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
207
		kfree(obj);
208
		return ret;
209
	}
210

211
	/* drop reference from allocate - handle holds it now */
212
	drm_gem_object_unreference(&obj->base);
213 214
	trace_i915_gem_object_create(obj);

215
	*handle_p = handle;
216 217 218
	return 0;
}

219 220 221 222 223 224
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
225
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
246

247 248 249 250
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

251
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
252
{
253
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
254 255

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
256
		obj->tiling_mode != I915_TILING_NONE;
257 258
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

285
static inline int
286 287
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

311 312 313
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
314
static int
315 316 317 318 319 320 321
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

322
	if (unlikely(page_do_bit17_swizzling))
323 324 325 326 327 328 329 330 331 332 333 334 335 336
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

337 338 339 340
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
341
	if (unlikely(swizzled)) {
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

359 360 361 362 363 364 365 366 367 368 369 370
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
371 372 373
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
374 375 376 377 378 379 380 381 382 383 384 385 386 387

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

388
static int
389 390 391 392
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
393
{
394
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
395
	char __user *user_data;
396
	ssize_t remain;
397
	loff_t offset;
398
	int shmem_page_offset, page_length, ret = 0;
399
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
400
	int hit_slowpath = 0;
401
	int prefaulted = 0;
402
	int needs_clflush = 0;
403
	int release_page;
404

405
	user_data = (char __user *) (uintptr_t) args->data_ptr;
406 407
	remain = args->size;

408
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
409

410 411 412 413 414 415 416 417 418 419 420
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			return ret;
	}
421

422
	offset = args->offset;
423 424

	while (remain > 0) {
425 426
		struct page *page;

427 428 429 430 431
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
432
		shmem_page_offset = offset_in_page(offset);
433 434 435 436
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

437 438 439 440 441 442 443 444 445 446
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
447
		}
448

449 450 451
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

452 453 454 455 456
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
457 458

		hit_slowpath = 1;
459
		page_cache_get(page);
460 461
		mutex_unlock(&dev->struct_mutex);

462
		if (!prefaulted) {
463
			ret = fault_in_multipages_writeable(user_data, remain);
464 465 466 467 468 469 470
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
471

472 473 474
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
475

476
		mutex_lock(&dev->struct_mutex);
477
		page_cache_release(page);
478
next_page:
479
		mark_page_accessed(page);
480 481
		if (release_page)
			page_cache_release(page);
482

483 484 485 486 487
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

488
		remain -= page_length;
489
		user_data += page_length;
490 491 492
		offset += page_length;
	}

493
out:
494 495 496 497 498
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
499 500 501 502

	return ret;
}

503 504 505 506 507 508 509
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
510
		     struct drm_file *file)
511 512
{
	struct drm_i915_gem_pread *args = data;
513
	struct drm_i915_gem_object *obj;
514
	int ret = 0;
515

516 517 518 519 520 521 522 523
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

524
	ret = i915_mutex_lock_interruptible(dev);
525
	if (ret)
526
		return ret;
527

528
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
529
	if (&obj->base == NULL) {
530 531
		ret = -ENOENT;
		goto unlock;
532
	}
533

534
	/* Bounds check source.  */
535 536
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
537
		ret = -EINVAL;
538
		goto out;
C
Chris Wilson 已提交
539 540
	}

C
Chris Wilson 已提交
541 542
	trace_i915_gem_object_pread(obj, args->offset, args->size);

543
	ret = i915_gem_shmem_pread(dev, obj, args, file);
544

545
out:
546
	drm_gem_object_unreference(&obj->base);
547
unlock:
548
	mutex_unlock(&dev->struct_mutex);
549
	return ret;
550 551
}

552 553
/* This is the fast write path which cannot handle
 * page faults in the source data
554
 */
555 556 557 558 559 560

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
561
{
562 563
	void __iomem *vaddr_atomic;
	void *vaddr;
564
	unsigned long unwritten;
565

P
Peter Zijlstra 已提交
566
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
567 568 569
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
570
						      user_data, length);
P
Peter Zijlstra 已提交
571
	io_mapping_unmap_atomic(vaddr_atomic);
572
	return unwritten;
573 574
}

575 576 577 578
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
579
static int
580 581
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
582
			 struct drm_i915_gem_pwrite *args,
583
			 struct drm_file *file)
584
{
585
	drm_i915_private_t *dev_priv = dev->dev_private;
586
	ssize_t remain;
587
	loff_t offset, page_base;
588
	char __user *user_data;
D
Daniel Vetter 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601
	int page_offset, page_length, ret;

	ret = i915_gem_object_pin(obj, 0, true);
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
602 603 604 605

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

606
	offset = obj->gtt_offset + args->offset;
607 608 609 610

	while (remain > 0) {
		/* Operation in this page
		 *
611 612 613
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
614
		 */
615 616
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
617 618 619 620 621
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
622 623
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
624
		 */
625
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
626 627 628 629
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
630

631 632 633
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
634 635
	}

D
Daniel Vetter 已提交
636 637 638
out_unpin:
	i915_gem_object_unpin(obj);
out:
639
	return ret;
640 641
}

642 643 644 645
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
646
static int
647 648 649 650 651
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
652
{
653
	char *vaddr;
654
	int ret;
655

656
	if (unlikely(page_do_bit17_swizzling))
657
		return -EINVAL;
658

659 660 661 662 663 664 665 666 667 668 669
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
670 671 672 673

	return ret;
}

674 675
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
676
static int
677 678 679 680 681
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
682
{
683 684
	char *vaddr;
	int ret;
685

686
	vaddr = kmap(page);
687
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
688 689 690
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
691 692
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
693 694
						user_data,
						page_length);
695 696 697 698 699
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
700 701 702
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
703
	kunmap(page);
704

705
	return ret;
706 707 708
}

static int
709 710 711 712
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
713
{
714
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
715
	ssize_t remain;
716 717
	loff_t offset;
	char __user *user_data;
718
	int shmem_page_offset, page_length, ret = 0;
719
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
720
	int hit_slowpath = 0;
721 722
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
723
	int release_page;
724

725
	user_data = (char __user *) (uintptr_t) args->data_ptr;
726 727
	remain = args->size;

728
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

747
	offset = args->offset;
748
	obj->dirty = 1;
749

750
	while (remain > 0) {
751
		struct page *page;
752
		int partial_cacheline_write;
753

754 755 756 757 758
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
759
		shmem_page_offset = offset_in_page(offset);
760 761 762 763 764

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

765 766 767 768 769 770 771
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

772 773 774 775 776 777 778 779 780 781
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
782 783
		}

784 785 786
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

787 788 789 790 791 792
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
793 794

		hit_slowpath = 1;
795
		page_cache_get(page);
796 797
		mutex_unlock(&dev->struct_mutex);

798 799 800 801
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
802

803
		mutex_lock(&dev->struct_mutex);
804
		page_cache_release(page);
805
next_page:
806 807
		set_page_dirty(page);
		mark_page_accessed(page);
808 809
		if (release_page)
			page_cache_release(page);
810

