i915_gem.c 130.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53 54 55
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

64 65 66 67 68 69 70 71
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

J
Jesse Barnes 已提交
72 73
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
74 75 76
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
77 78 79
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
80 81 82
		return -EINVAL;
	}

J
Jesse Barnes 已提交
83 84
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
85

J
Jesse Barnes 已提交
86 87 88 89
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
90

J
Jesse Barnes 已提交
91 92 93 94 95 96 97 98 99
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
100 101
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
102
	return ret;
103 104
}

105 106 107 108 109 110 111 112 113 114
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
115 116
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
117 118 119 120

	return 0;
}

121 122 123 124 125 126 127 128 129 130

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
131 132
	int ret;
	u32 handle;
133 134 135 136

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
137
	obj = i915_gem_alloc_object(dev, args->size);
138 139 140 141
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
142 143
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
144
		return ret;
145
	}
146

147 148
	/* Sink the floating reference from kref_init(handlecount) */
	drm_gem_object_handle_unreference_unlocked(obj);
149

150
	args->handle = handle;
151 152 153
	return 0;
}

154 155 156 157 158 159 160
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
161
	int unwritten;
162 163 164 165

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
166
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
167 168
	kunmap_atomic(vaddr, KM_USER0);

169 170 171 172
	if (unwritten)
		return -EFAULT;

	return 0;
173 174
}

175 176 177
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
178
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
179 180 181 182 183

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

184
static inline void
185 186 187 188 189 190 191 192
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

193 194
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
195 196 197

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

198 199
	kunmap(src_page);
	kunmap(dst_page);
200 201
}

202
static inline void
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

222 223
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

247 248
	kunmap(cpu_page);
	kunmap(gpu_page);
249 250
}

251 252 253 254 255 256 257 258 259 260
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
261
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
262 263 264 265 266 267 268 269 270 271 272
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

273
	ret = i915_gem_object_get_pages(obj, 0);
274 275 276 277 278 279 280 281
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

282
	obj_priv = to_intel_bo(obj);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

317 318 319 320 321
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

322
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
323 324 325 326 327 328 329

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

330 331
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
332 333 334
		if (ret)
			return ret;

335
		ret = i915_gem_object_get_pages(obj, 0);
336 337 338 339 340
	}

	return ret;
}

341 342 343 344 345 346 347 348 349 350 351
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
352
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
353 354 355 356 357 358 359 360 361 362
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
363
	int do_bit17_swizzling;
364 365 366 367 368 369 370 371 372 373 374

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

375
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
376 377 378 379 380
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
381
				      num_pages, 1, 0, user_pages, NULL);
382 383 384 385 386 387
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

388 389
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

390 391
	mutex_lock(&dev->struct_mutex);

392 393
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
394 395 396 397 398 399 400
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

401
	obj_priv = to_intel_bo(obj);
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

424
		if (do_bit17_swizzling) {
425
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
426
					      shmem_page_offset,
427 428 429 430 431 432 433 434 435 436
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
437
		}
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
453
	drm_free_large(user_pages);
454 455 456 457

	return ret;
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
474
		return -ENOENT;
475
	obj_priv = to_intel_bo(obj);
476 477 478 479 480 481 482

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
483
		drm_gem_object_unreference_unlocked(obj);
484 485 486
		return -EINVAL;
	}

487
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
488
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
489 490 491 492 493 494
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
495

496
	drm_gem_object_unreference_unlocked(obj);
497

498
	return ret;
499 500
}

501 502
/* This is the fast write path which cannot handle
 * page faults in the source data
503
 */
504 505 506 507 508 509

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
510 511
{
	char *vaddr_atomic;
512
	unsigned long unwritten;
513

514
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
515 516
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
517
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
518 519 520 521 522 523 524 525 526
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

527
static inline void
528 529 530 531
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
532
{
533 534
	char __iomem *dst_vaddr;
	char *src_vaddr;
535

536 537 538 539 540 541 542 543 544
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
545 546
}

547 548 549 550 551 552 553
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
554
	unsigned long unwritten;
555 556 557 558

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
559
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
560 561
	kunmap_atomic(vaddr, KM_USER0);

562 563
	if (unwritten)
		return -EFAULT;
564 565 566
	return 0;
}

567 568 569 570
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
571
static int
572 573 574
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
575
{
576
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
577
	drm_i915_private_t *dev_priv = dev->dev_private;
578
	ssize_t remain;
579
	loff_t offset, page_base;
580
	char __user *user_data;
581 582
	int page_offset, page_length;
	int ret;
583 584 585 586 587 588 589 590 591 592 593 594 595

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
596
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
597 598 599
	if (ret)
		goto fail;

600
	obj_priv = to_intel_bo(obj);
601 602 603 604 605
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
606 607 608
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
609
		 */
610 611 612 613 614 615 616 617 618 619
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
620 621
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
622
		 */
623 624
		if (ret)
			goto fail;
625

626 627 628
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
629 630 631 632 633 634 635 636 637
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