811 812 813 814 815
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

816
		remain -= page_length;
817
		user_data += page_length;
818
		offset += page_length;
819 820
	}

821
out:
822 823 824 825 826 827 828 829 830 831
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
832
	}
833

834 835 836
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

837
	return ret;
838 839 840 841 842 843 844 845 846
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
847
		      struct drm_file *file)
848 849
{
	struct drm_i915_gem_pwrite *args = data;
850
	struct drm_i915_gem_object *obj;
851 852 853 854 855 856 857 858 859 860
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

861 862
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
863 864
	if (ret)
		return -EFAULT;
865

866
	ret = i915_mutex_lock_interruptible(dev);
867
	if (ret)
868
		return ret;
869

870
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
871
	if (&obj->base == NULL) {
872 873
		ret = -ENOENT;
		goto unlock;
874
	}
875

876
	/* Bounds check destination. */
877 878
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
879
		ret = -EINVAL;
880
		goto out;
C
Chris Wilson 已提交
881 882
	}

C
Chris Wilson 已提交
883 884
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
885
	ret = -EFAULT;
886 887 888 889 890 891
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
892
	if (obj->phys_obj) {
893
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
894 895 896 897
		goto out;
	}

	if (obj->gtt_space &&
898
	    obj->cache_level == I915_CACHE_NONE &&
899
	    obj->tiling_mode == I915_TILING_NONE &&
900
	    obj->map_and_fenceable &&
901
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
902
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
903 904 905
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
906
	}
907

908
	if (ret == -EFAULT)
D
Daniel Vetter 已提交
909
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
910

911
out:
912
	drm_gem_object_unreference(&obj->base);
913
unlock:
914
	mutex_unlock(&dev->struct_mutex);
915 916 917 918
	return ret;
}

/**
919 920
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
921 922 923
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
924
			  struct drm_file *file)
925 926
{
	struct drm_i915_gem_set_domain *args = data;
927
	struct drm_i915_gem_object *obj;
928 929
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
930 931
	int ret;

932
	/* Only handle setting domains to types used by the CPU. */
933
	if (write_domain & I915_GEM_GPU_DOMAINS)
934 935
		return -EINVAL;

936
	if (read_domains & I915_GEM_GPU_DOMAINS)
937 938 939 940 941 942 943 944
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

945
	ret = i915_mutex_lock_interruptible(dev);
946
	if (ret)
947
		return ret;
948

949
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
950
	if (&obj->base == NULL) {
951 952
		ret = -ENOENT;
		goto unlock;
953
	}
954

955 956
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
957 958 959 960 961 962 963

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
964
	} else {
965
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
966 967
	}

968
	drm_gem_object_unreference(&obj->base);
969
unlock:
970 971 972 973 974 975 976 977 978
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
979
			 struct drm_file *file)
980 981
{
	struct drm_i915_gem_sw_finish *args = data;
982
	struct drm_i915_gem_object *obj;
983 984
	int ret = 0;

985
	ret = i915_mutex_lock_interruptible(dev);
986
	if (ret)
987
		return ret;
988

989
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
990
	if (&obj->base == NULL) {
991 992
		ret = -ENOENT;
		goto unlock;
993 994 995
	}

	/* Pinned buffers may be scanout, so flush the cache */
996
	if (obj->pin_count)
997 998
		i915_gem_object_flush_cpu_write_domain(obj);

999
	drm_gem_object_unreference(&obj->base);
1000
unlock:
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1014
		    struct drm_file *file)
1015 1016 1017 1018 1019
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1020
	obj = drm_gem_object_lookup(dev, file, args->handle);
1021
	if (obj == NULL)
1022
		return -ENOENT;
1023 1024 1025 1026 1027 1028

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1029
	drm_gem_object_unreference_unlocked(obj);
1030 1031 1032 1033 1034 1035 1036 1037
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1056 1057
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1058
	drm_i915_private_t *dev_priv = dev->dev_private;
1059 1060 1061
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1062
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1063 1064 1065 1066 1067

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1068 1069 1070
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1071

C
Chris Wilson 已提交
1072 1073
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1074
	/* Now bind it into the GTT if needed */
1075 1076 1077 1078
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1079
	}
1080
	if (!obj->gtt_space) {
1081
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1082 1083
		if (ret)
			goto unlock;
1084

1085 1086 1087 1088
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1089

1090 1091 1092
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1093
	ret = i915_gem_object_get_fence(obj);
1094 1095
	if (ret)
		goto unlock;
1096

1097 1098
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1099

1100 1101
	obj->fault_mappable = true;

1102
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1103 1104 1105 1106
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1107
unlock:
1108
	mutex_unlock(&dev->struct_mutex);
1109
out:
1110
	switch (ret) {
1111
	case -EIO:
1112
	case -EAGAIN:
1113 1114 1115 1116 1117 1118 1119
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1120
		set_need_resched();
1121 1122
	case 0:
	case -ERESTARTSYS:
1123
	case -EINTR:
1124
		return VM_FAULT_NOPAGE;
1125 1126 1127
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1128
		return VM_FAULT_SIGBUS;
1129 1130 1131
	}
}

1132 1133 1134 1135
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1136
 * Preserve the reservation of the mmapping with the DRM core code, but
1137 1138 1139 1140 1141 1142 1143 1144 1145
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1146
void
1147
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1148
{
1149 1150
	if (!obj->fault_mappable)
		return;
1151

1152 1153 1154 1155
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1156

1157
	obj->fault_mappable = false;
1158 1159
}

1160
static uint32_t
1161
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1162
{
1163
	uint32_t gtt_size;
1164 1165

	if (INTEL_INFO(dev)->gen >= 4 ||
1166 1167
	    tiling_mode == I915_TILING_NONE)
		return size;
1168 1169 1170

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1171
		gtt_size = 1024*1024;
1172
	else
1173
		gtt_size = 512*1024;
1174

1175 1176
	while (gtt_size < size)
		gtt_size <<= 1;
1177

1178
	return gtt_size;
1179 1180
}

1181 1182 1183 1184 1185
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1186
 * potential fence register mapping.
1187 1188
 */
static uint32_t
1189 1190 1191
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1192 1193 1194 1195 1196
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1197
	if (INTEL_INFO(dev)->gen >= 4 ||
1198
	    tiling_mode == I915_TILING_NONE)
1199 1200
		return 4096;

1201 1202 1203 1204
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1205
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1206 1207
}

1208 1209 1210
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1211 1212 1213
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1214 1215 1216 1217
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1218
uint32_t
1219 1220 1221
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1222 1223 1224 1225 1226
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1227
	    tiling_mode == I915_TILING_NONE)
1228 1229
		return 4096;

1230 1231 1232
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1233
	 */
1234
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1235 1236
}

1237
int
1238 1239 1240 1241
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1242
{
1243
	struct drm_i915_private *dev_priv = dev->dev_private;
1244
	struct drm_i915_gem_object *obj;
1245 1246
	int ret;

1247
	ret = i915_mutex_lock_interruptible(dev);
1248
	if (ret)
1249
		return ret;
1250