638 639 640 641 642 643 644
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
645
static int
646 647 648
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
649
{
650
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
651 652 653 654 655 656 657 658
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
659
	int ret;
660 661 662 663 664 665 666 667 668 669 670 671
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

672
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
673 674 675 676 677 678 679 680 681 682 683
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
684 685

	mutex_lock(&dev->struct_mutex);
686 687 688 689 690 691 692 693
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

694
	obj_priv = to_intel_bo(obj);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

717 718 719 720 721
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
722 723 724 725 726 727 728 729 730 731 732 733 734

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
735
	drm_free_large(user_pages);
736 737 738 739

	return ret;
}

740 741 742 743
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
744
static int
745 746 747
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
748
{
749
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
750 751 752 753
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
754
	int ret;
755 756 757

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
758 759 760

	mutex_lock(&dev->struct_mutex);

761
	ret = i915_gem_object_get_pages(obj, 0);
762 763
	if (ret != 0)
		goto fail_unlock;
764

765
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
766 767 768
	if (ret != 0)
		goto fail_put_pages;

769
	obj_priv = to_intel_bo(obj);
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
817
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
818 819 820 821 822 823 824 825 826 827
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
828
	int do_bit17_swizzling;
829 830 831 832 833 834 835 836 837 838 839

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

840
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
841 842 843 844 845 846 847 848 849 850
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
851 852
	}

853 854
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

855 856
	mutex_lock(&dev->struct_mutex);

857 858
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
859 860 861 862 863 864
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

865
	obj_priv = to_intel_bo(obj);
866
	offset = args->offset;
867
	obj_priv->dirty = 1;
868

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

889
		if (do_bit17_swizzling) {
890
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
891 892 893
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
894 895 896 897 898 899 900 901
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
902
		}
903 904 905 906

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
907 908
	}

909 910 911
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
912
	mutex_unlock(&dev->struct_mutex);
913 914 915
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
916
	drm_free_large(user_pages);
917

918
	return ret;
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
937
		return -ENOENT;
938
	obj_priv = to_intel_bo(obj);
939 940 941 942 943 944 945

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
946
		drm_gem_object_unreference_unlocked(obj);
947 948 949 950 951 952 953 954 955
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
956 957 958
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
959 960
		 dev->gtt_total != 0 &&
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
961 962 963 964 965
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
966 967
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
968 969 970 971 972 973 974
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
975 976 977 978 979 980

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

981
	drm_gem_object_unreference_unlocked(obj);
982 983 984 985 986

	return ret;
}

/**
987 988
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
989 990 991 992 993
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
994
	struct drm_i915_private *dev_priv = dev->dev_private;
995 996
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
997
	struct drm_i915_gem_object *obj_priv;
998 999
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1000 1001 1002 1003 1004
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1005
	/* Only handle setting domains to types used by the CPU. */
1006
	if (write_domain & I915_GEM_GPU_DOMAINS)
1007 1008
		return -EINVAL;

1009
	if (read_domains & I915_GEM_GPU_DOMAINS)
1010 1011 1012 1013 1014 1015 1016 1017
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1018 1019
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1020
		return -ENOENT;
1021
	obj_priv = to_intel_bo(obj);
1022 1023

	mutex_lock(&dev->struct_mutex);
1024 1025 1026

	intel_mark_busy(dev, obj);

1027
#if WATCH_BUF
1028
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1029
		 obj, obj->size, read_domains, write_domain);
1030
#endif
1031 1032
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1033

1034 1035 1036 1037
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1038 1039 1040
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1041 1042 1043
				       &dev_priv->mm.fence_list);
		}

1044 1045 1046 1047 1048 1049
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1050
	} else {
1051
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1052 1053
	}

1054 1055 1056 1057 1058
	
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
1083
		return -ENOENT;
1084 1085 1086
	}

#if WATCH_BUF
1087
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1088 1089
		 __func__, args->handle, obj, obj->size);
#endif
1090
	obj_priv = to_intel_bo(obj);
1091 1092

	/* Pinned buffers may be scanout, so flush the cache */
1093 1094 1095
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1122
		return -ENOENT;
1123 1124 1125 1126 1127 1128 1129 1130

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1131
	drm_gem_object_unreference_unlocked(obj);
1132 1133 1134 1135 1136 1137 1138 1139
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1160
	drm_i915_private_t *dev_priv = dev->dev_private;
1161
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1162 1163 1164
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1165
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1166 1167 1168 1169 1170 1171 1172 1173

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1174
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1175 1176
		if (ret)
			goto unlock;
1177 1178

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1179 1180
		if (ret)
			goto unlock;
1181 1182 1183
	}

	/* Need a new fence register? */
1184
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1185
		ret = i915_gem_object_get_fence_reg(obj, true);
1186 1187
		if (ret)
			goto unlock;
1188
	}
1189

1190 1191 1192
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1193 1194 1195 1196 1197
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1198
unlock:
1199 1200 1201
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1202 1203 1204
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1205 1206 1207 1208
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1209
		return VM_FAULT_SIGBUS;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1229
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1230
	struct drm_map_list *list;
1231
	struct drm_local_map *map;
1232 1233 1234 1235
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1236
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
1264
		ret = -ENOMEM;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1277
	kfree(list->map);
1278 1279 1280 1281

	return ret;
}

1282 1283 1284 1285
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1286
 * Preserve the reservation of the mmapping with the DRM core code, but
1287 1288 1289 1290 1291 1292 1293 1294 1295
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1296
void
1297 1298 1299
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1300
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1301 1302 1303 1304 1305 1306

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1307 1308 1309 1310
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1311
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1324
		kfree(list->map);
1325 1326 1327 1328 1329 1330
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1342
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1343 1344 1345 1346 1347 1348
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1349
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1350 1351 1352 1353 1354 1355
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1356
	if (INTEL_INFO(dev)->gen == 3)
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1396
		return -ENOENT;
1397 1398 1399

	mutex_lock(&dev->struct_mutex);

1400
	obj_priv = to_intel_bo(obj);
1401

1402 1403 1404 1405 1406 1407 1408 1409
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1410 1411
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1412 1413 1414
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1415
			return ret;
1416
		}
1417 1418 1419 1420 1421 1422 1423 1424 1425
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1426
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1440
void
1441
i915_gem_object_put_pages(struct drm_gem_object *obj)
1442
{
1443
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1444 1445 1446
	int page_count = obj->size / PAGE_SIZE;
	int i;

1447
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1448
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1449

1450 1451
	if (--obj_priv->pages_refcount != 0)
		return;
1452

1453 1454 1455
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1456
	if (obj_priv->madv == I915_MADV_DONTNEED)
1457
		obj_priv->dirty = 0;
1458 1459 1460 1461 1462 1463

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1464
			mark_page_accessed(obj_priv->pages[i]);
1465 1466 1467

		page_cache_release(obj_priv->pages[i]);
	}
1468 1469
	obj_priv->dirty = 0;

1470
	drm_free_large(obj_priv->pages);
1471
	obj_priv->pages = NULL;
1472 1473
}

1474
static uint32_t
1475 1476
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
1477 1478 1479
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1480 1481
	ring->outstanding_lazy_request = true;

1482 1483 1484
	return dev_priv->next_seqno;
}

1485
static void
1486
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1487
			       struct intel_ring_buffer *ring)
1488 1489
{
	struct drm_device *dev = obj->dev;
1490
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1491 1492
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);

1493 1494
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1495 1496 1497 1498 1499 1500

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1501

1502
	/* Move from whatever list we were on to the tail of execution. */
1503
	list_move_tail(&obj_priv->list, &ring->active_list);
1504
	obj_priv->last_rendering_seqno = seqno;
1505 1506
}

1507 1508 1509 1510 1511
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1512
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1513 1514 1515 1516 1517

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1518

1519 1520 1521 1522
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1523
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1524
	struct inode *inode;
1525

1526 1527 1528 1529 1530 1531
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1532
	inode = obj->filp->f_path.dentry->d_inode;
1533 1534 1535
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1536 1537

	obj_priv->madv = __I915_MADV_PURGED;
1538 1539 1540 1541 1542 1543 1544 1545
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1546 1547 1548 1549 1550
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1551
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1552 1553 1554 1555 1556 1557 1558

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1559 1560
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1561
	obj_priv->last_rendering_seqno = 0;
1562
	obj_priv->ring = NULL;
1563 1564 1565 1566 1567 1568 1569
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

1570
static void
1571
i915_gem_process_flushing_list(struct drm_device *dev,
1572
			       uint32_t flush_domains,
1573
			       struct intel_ring_buffer *ring)
1574 1575 1576 1577 1578 1579 1580
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1581
		struct drm_gem_object *obj = &obj_priv->base;
1582

1583 1584
		if (obj->write_domain & flush_domains &&
		    obj_priv->ring == ring) {
1585 1586 1587 1588
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1589
			i915_gem_object_move_to_active(obj, ring);
1590 1591

			/* update the fence lru list */
1592 1593 1594 1595
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1596
						&dev_priv->mm.fence_list);
1597
			}
1598 1599 1600 1601 1602 1603 1604

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1605

1606
uint32_t
1607 1608
i915_add_request(struct drm_device *dev,
		 struct drm_file *file_priv,
C
Chris Wilson 已提交
1609
		 struct drm_i915_gem_request *request,
1610
		 struct intel_ring_buffer *ring)
1611 1612
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1613
	struct drm_i915_file_private *i915_file_priv = NULL;
1614 1615 1616
	uint32_t seqno;
	int was_empty;

1617 1618 1619
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

C
Chris Wilson 已提交
1620 1621 1622 1623 1624
	if (request == NULL) {
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return 0;
	}
1625