1251
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1252
	if (&obj->base == NULL) {
1253 1254 1255
		ret = -ENOENT;
		goto unlock;
	}
1256

1257
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1258
		ret = -E2BIG;
1259
		goto out;
1260 1261
	}

1262
	if (obj->madv != I915_MADV_WILLNEED) {
1263
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1264 1265
		ret = -EINVAL;
		goto out;
1266 1267
	}

1268
	if (!obj->base.map_list.map) {
1269
		ret = drm_gem_create_mmap_offset(&obj->base);
1270 1271
		if (ret)
			goto out;
1272 1273
	}

1274
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1275

1276
out:
1277
	drm_gem_object_unreference(&obj->base);
1278
unlock:
1279
	mutex_unlock(&dev->struct_mutex);
1280
	return ret;
1281 1282
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1308
static int
1309
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1320 1321 1322 1323
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1324 1325
		return -ENOMEM;

1326
	inode = obj->base.filp->f_path.dentry->d_inode;
1327
	mapping = inode->i_mapping;
1328 1329
	gfpmask |= mapping_gfp_mask(mapping);

1330
	for (i = 0; i < page_count; i++) {
1331
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1332 1333 1334
		if (IS_ERR(page))
			goto err_pages;

1335
		obj->pages[i] = page;
1336 1337
	}

1338
	if (i915_gem_object_needs_bit17_swizzle(obj))
1339 1340 1341 1342 1343 1344
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1345
		page_cache_release(obj->pages[i]);
1346

1347 1348
	drm_free_large(obj->pages);
	obj->pages = NULL;
1349 1350 1351
	return PTR_ERR(page);
}

1352
static void
1353
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1354
{
1355
	int page_count = obj->base.size / PAGE_SIZE;
1356 1357
	int i;

1358
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1359

1360
	if (i915_gem_object_needs_bit17_swizzle(obj))
1361 1362
		i915_gem_object_save_bit_17_swizzle(obj);

1363 1364
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1365 1366

	for (i = 0; i < page_count; i++) {
1367 1368
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1369

1370 1371
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1372

1373
		page_cache_release(obj->pages[i]);
1374
	}
1375
	obj->dirty = 0;
1376

1377 1378
	drm_free_large(obj->pages);
	obj->pages = NULL;
1379 1380
}

1381
void
1382
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1383 1384
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1385
{
1386
	struct drm_device *dev = obj->base.dev;
1387
	struct drm_i915_private *dev_priv = dev->dev_private;
1388

1389
	BUG_ON(ring == NULL);
1390
	obj->ring = ring;
1391 1392

	/* Add a reference if we're newly entering the active list. */
1393 1394 1395
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1396
	}
1397

1398
	/* Move from whatever list we were on to the tail of execution. */
1399 1400
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1401

1402
	obj->last_rendering_seqno = seqno;
1403

1404
	if (obj->fenced_gpu_access) {
1405 1406
		obj->last_fenced_seqno = seqno;

1407 1408 1409 1410 1411 1412 1413 1414
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1415 1416 1417 1418 1419 1420 1421 1422
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1423
	obj->last_fenced_seqno = 0;
1424 1425
}

1426
static void
1427
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1428
{
1429
	struct drm_device *dev = obj->base.dev;
1430 1431
	drm_i915_private_t *dev_priv = dev->dev_private;

1432 1433
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1444
	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1445 1446 1447 1448 1449 1450 1451 1452 1453

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1454
	obj->pending_gpu_write = false;
1455 1456 1457
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1458
}
1459

1460 1461
/* Immediately discard the backing storage */
static void
1462
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1463
{
C
Chris Wilson 已提交
1464
	struct inode *inode;
1465

1466 1467 1468
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1469
	 * backing pages, *now*.
1470
	 */
1471
	inode = obj->base.filp->f_path.dentry->d_inode;
1472
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1473

1474 1475 1476
	if (obj->base.map_list.map)
		drm_gem_free_mmap_offset(&obj->base);

1477
	obj->madv = __I915_MADV_PURGED;
1478 1479 1480
}

static inline int
1481
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1482
{
1483
	return obj->madv == I915_MADV_DONTNEED;
1484 1485
}

1486
static void
C
Chris Wilson 已提交
1487 1488
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1489
{
1490
	struct drm_i915_gem_object *obj, *next;
1491

1492
	list_for_each_entry_safe(obj, next,
1493
				 &ring->gpu_write_list,
1494
				 gpu_write_list) {
1495 1496
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1497

1498 1499
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1500
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1501
						       i915_gem_next_request_seqno(ring));
1502 1503

			trace_i915_gem_object_change_domain(obj,
1504
							    obj->base.read_domains,
1505 1506 1507 1508
							    old_write_domain);
		}
	}
}
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1532
int
C
Chris Wilson 已提交
1533
i915_add_request(struct intel_ring_buffer *ring,
1534
		 struct drm_file *file,
C
Chris Wilson 已提交
1535
		 struct drm_i915_gem_request *request)
1536
{
C
Chris Wilson 已提交
1537
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1538
	uint32_t seqno;
1539
	u32 request_ring_position;
1540
	int was_empty;
1541 1542 1543
	int ret;

	BUG_ON(request == NULL);
1544
	seqno = i915_gem_next_request_seqno(ring);
1545

1546 1547 1548 1549 1550 1551 1552
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1553 1554 1555
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1556

C
Chris Wilson 已提交
1557
	trace_i915_gem_request_add(ring, seqno);
1558 1559

	request->seqno = seqno;
1560
	request->ring = ring;
1561
	request->tail = request_ring_position;
1562
	request->emitted_jiffies = jiffies;
1563 1564 1565
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1566 1567 1568
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1569
		spin_lock(&file_priv->mm.lock);
1570
		request->file_priv = file_priv;
1571
		list_add_tail(&request->client_list,
1572
			      &file_priv->mm.request_list);
1573
		spin_unlock(&file_priv->mm.lock);
1574
	}
1575

1576
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1577

B
Ben Gamari 已提交
1578
	if (!dev_priv->mm.suspended) {
1579 1580 1581 1582 1583
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1584
		if (was_empty)
1585 1586
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1587
	}
1588
	return 0;
1589 1590
}

1591 1592
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1593
{
1594
	struct drm_i915_file_private *file_priv = request->file_priv;
1595

1596 1597
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1598

1599
	spin_lock(&file_priv->mm.lock);
1600 1601 1602 1603
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1604
	spin_unlock(&file_priv->mm.lock);
1605 1606
}

1607 1608
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1609
{
1610 1611
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1612

1613 1614 1615
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1616

1617
		list_del(&request->list);
1618
		i915_gem_request_remove_from_client(request);
1619 1620
		kfree(request);
	}
1621

1622
	while (!list_empty(&ring->active_list)) {
1623
		struct drm_i915_gem_object *obj;
1624

1625 1626 1627
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1628

1629 1630 1631
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1632 1633 1634
	}
}

1635 1636 1637 1638 1639
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1640
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1641
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1642

1643
		i915_gem_write_fence(dev, i, NULL);
1644

1645 1646
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
1647

1648 1649 1650
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
1651
	}
1652 1653