1626
	seqno = ring->add_request(dev, ring, file_priv, 0);
1627 1628

	request->seqno = seqno;
1629
	request->ring = ring;
1630
	request->emitted_jiffies = jiffies;
1631 1632 1633
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1634 1635 1636 1637 1638 1639
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1640

B
Ben Gamari 已提交
1641
	if (!dev_priv->mm.suspended) {
1642 1643
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1644
		if (was_empty)
1645 1646
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1647
	}
1648 1649 1650 1651 1652 1653 1654 1655 1656
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1657
static void
1658
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1659 1660 1661 1662
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1663
	if (INTEL_INFO(dev)->gen >= 4)
1664
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1665 1666 1667

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1668 1669 1670 1671 1672
}

/**
 * Returns true if seq1 is later than seq2.
 */
1673
bool
1674 1675 1676 1677 1678 1679
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
1680
i915_get_gem_seqno(struct drm_device *dev,
1681
		   struct intel_ring_buffer *ring)
1682
{
1683
	return ring->get_gem_seqno(dev, ring);
1684 1685
}

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
void i915_gem_reset_flushing_list(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	while (!list_empty(&dev_priv->mm.flushing_list)) {
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
void i915_gem_reset_inactive_gpu_domains(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;

	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
			    list)
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
}

1715 1716 1717
/**
 * This function clears the request list as sequence numbers are passed.
 */
1718 1719 1720
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1721 1722 1723
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;
1724
	bool wedged;
1725

1726 1727
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1728 1729
		return;

1730
	seqno = i915_get_gem_seqno(dev, ring);
1731
	wedged = atomic_read(&dev_priv->mm.wedged);
1732

1733
	while (!list_empty(&ring->request_list)) {
1734 1735
		struct drm_i915_gem_request *request;

1736
		request = list_first_entry(&ring->request_list,
1737 1738 1739
					   struct drm_i915_gem_request,
					   list);

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
		if (!wedged && !i915_seqno_passed(seqno, request->seqno))
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
		list_del(&request->client_list);
		kfree(request);
	}

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
					    list);
1760

1761 1762
		if (!wedged &&
		    !i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1763
			break;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

		obj = &obj_priv->base;

#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1776
	}
1777 1778 1779

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1780
		ring->user_irq_put(dev, ring);
1781 1782
		dev_priv->trace_irq_seqno = 0;
	}
1783 1784
}

1785 1786 1787 1788 1789
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1804 1805 1806 1807 1808
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1809
static void
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
1820
	i915_gem_retire_requests(dev);
1821

1822
	if (!dev_priv->mm.suspended &&
1823 1824 1825
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1826
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1827 1828 1829
	mutex_unlock(&dev->struct_mutex);
}

1830
int
1831
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1832
		     bool interruptible, struct intel_ring_buffer *ring)
1833 1834
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1835
	u32 ier;
1836 1837 1838 1839
	int ret = 0;

	BUG_ON(seqno == 0);

1840
	if (seqno == dev_priv->next_seqno) {
C
Chris Wilson 已提交
1841
		seqno = i915_add_request(dev, NULL, NULL, ring);
1842 1843 1844 1845
		if (seqno == 0)
			return -ENOMEM;
	}

1846
	if (atomic_read(&dev_priv->mm.wedged))
1847 1848
		return -EIO;

1849
	if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1850
		if (HAS_PCH_SPLIT(dev))
1851 1852 1853
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1854 1855 1856 1857 1858 1859 1860
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1861 1862
		trace_i915_gem_request_wait_begin(dev, seqno);

1863
		ring->waiting_gem_seqno = seqno;
1864
		ring->user_irq_get(dev, ring);
1865
		if (interruptible)
1866 1867 1868 1869
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1870
		else
1871 1872 1873 1874
			wait_event(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1875

1876
		ring->user_irq_put(dev, ring);
1877
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1878 1879

		trace_i915_gem_request_wait_end(dev, seqno);
1880
	}
1881
	if (atomic_read(&dev_priv->mm.wedged))
1882 1883 1884
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
1885 1886 1887
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
			  __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
			  dev_priv->next_seqno);
1888 1889 1890 1891 1892 1893 1894

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
1895
		i915_gem_retire_requests_ring(dev, ring);
1896 1897 1898 1899

	return ret;
}

1900 1901 1902 1903 1904
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
1905 1906
i915_wait_request(struct drm_device *dev, uint32_t seqno,
		struct intel_ring_buffer *ring)
1907
{
1908
	return i915_do_wait_request(dev, seqno, 1, ring);
1909 1910
}

1911
void
1912
i915_gem_flush_ring(struct drm_device *dev,
1913
		    struct drm_file *file_priv,
1914 1915 1916 1917 1918 1919
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
	ring->flush(dev, ring, invalidate_domains, flush_domains);
	i915_gem_process_flushing_list(dev, flush_domains, ring);
1920 1921 1922 1923 1924

	if (ring->outstanding_lazy_request) {
		(void)i915_add_request(dev, file_priv, NULL, ring);
		ring->outstanding_lazy_request = false;
	}
1925 1926
}

1927 1928
static void
i915_gem_flush(struct drm_device *dev,
1929
	       struct drm_file *file_priv,
1930
	       uint32_t invalidate_domains,
1931 1932
	       uint32_t flush_domains,
	       uint32_t flush_rings)
1933 1934
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1935

1936 1937
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
1938

1939 1940
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
1941
			i915_gem_flush_ring(dev, file_priv,
1942 1943 1944
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
1945
			i915_gem_flush_ring(dev, file_priv,
1946 1947 1948
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
	}
1949 1950
}

1951 1952 1953 1954 1955
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
1956 1957
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
1958 1959
{
	struct drm_device *dev = obj->dev;
1960
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1961 1962
	int ret;

1963 1964
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1965
	 */
1966
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1967 1968 1969 1970 1971 1972 1973 1974 1975

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
1976 1977 1978 1979 1980
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
1981 1982 1983 1984 1985 1986 1987 1988 1989
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1990
int
1991 1992 1993
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1994
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2009 2010 2011
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2012 2013 2014 2015 2016 2017
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2018
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2019
	if (ret == -ERESTARTSYS)
2020
		return ret;
2021 2022 2023 2024
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2025

2026 2027 2028 2029
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2030 2031 2032 2033 2034 2035
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

2036
	i915_gem_object_put_pages(obj);
2037
	BUG_ON(obj_priv->pages_refcount);
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);

2051 2052 2053
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2054 2055
	trace_i915_gem_object_unbind(obj);

2056
	return ret;
2057 2058
}

2059
int
2060 2061 2062 2063
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2064
	u32 seqno;
2065
	int ret;
2066

2067 2068 2069 2070
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2071 2072 2073 2074
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2075 2076
	seqno = i915_gem_next_request_seqno(dev, &dev_priv->render_ring);
	i915_gem_flush_ring(dev, NULL, &dev_priv->render_ring,
2077
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2078
	ret = i915_wait_request(dev, seqno, &dev_priv->render_ring);
2079 2080
	if (ret)
		return ret;
2081 2082

	if (HAS_BSD(dev)) {
2083 2084
		seqno = i915_gem_next_request_seqno(dev, &dev_priv->render_ring);
		i915_gem_flush_ring(dev, NULL, &dev_priv->bsd_ring,
2085
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2086
		ret = i915_wait_request(dev, seqno, &dev_priv->bsd_ring);
2087 2088 2089 2090
		if (ret)
			return ret;
	}

2091
	return 0;
2092 2093
}

2094
int
2095 2096
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2097
{
2098
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2099 2100 2101 2102 2103
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2104 2105 2106
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2107
	if (obj_priv->pages_refcount++ != 0)
2108 2109 2110 2111 2112 2113
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2114
	BUG_ON(obj_priv->pages != NULL);
2115
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2116 2117
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2118 2119 2120 2121 2122 2123
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2124
		page = read_cache_page_gfp(mapping, i,
2125
					   GFP_HIGHUSER |
2126
					   __GFP_COLD |
2127
					   __GFP_RECLAIMABLE |
2128
					   gfpmask);
2129 2130 2131
		if (IS_ERR(page))
			goto err_pages;

2132
		obj_priv->pages[i] = page;
2133
	}
2134 2135 2136 2137

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2138
	return 0;
2139 2140 2141 2142 2143 2144 2145 2146 2147

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2148 2149
}

2150 2151 2152 2153 2154
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2155
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2172 2173 2174 2175 2176
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2177
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2197
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2198
	int regnum = obj_priv->fence_reg;
2199
	int tile_width;
2200
	uint32_t fence_reg, val;
2201 2202 2203 2204
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2205
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2206
		     __func__, obj_priv->gtt_offset, obj->size);
2207 2208 2209
		return;
	}

2210 2211 2212
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2213
	else
2214 2215 2216 2217 2218
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2219

2220 2221 2222 2223 2224 2225
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2226 2227 2228 2229 2230 2231 2232
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2233 2234 2235 2236 2237
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2238 2239 2240 2241 2242 2243 2244
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2245
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2246 2247 2248
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2249
	uint32_t fence_size_bits;
2250

2251
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2252
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2253
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2254
		     __func__, obj_priv->gtt_offset);
2255 2256 2257
		return;
	}

2258 2259 2260 2261
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2262 2263 2264
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2265 2266 2267
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2268 2269 2270 2271 2272 2273
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2274 2275
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2290
		obj_priv = to_intel_bo(reg->obj);
2291 2292 2293 2294 2295 2296 2297 2298 2299
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2300 2301 2302 2303
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2320
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2321 2322 2323 2324 2325 2326 2327
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2341
int
2342 2343
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2344 2345
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2346
	struct drm_i915_private *dev_priv = dev->dev_private;
2347
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2348
	struct drm_i915_fence_reg *reg = NULL;
2349
	int ret;
2350

2351 2352
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2353 2354
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2355 2356 2357
		return 0;
	}