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1654 1655
}

1656
void i915_gem_reset(struct drm_device *dev)
1657
{
1658
	struct drm_i915_private *dev_priv = dev->dev_private;
1659
	struct drm_i915_gem_object *obj;
1660
	int i;
1661

1662 1663
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1664 1665 1666 1667 1668 1669

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1670
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1671 1672
				      struct drm_i915_gem_object,
				      mm_list);
1673

1674 1675 1676
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1677 1678 1679 1680 1681
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1682
	list_for_each_entry(obj,
1683
			    &dev_priv->mm.inactive_list,
1684
			    mm_list)
1685
	{
1686
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1687
	}
1688 1689

	/* The fence registers are invalidated so clear them out */
1690
	i915_gem_reset_fences(dev);
1691 1692 1693 1694 1695
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1696
void
C
Chris Wilson 已提交
1697
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1698 1699
{
	uint32_t seqno;
1700
	int i;
1701

C
Chris Wilson 已提交
1702
	if (list_empty(&ring->request_list))
1703 1704
		return;

C
Chris Wilson 已提交
1705
	WARN_ON(i915_verify_lists(ring->dev));
1706

1707
	seqno = ring->get_seqno(ring);
1708

1709
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1710 1711 1712
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1713
	while (!list_empty(&ring->request_list)) {
1714 1715
		struct drm_i915_gem_request *request;

1716
		request = list_first_entry(&ring->request_list,
1717 1718 1719
					   struct drm_i915_gem_request,
					   list);

1720
		if (!i915_seqno_passed(seqno, request->seqno))
1721 1722
			break;

C
Chris Wilson 已提交
1723
		trace_i915_gem_request_retire(ring, request->seqno);
1724 1725 1726 1727 1728 1729
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1730 1731

		list_del(&request->list);
1732
		i915_gem_request_remove_from_client(request);
1733 1734
		kfree(request);
	}
1735

1736 1737 1738 1739
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1740
		struct drm_i915_gem_object *obj;
1741

1742
		obj = list_first_entry(&ring->active_list,
1743 1744
				      struct drm_i915_gem_object,
				      ring_list);
1745

1746
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1747
			break;
1748

1749
		if (obj->base.write_domain != 0)
1750 1751 1752
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1753
	}
1754

C
Chris Wilson 已提交
1755 1756
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1757
		ring->irq_put(ring);
C
Chris Wilson 已提交
1758
		ring->trace_irq_seqno = 0;
1759
	}
1760

C
Chris Wilson 已提交
1761
	WARN_ON(i915_verify_lists(ring->dev));
1762 1763
}

1764 1765 1766 1767
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1768
	int i;
1769

1770
	for (i = 0; i < I915_NUM_RINGS; i++)
C
Chris Wilson 已提交
1771
		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1772 1773
}

1774
static void
1775 1776 1777 1778
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1779 1780
	bool idle;
	int i;
1781 1782 1783 1784 1785

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1786 1787 1788 1789 1790 1791
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1792
	i915_gem_retire_requests(dev);
1793

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
1805 1806
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
1807 1808
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
1809
			    i915_add_request(ring, NULL, request))
1810 1811 1812 1813 1814 1815 1816
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1817
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1818

1819 1820 1821
	mutex_unlock(&dev->struct_mutex);
}

C
Chris Wilson 已提交
1822 1823 1824 1825
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1826
int
C
Chris Wilson 已提交
1827
i915_wait_request(struct intel_ring_buffer *ring,
1828 1829
		  uint32_t seqno,
		  bool do_retire)
1830
{
C
Chris Wilson 已提交
1831
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1832
	u32 ier;
1833 1834 1835 1836
	int ret = 0;

	BUG_ON(seqno == 0);

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}
1849

1850
	if (seqno == ring->outstanding_lazy_request) {
1851 1852 1853 1854
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1855
			return -ENOMEM;
1856

C
Chris Wilson 已提交
1857
		ret = i915_add_request(ring, NULL, request);
1858 1859 1860 1861 1862 1863
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
1864
	}
1865

1866
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
C
Chris Wilson 已提交
1867
		if (HAS_PCH_SPLIT(ring->dev))
1868
			ier = I915_READ(DEIER) | I915_READ(GTIER);
1869 1870
		else if (IS_VALLEYVIEW(ring->dev))
			ier = I915_READ(GTIER) | I915_READ(VLV_IER);
1871 1872
		else
			ier = I915_READ(IER);
1873 1874 1875
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
1876 1877
			ring->dev->driver->irq_preinstall(ring->dev);
			ring->dev->driver->irq_postinstall(ring->dev);
1878 1879
		}

C
Chris Wilson 已提交
1880
		trace_i915_gem_request_wait_begin(ring, seqno);
C
Chris Wilson 已提交
1881

1882
		ring->waiting_seqno = seqno;
1883
		if (ring->irq_get(ring)) {
1884
			if (dev_priv->mm.interruptible)
1885 1886 1887 1888 1889 1890 1891 1892 1893
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
1894 1895 1896
		} else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
							     seqno) ||
					   atomic_read(&dev_priv->mm.wedged), 3000))
1897
			ret = -EBUSY;
1898
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
1899

C
Chris Wilson 已提交
1900
		trace_i915_gem_request_wait_end(ring, seqno);
1901
	}
1902
	if (atomic_read(&dev_priv->mm.wedged))
1903
		ret = -EAGAIN;
1904 1905 1906 1907 1908 1909

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
1910
	if (ret == 0 && do_retire)
C
Chris Wilson 已提交
1911
		i915_gem_retire_requests_ring(ring);
1912 1913 1914 1915 1916 1917 1918 1919

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1920
int
1921
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1922 1923 1924
{
	int ret;

1925 1926
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1927
	 */
1928
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1929 1930 1931 1932

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
1933
	if (obj->active) {
1934 1935
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
					true);
1936
		if (ret)
1937 1938 1939 1940 1941 1942
			return ret;
	}

	return 0;
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

1966
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
		return i915_gem_object_wait_rendering(obj);

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ret = i915_add_request(from, NULL, request);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}


1992
	ret = to->sync_to(to, from, seqno);
1993 1994
	if (!ret)
		from->sync_seqno[idx] = seqno;
1995

1996
	return ret;
1997 1998
}

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2009 2010 2011
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2023 2024 2025
/**
 * Unbinds an object from the GTT aperture.
 */
2026
int
2027
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2028
{
2029
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2030 2031
	int ret = 0;

2032
	if (obj->gtt_space == NULL)
2033 2034
		return 0;

2035
	if (obj->pin_count != 0) {
2036 2037 2038 2039
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2040
	ret = i915_gem_object_finish_gpu(obj);
2041
	if (ret)
2042 2043 2044 2045 2046 2047
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2048
	i915_gem_object_finish_gtt(obj);
2049

2050 2051
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2052
	 * are flushed when we go to remap it.
2053
	 */
2054 2055
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2056
	if (ret == -ERESTARTSYS)
2057
		return ret;
2058
	if (ret) {
2059 2060 2061
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2062
		i915_gem_clflush_object(obj);
2063
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2064
	}
2065