2358 2359 2360 2361 2362
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2363 2364 2365 2366 2367
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2368 2369
		break;
	case I915_TILING_Y:
2370 2371 2372 2373 2374
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2375 2376 2377
		break;
	}

2378
	ret = i915_find_fence_reg(dev, interruptible);
2379 2380
	if (ret < 0)
		return ret;
2381

2382 2383
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2384
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2385

2386 2387
	reg->obj = obj;

2388 2389
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2390
		sandybridge_write_fence_reg(reg);
2391 2392 2393
		break;
	case 5:
	case 4:
2394
		i965_write_fence_reg(reg);
2395 2396
		break;
	case 3:
2397
		i915_write_fence_reg(reg);
2398 2399
		break;
	case 2:
2400
		i830_write_fence_reg(reg);
2401 2402
		break;
	}
2403

2404 2405
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2406

2407
	return 0;
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2421
	drm_i915_private_t *dev_priv = dev->dev_private;
2422
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2423 2424
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2425
	uint32_t fence_reg;
2426

2427 2428
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2429 2430
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2431 2432 2433
		break;
	case 5:
	case 4:
2434
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2435 2436 2437 2438
		break;
	case 3:
		if (obj_priv->fence_reg > 8)
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2439
		else
2440 2441
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2442 2443

		I915_WRITE(fence_reg, 0);
2444
		break;
2445
	}
2446

2447
	reg->obj = NULL;
2448
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2449
	list_del_init(&reg->lru_list);
2450 2451
}

2452 2453 2454 2455
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2456
 * @bool: whether the wait upon the fence is interruptible
2457 2458 2459 2460 2461
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2462 2463
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2464 2465
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2466
	struct drm_i915_private *dev_priv = dev->dev_private;
2467
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2468
	struct drm_i915_fence_reg *reg;
2469 2470 2471 2472

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2473 2474 2475 2476 2477 2478
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2479 2480 2481 2482
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2483 2484
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2485 2486
		int ret;

2487
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2488 2489 2490
		if (ret)
			return ret;

2491
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2492
		if (ret)
2493
			return ret;
C
Chris Wilson 已提交
2494 2495

		reg->gpu = false;
2496 2497
	}

2498
	i915_gem_object_flush_gtt_write_domain(obj);
2499
	i915_gem_clear_fence_reg(obj);
2500 2501 2502 2503

	return 0;
}

2504 2505 2506 2507 2508 2509 2510 2511
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2512
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2513
	struct drm_mm_node *free_space;
2514
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2515
	int ret;
2516

C
Chris Wilson 已提交
2517
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2518 2519 2520 2521
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2522
	if (alignment == 0)
2523
		alignment = i915_gem_get_gtt_alignment(obj);
2524
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2525 2526 2527 2528
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2529 2530 2531 2532 2533 2534 2535 2536
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
	if (obj->size > dev->gtt_total) {
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2537 2538 2539 2540 2541 2542
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2543
		if (obj_priv->gtt_space != NULL)
2544 2545 2546 2547 2548 2549 2550 2551 2552
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2553
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2554
		if (ret)
2555
			return ret;
2556

2557 2558 2559 2560
		goto search_free;
	}

#if WATCH_BUF
2561
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2562 2563
		 obj->size, obj_priv->gtt_offset);
#endif
2564
	ret = i915_gem_object_get_pages(obj, gfpmask);
2565 2566 2567
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2568 2569 2570

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2571 2572
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2573 2574
			if (ret) {
				/* now try to shrink everyone else */
2575 2576 2577
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2578 2579 2580 2581 2582 2583 2584 2585
				}

				return ret;
			}

			goto search_free;
		}

2586 2587 2588 2589 2590 2591 2592
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2593
					       obj_priv->pages,
2594
					       obj->size >> PAGE_SHIFT,
2595 2596
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2597
	if (obj_priv->agp_mem == NULL) {
2598
		i915_gem_object_put_pages(obj);
2599 2600
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2601

2602
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2603
		if (ret)
2604 2605 2606
			return ret;

		goto search_free;
2607 2608 2609 2610
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

2611 2612 2613
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

2614 2615 2616 2617
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2618 2619
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2620

C
Chris Wilson 已提交
2621 2622
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2623 2624 2625 2626 2627 2628
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2629
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2630 2631 2632 2633 2634

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2635
	if (obj_priv->pages == NULL)
2636 2637
		return;

C
Chris Wilson 已提交
2638
	trace_i915_gem_object_clflush(obj);
2639

2640
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2641 2642
}

2643
/** Flushes any GPU write domain for the object if it's dirty. */
2644
static int
2645 2646
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2647 2648
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2649
	uint32_t old_write_domain;
2650 2651

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2652
		return 0;
2653 2654

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2655
	old_write_domain = obj->write_domain;
2656
	i915_gem_flush_ring(dev, NULL,
2657 2658
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2659
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2660 2661 2662 2663

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2664 2665 2666 2667

	if (pipelined)
		return 0;

2668
	return i915_gem_object_wait_rendering(obj, true);
2669 2670 2671 2672 2673 2674
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2675 2676
	uint32_t old_write_domain;

2677 2678 2679 2680 2681 2682 2683
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2684
	old_write_domain = obj->write_domain;
2685
	obj->write_domain = 0;
C
Chris Wilson 已提交
2686 2687 2688 2689

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2690 2691 2692 2693 2694 2695 2696
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2697
	uint32_t old_write_domain;
2698 2699 2700 2701 2702 2703

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2704
	old_write_domain = obj->write_domain;
2705
	obj->write_domain = 0;
C
Chris Wilson 已提交
2706 2707 2708 2709

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2710 2711
}

2712 2713 2714 2715 2716 2717
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2718
int
2719 2720
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2721
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2722
	uint32_t old_write_domain, old_read_domains;
2723
	int ret;
2724

2725 2726 2727 2728
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2729
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2730 2731 2732
	if (ret != 0)
		return ret;

2733
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2734

2735
	if (write) {
2736
		ret = i915_gem_object_wait_rendering(obj, true);
2737 2738 2739
		if (ret)
			return ret;
	}
2740

2741 2742
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;
2743

2744 2745 2746 2747 2748 2749
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2750
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2751 2752
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2753 2754
	}

C
Chris Wilson 已提交
2755 2756 2757 2758
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2759 2760 2761
	return 0;
}

2762 2763 2764 2765 2766
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2767 2768
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2769
{
2770
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2771
	uint32_t old_read_domains;
2772 2773 2774 2775 2776 2777
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2778 2779
	ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
	if (ret)
2780
		return ret;
2781

2782 2783
	i915_gem_object_flush_cpu_write_domain(obj);

2784
	old_read_domains = obj->read_domains;
2785
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2786 2787 2788

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2789
					    obj->write_domain);
2790 2791 2792 2793

	return 0;
}

2794 2795 2796 2797 2798 2799 2800 2801 2802
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2803
	uint32_t old_write_domain, old_read_domains;
2804 2805
	int ret;

2806
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2807 2808
	if (ret != 0)
		return ret;
2809

2810
	i915_gem_object_flush_gtt_write_domain(obj);
2811

2812 2813
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2814
	 */
2815
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2816

2817
	if (write) {
2818
		ret = i915_gem_object_wait_rendering(obj, true);
2819 2820 2821 2822
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
2823 2824 2825
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2826 2827
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2828 2829
		i915_gem_clflush_object(obj);

2830
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2831 2832 2833 2834 2835
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2836 2837 2838 2839 2840 2841
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2842
		obj->read_domains = I915_GEM_DOMAIN_CPU;
2843 2844
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2845

C
Chris Wilson 已提交
2846 2847 2848 2849
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2850 2851 2852
	return 0;
}

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
2964
static void
2965
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2966 2967
{
	struct drm_device		*dev = obj->dev;
2968
	struct drm_i915_private		*dev_priv = dev->dev_private;
2969
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2970 2971
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
2972
	uint32_t			old_read_domains;
2973

2974 2975
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2976

2977 2978
	intel_mark_busy(dev, obj);

2979 2980 2981
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
2982 2983
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
2984 2985 2986 2987 2988
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
2989 2990
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
2991 2992 2993 2994 2995 2996 2997 2998 2999
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3000 3001
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3002
		flush_domains |= obj->write_domain;
3003 3004
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3005 3006 3007 3008 3009
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3010
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3011 3012 3013 3014 3015 3016 3017 3018
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

C
Chris Wilson 已提交
3019 3020
	old_read_domains = obj->read_domains;

3021 3022 3023 3024 3025 3026 3027 3028
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3029
	obj->read_domains = obj->pending_read_domains;
3030 3031 3032

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3033 3034
	if (obj_priv->ring)
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
3035 3036 3037 3038 3039 3040
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
C
Chris Wilson 已提交
3041 3042 3043 3044

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3045 3046 3047
}

/**
3048
 * Moves the object from a partially CPU read to a full one.
3049
 *
3050 3051
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3052
 */
3053 3054
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3055
{
3056
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3057

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3069
			drm_clflush_pages(obj_priv->pages + i, 1);
3070 3071 3072 3073 3074 3075
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3076
	kfree(obj_priv->page_cpu_valid);
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3096
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3097
	uint32_t old_read_domains;
3098
	int i, ret;
3099

3100 3101
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3102

3103
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3104
	if (ret != 0)
3105
		return ret;
3106 3107 3108 3109 3110 3111
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3112

3113 3114 3115
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3116
	if (obj_priv->page_cpu_valid == NULL) {
3117 3118
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3119 3120 3121 3122
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3123 3124 3125 3126

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3127 3128
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3129 3130 3131
		if (obj_priv->page_cpu_valid[i])
			continue;