2066
	/* release the fence reg _after_ flushing */
2067
	ret = i915_gem_object_put_fence(obj);
2068
	if (ret)
2069
		return ret;
2070

C
Chris Wilson 已提交
2071 2072
	trace_i915_gem_object_unbind(obj);

2073 2074
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2075 2076 2077 2078
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2079
	i915_gem_gtt_finish_object(obj);
2080

2081
	i915_gem_object_put_pages_gtt(obj);
2082

2083
	list_del_init(&obj->gtt_list);
2084
	list_del_init(&obj->mm_list);
2085
	/* Avoid an unnecessary call to unbind on rebind. */
2086
	obj->map_and_fenceable = true;
2087

2088 2089 2090
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2091

2092
	if (i915_gem_object_is_purgeable(obj))
2093 2094
		i915_gem_object_truncate(obj);

2095
	return ret;
2096 2097
}

2098
int
C
Chris Wilson 已提交
2099
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2100 2101 2102
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2103 2104
	int ret;

2105 2106 2107
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2108 2109
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2110 2111 2112 2113
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2114 2115 2116
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2117
	return 0;
2118 2119
}

2120
static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
2121
{
2122 2123
	int ret;

2124
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2125 2126
		return 0;

2127
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2128
		ret = i915_gem_flush_ring(ring,
2129
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2130 2131 2132 2133
		if (ret)
			return ret;
	}

2134 2135
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
				 do_retire);
2136 2137
}

2138
int i915_gpu_idle(struct drm_device *dev, bool do_retire)
2139 2140
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2141
	int ret, i;
2142 2143

	/* Flush everything onto the inactive list. */
2144
	for (i = 0; i < I915_NUM_RINGS; i++) {
2145
		ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
2146 2147 2148
		if (ret)
			return ret;
	}
2149

2150
	return 0;
2151 2152
}

2153 2154
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2155 2156 2157 2158
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2159 2160
	if (obj) {
		u32 size = obj->gtt_space->size;
2161

2162 2163 2164 2165 2166
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2167

2168 2169 2170 2171 2172
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2173

2174 2175
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2176 2177
}

2178 2179
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2180 2181 2182 2183
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2184 2185
	if (obj) {
		u32 size = obj->gtt_space->size;
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2196

2197 2198
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2199 2200
}

2201 2202
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2203 2204
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2205
	u32 val;
2206

2207 2208 2209 2210
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2211

2212 2213 2214 2215 2216
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2217

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2243 2244
}

2245 2246
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2247 2248 2249 2250
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2251 2252 2253
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2254

2255 2256 2257 2258 2259
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2260

2261 2262
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2263

2264 2265 2266 2267 2268 2269 2270 2271
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2272

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2289 2290
}

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2317
static int
C
Chris Wilson 已提交
2318
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2319 2320 2321 2322
{
	int ret;

	if (obj->fenced_gpu_access) {
2323
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2324
			ret = i915_gem_flush_ring(obj->ring,
2325 2326 2327 2328
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2329 2330 2331 2332

		obj->fenced_gpu_access = false;
	}

2333
	if (obj->last_fenced_seqno) {
2334 2335
		ret = i915_wait_request(obj->ring,
					obj->last_fenced_seqno,
2336
					false);
2337 2338
		if (ret)
			return ret;
2339 2340 2341 2342

		obj->last_fenced_seqno = 0;
	}

2343 2344 2345 2346 2347 2348
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2349 2350 2351 2352 2353 2354
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2355
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2356 2357
	int ret;

C
Chris Wilson 已提交
2358
	ret = i915_gem_object_flush_fence(obj);
2359 2360 2361
	if (ret)
		return ret;

2362 2363
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2364

2365 2366 2367 2368
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2369 2370 2371 2372 2373

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2374
i915_find_fence_reg(struct drm_device *dev)
2375 2376
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2377
	struct drm_i915_fence_reg *reg, *avail;
2378
	int i;
2379 2380

	/* First try to find a free reg */
2381
	avail = NULL;
2382 2383 2384
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2385
			return reg;
2386

2387
		if (!reg->pin_count)
2388
			avail = reg;
2389 2390
	}

2391 2392
	if (avail == NULL)
		return NULL;
2393 2394

	/* None available, try to steal one or wait for a user to finish */
2395
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2396
		if (reg->pin_count)
2397 2398
			continue;

C
Chris Wilson 已提交
2399
		return reg;
2400 2401
	}

C
Chris Wilson 已提交
2402
	return NULL;
2403 2404
}

2405
/**
2406
 * i915_gem_object_get_fence - set up fencing for an object
2407 2408 2409 2410 2411 2412 2413 2414 2415
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2416 2417
 *
 * For an untiled surface, this removes any existing fence.
2418
 */
2419
int
2420
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2421
{
2422
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2423
	struct drm_i915_private *dev_priv = dev->dev_private;
2424
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2425
	struct drm_i915_fence_reg *reg;
2426
	int ret;
2427

2428 2429 2430
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2431
	if (obj->fence_dirty) {
2432 2433 2434 2435
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2436

2437
	/* Just update our place in the LRU if our fence is getting reused. */
2438 2439
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2440
		if (!obj->fence_dirty) {
2441 2442 2443 2444 2445 2446 2447 2448
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2449

2450 2451 2452 2453
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2454 2455 2456
			if (ret)
				return ret;

2457
			i915_gem_object_fence_lost(old);
2458
		}
2459
	} else
2460 2461
		return 0;

2462
	i915_gem_object_update_fence(obj, reg, enable);
2463
	obj->fence_dirty = false;
2464

2465
	return 0;
2466 2467
}

2468 2469 2470 2471
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2472
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2473
			    unsigned alignment,
2474
			    bool map_and_fenceable)
2475
{
2476
	struct drm_device *dev = obj->base.dev;
2477 2478
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2479
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2480
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2481
	bool mappable, fenceable;
2482
	int ret;
2483

2484
	if (obj->madv != I915_MADV_WILLNEED) {
2485 2486 2487 2488
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2499

2500
	if (alignment == 0)
2501 2502
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2503
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2504 2505 2506 2507
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2508
	size = map_and_fenceable ? fence_size : obj->base.size;
2509

2510 2511 2512
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2513
	if (obj->base.size >
2514
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2515 2516 2517 2518
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2519
 search_free:
2520
	if (map_and_fenceable)
2521 2522
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2523
						    size, alignment, 0,
2524 2525 2526 2527
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2528
						size, alignment, 0);
2529 2530

	if (free_space != NULL) {
2531
		if (map_and_fenceable)
2532
			obj->gtt_space =
2533
				drm_mm_get_block_range_generic(free_space,
2534
							       size, alignment, 0,
2535 2536 2537
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2538
			obj->gtt_space =
2539
				drm_mm_get_block(free_space, size, alignment);
2540
	}
2541
	if (obj->gtt_space == NULL) {
2542 2543 2544
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2545 2546
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2547
		if (ret)
2548
			return ret;
2549

2550 2551 2552
		goto search_free;
	}

2553
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2554
	if (ret) {
2555 2556
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2557 2558

		if (ret == -ENOMEM) {
2559 2560
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2561 2562
			if (ret) {
				/* now try to shrink everyone else */
2563 2564 2565
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2566 2567
				}

2568
				return -ENOMEM;
2569 2570 2571 2572 2573
			}

			goto search_free;
		}

2574 2575 2576
		return ret;
	}

2577
	ret = i915_gem_gtt_prepare_object(obj);
2578
	if (ret) {
2579
		i915_gem_object_put_pages_gtt(obj);
2580 2581
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2582

2583
		if (i915_gem_evict_everything(dev, false))
2584 2585 2586
			return ret;

		goto search_free;
2587 2588
	}

2589 2590
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2591

2592
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2593
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2594

2595 2596 2597 2598
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2599 2600
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2601

2602
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2603

2604
	fenceable =
2605
		obj->gtt_space->size == fence_size &&
2606
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2607

2608
	mappable =
2609
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2610

2611
	obj->map_and_fenceable = mappable && fenceable;
2612

C
Chris Wilson 已提交
2613
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2614 2615 2616 2617
	return 0;
}

void
2618
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2619 2620 2621 2622 2623
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2624
	if (obj->pages == NULL)
2625 2626
		return;

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2638
	trace_i915_gem_object_clflush(obj);
2639

2640
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2641 2642
}

2643
/** Flushes any GPU write domain for the object if it's dirty. */
2644
static int
2645
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2646
{
2647
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2648
		return 0;
2649 2650

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2651
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2652 2653 2654 2655
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2656
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2657
{
C
Chris Wilson 已提交
2658 2659
	uint32_t old_write_domain;

2660
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2661 2662
		return;

2663
	/* No actual flushing is required for the GTT write domain.  Writes
2664 2665
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2666 2667 2668 2669
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2670
	 */
2671 2672
	wmb();

2673 2674
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2675 2676

	trace_i915_gem_object_change_domain(obj,
2677
					    obj->base.read_domains,
C
Chris Wilson 已提交
2678
					    old_write_domain);
2679 2680 2681 2682
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2683
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2684
{
C
Chris Wilson 已提交
2685
	uint32_t old_write_domain;
2686

2687
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2688 2689 2690
		return;

	i915_gem_clflush_object(obj);
2691
	intel_gtt_chipset_flush();
2692 2693
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2694 2695

	trace_i915_gem_object_change_domain(obj,
2696
					    obj->base.read_domains,
C
Chris Wilson 已提交
2697
					    old_write_domain);
2698 2699
}

2700 2701 2702 2703 2704 2705
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2706
int
2707
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2708
{
2709
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
2710
	uint32_t old_write_domain, old_read_domains;
2711
	int ret;
2712

2713
	/* Not valid to be called on unbound objects. */
2714
	if (obj->gtt_space == NULL)
2715 2716
		return -EINVAL;

2717 2718 2719
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2720 2721 2722 2723
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2724
	if (obj->pending_gpu_write || write) {
2725
		ret = i915_gem_object_wait_rendering(obj);
2726 2727 2728
		if (ret)
			return ret;
	}
2729

2730
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2731

2732 2733
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2734

2735 2736 2737
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2738 2739
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2740
	if (write) {
2741 2742 2743
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2744 2745
	}

C
Chris Wilson 已提交
2746 2747 2748 2749
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2750 2751 2752 2753
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

2754 2755 2756
	return 0;
}

2757 2758 2759
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2760 2761
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

2789 2790
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
2791 2792 2793
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

2823
/*
2824 2825 2826
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
2827 2828
 */
int
2829 2830
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
2831
				     struct intel_ring_buffer *pipelined)
2832
{
2833
	u32 old_read_domains, old_write_domain;
2834 2835
	int ret;

2836 2837 2838 2839
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2840
	if (pipelined != obj->ring) {
2841 2842
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
2843 2844 2845
			return ret;
	}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

2859 2860 2861 2862 2863 2864 2865 2866
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

2867 2868
	i915_gem_object_flush_cpu_write_domain(obj);

2869
	old_write_domain = obj->base.write_domain;
2870
	old_read_domains = obj->base.read_domains;
2871 2872 2873 2874 2875

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2876
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2877 2878 2879

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2880
					    old_write_domain);
2881 2882 2883 2884

	return 0;
}

2885
int
2886
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2887
{
2888 2889
	int ret;

2890
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2891 2892
		return 0;

2893
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2894
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2895 2896 2897
		if (ret)
			return ret;
	}
2898

2899 2900 2901 2902
	ret = i915_gem_object_wait_rendering(obj);
	if (ret)
		return ret;

2903 2904
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2905
	return 0;
2906 2907
}

2908 2909 2910 2911 2912 2913
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
2914
int
2915
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2916
{
C
Chris Wilson 已提交
2917
	uint32_t old_write_domain, old_read_domains;
2918 2919
	int ret;

2920 2921 2922
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

2923 2924 2925 2926
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2927 2928 2929 2930 2931
	if (write || obj->pending_gpu_write) {
		ret = i915_gem_object_wait_rendering(obj);
		if (ret)
			return ret;
	}
2932

2933
	i915_gem_object_flush_gtt_write_domain(obj);
2934

2935 2936
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2937

2938
	/* Flush the CPU cache if it's still invalid. */
2939
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2940 2941
		i915_gem_clflush_object(obj);

2942
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2943 2944 2945 2946 2947
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2948
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2949 2950 2951 2952 2953

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2954 2955
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2956
	}
2957

C
Chris Wilson 已提交
2958 2959 2960 2961
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2962 2963 2964
	return 0;
}

2965 2966 2967
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
2968 2969 2970 2971
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
2972 2973 2974
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
2975
static int
2976
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2977
{
2978 2979
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
2980
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
2981 2982 2983 2984
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
2985

2986 2987 2988
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

2989
	spin_lock(&file_priv->mm.lock);
2990
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
2991 2992
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
2993

2994 2995
		ring = request->ring;
		seqno = request->seqno;
2996
	}
2997
	spin_unlock(&file_priv->mm.lock);
2998

2999 3000
	if (seqno == 0)
		return 0;
3001

3002
	ret = 0;
3003
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3004 3005 3006 3007 3008
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3009 3010 3011 3012 3013
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3014

3015 3016
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
3017 3018
		} else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
							     seqno) ||
3019 3020
				    atomic_read(&dev_priv->mm.wedged), 3000)) {
			ret = -EBUSY;
3021
		}
3022 3023
	}

3024 3025
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3026 3027 3028 3029

	return ret;
}

3030
int
3031 3032
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3033
		    bool map_and_fenceable)
3034 3035 3036
{
	int ret;

3037
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3038

3039 3040 3041 3042
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3043
			     "bo is already pinned with incorrect alignment:"
3044 3045
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3046
			     obj->gtt_offset, alignment,
3047
			     map_and_fenceable,
3048
			     obj->map_and_fenceable);
3049 3050 3051 3052 3053 3054
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3055
	if (obj->gtt_space == NULL) {
3056
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3057
						  map_and_fenceable);
3058
		if (ret)
3059
			return ret;
3060
	}
J
Jesse Barnes 已提交
3061

3062 3063 3064
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3065
	obj->pin_count++;
3066
	obj->pin_mappable |= map_and_fenceable;
3067 3068 3069 3070 3071

	return 0;
}

void
3072
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3073
{
3074 3075
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3076

3077
	if (--obj->pin_count == 0)
3078
		obj->pin_mappable = false;
3079 3080 3081 3082
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3083
		   struct drm_file *file)
3084 3085
{
	struct drm_i915_gem_pin *args = data;
3086
	struct drm_i915_gem_object *obj;
3087 3088
	int ret;

3089 3090 3091
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3092

3093
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3094
	if (&obj->base == NULL) {
3095 3096
		ret = -ENOENT;
		goto unlock;
3097 3098
	}

3099
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3100
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3101 3102
		ret = -EINVAL;
		goto out;
3103 3104
	}

3105
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3106 3107
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3108 3109
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3110 3111
	}

3112 3113 3114
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3115
		ret = i915_gem_object_pin(obj, args->alignment, true);
3116 3117
		if (ret)
			goto out;
3118 3119 3120 3121 3122
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3123
	i915_gem_object_flush_cpu_write_domain(obj);
3124
	args->offset = obj->gtt_offset;
3125
out:
3126
	drm_gem_object_unreference(&obj->base);
3127
unlock:
3128
	mutex_unlock(&dev->struct_mutex);
3129
	return ret;
3130 3131 3132 3133
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3134
		     struct drm_file *file)
3135 3136
{
	struct drm_i915_gem_pin *args = data;
3137
	struct drm_i915_gem_object *obj;
3138
	int ret;
3139

3140 3141 3142
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3143

3144
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3145
	if (&obj->base == NULL) {
3146 3147
		ret = -ENOENT;
		goto unlock;
3148
	}
3149

3150
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3151 3152
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3153 3154
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3155
	}
3156 3157 3158
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3159 3160
		i915_gem_object_unpin(obj);
	}
3161

3162
out:
3163
	drm_gem_object_unreference(&obj->base);
3164
unlock:
3165
	mutex_unlock(&dev->struct_mutex);
3166
	return ret;
3167 3168 3169 3170
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3171
		    struct drm_file *file)
3172 3173
{
	struct drm_i915_gem_busy *args = data;
3174
	struct drm_i915_gem_object *obj;
3175 3176
	int ret;

3177
	ret = i915_mutex_lock_interruptible(dev);
3178
	if (ret)
3179
		return ret;
3180

3181
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3182
	if (&obj->base == NULL) {
3183 3184
		ret = -ENOENT;
		goto unlock;
3185
	}
3186

3187 3188 3189 3190
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3191
	 */
3192
	args->busy = obj->active;
3193 3194 3195 3196 3197 3198
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3199
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3200
			ret = i915_gem_flush_ring(obj->ring,
3201
						  0, obj->base.write_domain);
3202 3203 3204 3205
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3206 3207 3208
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3209
			request = kzalloc(sizeof(*request), GFP_KERNEL);
3210
			if (request) {
3211
				ret = i915_add_request(obj->ring, NULL, request);
3212 3213 3214
				if (ret)
					kfree(request);
			} else
3215 3216
				ret = -ENOMEM;
		}
3217 3218 3219 3220 3221 3222

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3223
		i915_gem_retire_requests_ring(obj->ring);
3224

3225
		args->busy = obj->active;
3226
	}
3227

3228
	drm_gem_object_unreference(&obj->base);
3229
unlock:
3230
	mutex_unlock(&dev->struct_mutex);
3231
	return ret;
3232 3233 3234 3235 3236 3237
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3238
	return i915_gem_ring_throttle(dev, file_priv);
3239 3240
}

3241 3242 3243 3244 3245
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3246
	struct drm_i915_gem_object *obj;
3247
	int ret;
3248 3249 3250 3251 3252 3253 3254 3255 3256

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3257 3258 3259 3260
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3261
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3262
	if (&obj->base == NULL) {
3263 3264
		ret = -ENOENT;
		goto unlock;
3265 3266
	}

3267
	if (obj->pin_count) {
3268 3269
		ret = -EINVAL;
		goto out;
3270 3271
	}

3272 3273
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3274

3275
	/* if the object is no longer bound, discard its backing storage */
3276 3277
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3278 3279
		i915_gem_object_truncate(obj);

3280
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3281

3282
out:
3283
	drm_gem_object_unreference(&obj->base);
3284
unlock:
3285
	mutex_unlock(&dev->struct_mutex);
3286
	return ret;
3287 3288
}

3289 3290
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3291
{
3292
	struct drm_i915_private *dev_priv = dev->dev_private;
3293
	struct drm_i915_gem_object *obj;
3294
	struct address_space *mapping;
3295

3296 3297 3298
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3299

3300 3301 3302 3303
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3304

3305 3306 3307
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);

3308 3309
	i915_gem_info_add_obj(dev_priv, size);

3310 3311
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3312

3313 3314
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3330
	obj->base.driver_private = NULL;
3331
	obj->fence_reg = I915_FENCE_REG_NONE;
3332
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3333
	INIT_LIST_HEAD(&obj->gtt_list);
3334
	INIT_LIST_HEAD(&obj->ring_list);
3335
	INIT_LIST_HEAD(&obj->exec_list);
3336 3337
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3338 3339
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3340

3341
	return obj;
3342 3343 3344 3345 3346
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3347

3348 3349 3350
	return 0;
}

3351
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3352
{
3353
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3354
	struct drm_device *dev = obj->base.dev;
3355
	drm_i915_private_t *dev_priv = dev->dev_private;
3356

3357 3358
	trace_i915_gem_object_destroy(obj);

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

3374
	if (obj->base.map_list.map)
3375
		drm_gem_free_mmap_offset(&obj->base);
3376

3377 3378
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3379

3380 3381
	kfree(obj->bit_17);
	kfree(obj);
3382 3383
}

3384 3385 3386 3387 3388
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3389

3390
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3391

3392
	if (dev_priv->mm.suspended) {
3393 3394
		mutex_unlock(&dev->struct_mutex);
		return 0;
3395 3396
	}

3397
	ret = i915_gpu_idle(dev, true);
3398 3399
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3400
		return ret;
3401
	}
3402

3403
	/* Under UMS, be paranoid and evict. */
3404 3405
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_gem_evict_everything(dev, false);
3406

3407 3408
	i915_gem_reset_fences(dev);

3409 3410 3411 3412 3413
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3414
	del_timer_sync(&dev_priv->hangcheck_timer);
3415 3416

	i915_kernel_lost_context(dev);
3417
	i915_gem_cleanup_ringbuffer(dev);
3418

3419 3420
	mutex_unlock(&dev->struct_mutex);

3421 3422 3423
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3424 3425 3426
	return 0;
}

3427 3428 3429 3430
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3431
	if (INTEL_INFO(dev)->gen < 5 ||
3432 3433 3434 3435 3436 3437
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3438 3439 3440
	if (IS_GEN5(dev))
		return;

3441 3442
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3443
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3444
	else
3445
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3446
}
D
Daniel Vetter 已提交
3447 3448 3449 3450 3451 3452

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3453 3454 3455
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3456 3457 3458 3459 3460
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3479 3480 3481 3482
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3483 3484 3485 3486
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3487 3488 3489 3490 3491

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3492 3493
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
3494
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

	for (i = 0; i < I915_NUM_RINGS; i++) {
		ring = &dev_priv->ring[i];

		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
3505
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3506 3507 3508 3509 3510 3511

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3512
int
3513
i915_gem_init_hw(struct drm_device *dev)
3514 3515 3516
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3517

3518 3519
	i915_gem_init_swizzling(dev);

3520
	ret = intel_init_render_ring_buffer(dev);
3521
	if (ret)
3522
		return ret;
3523 3524

	if (HAS_BSD(dev)) {
3525
		ret = intel_init_bsd_ring_buffer(dev);
3526 3527
		if (ret)
			goto cleanup_render_ring;
3528
	}
3529

3530 3531 3532 3533 3534 3535
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3536 3537
	dev_priv->next_seqno = 1;

D
Daniel Vetter 已提交
3538 3539
	i915_gem_init_ppgtt(dev);

3540 3541
	return 0;

3542
cleanup_bsd_ring:
3543
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3544
cleanup_render_ring:
3545
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3546 3547 3548
	return ret;
}

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

	/* Allow hardware batchbuffers unless told otherwise. */
	dev_priv->allow_batchbuffer = 1;
	return 0;
}

3613 3614 3615 3616
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3617
	int i;
3618

3619 3620
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3621 3622
}

3623 3624 3625 3626 3627
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3628
	int ret, i;
3629

J
Jesse Barnes 已提交
3630 3631 3632
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3633
	if (atomic_read(&dev_priv->mm.wedged)) {
3634
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3635
		atomic_set(&dev_priv->mm.wedged, 0);
3636 3637 3638
	}

	mutex_lock(&dev->struct_mutex);
3639 3640
	dev_priv->mm.suspended = 0;

3641
	ret = i915_gem_init_hw(dev);
3642 3643
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3644
		return ret;
3645
	}
3646

3647
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3648 3649
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3650 3651 3652 3653
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3654
	mutex_unlock(&dev->struct_mutex);
3655

3656 3657 3658
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3659

3660
	return 0;
3661 3662 3663 3664 3665 3666 3667 3668

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3669 3670 3671 3672 3673 3674
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3675 3676 3677
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3678
	drm_irq_uninstall(dev);
3679
	return i915_gem_idle(dev);
3680 3681 3682 3683 3684 3685 3686
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3687 3688 3689
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3690 3691 3692
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3693 3694
}

3695 3696 3697 3698 3699 3700 3701 3702
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3703 3704 3705
void
i915_gem_load(struct drm_device *dev)
{
3706
	int i;
3707 3708
	drm_i915_private_t *dev_priv = dev->dev_private;

3709
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3710 3711
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3712
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
D
Daniel Vetter 已提交
3713
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3714 3715
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3716
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3717
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3718 3719
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3720
	init_completion(&dev_priv->error_completion);
3721

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3732 3733
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3734
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3735 3736
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3737

3738
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3739 3740 3741 3742
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3743
	/* Initialize fence registers to zero */
3744
	i915_gem_reset_fences(dev);
3745

3746
	i915_gem_detect_bit_6_swizzle(dev);
3747
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3748

3749 3750
	dev_priv->mm.interruptible = true;

3751 3752 3753
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3754
}
3755 3756 3757 3758 3759

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3760 3761
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3762 3763 3764 3765 3766 3767 3768 3769
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3770
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3771 3772 3773 3774 3775
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3776
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3789
	kfree(phys_obj);
3790 3791 3792
	return ret;
}

3793
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3818
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3819 3820 3821 3822
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3823
				 struct drm_i915_gem_object *obj)
3824
{
3825
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3826
	char *vaddr;
3827 3828 3829
	int i;
	int page_count;

3830
	if (!obj->phys_obj)
3831
		return;
3832
	vaddr = obj->phys_obj->handle->vaddr;
3833

3834
	page_count = obj->base.size / PAGE_SIZE;
3835
	for (i = 0; i < page_count; i++) {
3836
		struct page *page = shmem_read_mapping_page(mapping, i);
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3848
	}
3849
	intel_gtt_chipset_flush();
3850

3851 3852
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3853 3854 3855 3856
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3857
			    struct drm_i915_gem_object *obj,
3858 3859
			    int id,
			    int align)
3860
{
3861
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3862 3863 3864 3865 3866 3867 3868 3869
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3870 3871
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3872 3873 3874 3875 3876 3877 3878
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3879
						obj->base.size, align);
3880
		if (ret) {
3881 3882
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3883
			return ret;
3884 3885 3886 3887
		}
	}

	/* bind to the object */
3888 3889
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
3890

3891
	page_count = obj->base.size / PAGE_SIZE;
3892 3893

	for (i = 0; i < page_count; i++) {
3894 3895 3896
		struct page *page;
		char *dst, *src;

3897
		page = shmem_read_mapping_page(mapping, i);
3898 3899
		if (IS_ERR(page))
			return PTR_ERR(page);
3900

3901
		src = kmap_atomic(page);
3902
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3903
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
3904
		kunmap_atomic(src);
3905

3906 3907 3908
		mark_page_accessed(page);
		page_cache_release(page);
	}
3909

3910 3911 3912 3913
	return 0;
}

static int
3914 3915
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
3916 3917 3918
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
3919
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3920
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3921

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
3935

3936
	intel_gtt_chipset_flush();
3937 3938
	return 0;
}
3939

3940
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3941
{
3942
	struct drm_i915_file_private *file_priv = file->driver_priv;
3943 3944 3945 3946 3947

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
3948
	spin_lock(&file_priv->mm.lock);
3949 3950 3951 3952 3953 3954 3955 3956 3957
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
3958
	spin_unlock(&file_priv->mm.lock);
3959
}
3960

3961 3962 3963 3964 3965 3966 3967
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3968
		      list_empty(&dev_priv->mm.active_list);
3969 3970 3971 3972

	return !lists_empty;
}

3973
static int
3974
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
3975
{
3976 3977 3978 3979 3980 3981
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
3982
	int nr_to_scan = sc->nr_to_scan;
3983 3984 3985
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
3986
		return 0;
3987 3988 3989

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
3990 3991 3992 3993 3994 3995 3996
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
3997 3998
	}

3999
rescan:
4000
	/* first scan for clean buffers */
4001
	i915_gem_retire_requests(dev);
4002

4003 4004 4005 4006
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4007 4008
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4009
				break;
4010 4011 4012 4013
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4014 4015 4016 4017
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4018 4019
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4020
			nr_to_scan--;
4021
		else
4022 4023 4024 4025
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4026 4027 4028 4029 4030 4031
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4032
		if (i915_gpu_idle(dev, true) == 0)
4033 4034
			goto rescan;
	}
4035 4036
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4037
}