3132
		drm_clflush_pages(obj_priv->pages + i, 1);
3133 3134 3135 3136

		obj_priv->page_cpu_valid[i] = 1;
	}

3137 3138 3139 3140 3141
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3142
	old_read_domains = obj->read_domains;
3143 3144
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3145 3146 3147 3148
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3149 3150 3151 3152 3153 3154 3155 3156 3157
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3158
				 struct drm_i915_gem_exec_object2 *entry,
3159
				 struct drm_i915_gem_relocation_entry *relocs)
3160 3161
{
	struct drm_device *dev = obj->dev;
3162
	drm_i915_private_t *dev_priv = dev->dev_private;
3163
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3164
	int i, ret;
3165
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3166 3167 3168 3169 3170 3171
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3172 3173 3174 3175 3176 3177 3178
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3179 3180 3181 3182 3183 3184

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3185 3186 3187 3188 3189
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
C
Chris Wilson 已提交
3190
		ret = i915_gem_object_get_fence_reg(obj, true);
J
Jesse Barnes 已提交
3191 3192 3193 3194
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
C
Chris Wilson 已提交
3195 3196

		dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
J
Jesse Barnes 已提交
3197 3198
	}

3199 3200 3201 3202 3203 3204
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3205
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3206 3207
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3208 3209
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3210 3211

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3212
						   reloc->target_handle);
3213 3214
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3215
			return -ENOENT;
3216
		}
3217
		target_obj_priv = to_intel_bo(target_obj);
3218

3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3234 3235 3236 3237 3238
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3239
				  reloc->target_handle);
3240 3241 3242 3243 3244
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3245
		/* Validate that the target is in a valid r/w GPU domain */
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
		if (reloc->write_domain & (reloc->write_domain - 1)) {
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
			return -EINVAL;
		}
3256 3257
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3258 3259 3260
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3261 3262 3263 3264
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3265 3266
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3267 3268
			return -EINVAL;
		}
3269 3270
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3271 3272 3273
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3274 3275 3276
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3277 3278 3279 3280 3281 3282
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3283 3284
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3285 3286 3287 3288

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3289
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3290 3291 3292 3293
			drm_gem_object_unreference(target_obj);
			continue;
		}

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3325 3326 3327 3328 3329
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3330 3331 3332 3333 3334
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3335
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3336 3337
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
3338 3339
						       ~(PAGE_SIZE - 1)),
						      KM_USER0);
3340
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3341
						   (reloc_offset & (PAGE_SIZE - 1)));
3342
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3343 3344 3345

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3346
			  obj, (unsigned int) reloc->offset,
3347 3348 3349
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3350
		io_mapping_unmap_atomic(reloc_page, KM_USER0);
3351

3352 3353
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3354
		 */
3355
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3370 3371 3372 3373
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3374 3375 3376 3377 3378 3379 3380 3381
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3382
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3383 3384

	mutex_lock(&dev->struct_mutex);
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3395
		ret = i915_wait_request(dev, request->seqno, request->ring);
3396 3397 3398
		if (ret != 0)
			break;
	}
3399
	mutex_unlock(&dev->struct_mutex);
3400

3401 3402 3403
	return ret;
}

3404
static int
J
Jesse Barnes 已提交
3405
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3419
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3420 3421
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3422
		return -ENOMEM;
J
Jesse Barnes 已提交
3423
	}
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3435
			drm_free_large(*relocs);
3436
			*relocs = NULL;
3437
			return -EFAULT;
3438 3439 3440 3441 3442
		}

		reloc_index += exec_list[i].relocation_count;
	}

3443
	return 0;
3444 3445 3446
}

static int
J
Jesse Barnes 已提交
3447
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3448 3449 3450 3451
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3452
	int ret = 0;
3453

3454 3455 3456
	if (relocs == NULL)
	    return 0;

3457 3458
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3459
		int unwritten;
3460 3461 3462

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3463 3464 3465 3466 3467 3468 3469 3470
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3471 3472 3473 3474 3475
		}

		reloc_count += exec_list[i].relocation_count;
	}

3476
err:
3477
	drm_free_large(relocs);
3478 3479 3480 3481

	return ret;
}

3482
static int
J
Jesse Barnes 已提交
3483
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3500
int
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
3514
			obj_priv = to_intel_bo(object_list[i]);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

C
Chris Wilson 已提交
3535
static int
J
Jesse Barnes 已提交
3536 3537 3538 3539
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3540 3541 3542 3543
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3544
	struct drm_i915_gem_object *obj_priv;
3545
	struct drm_clip_rect *cliprects = NULL;
3546
	struct drm_i915_gem_relocation_entry *relocs = NULL;
C
Chris Wilson 已提交
3547
	struct drm_i915_gem_request *request = NULL;
J
Jesse Barnes 已提交
3548
	int ret = 0, ret2, i, pinned = 0;
3549
	uint64_t exec_offset;
3550
	uint32_t seqno, reloc_index;
3551
	int pin_tries, flips;
3552

3553 3554
	struct intel_ring_buffer *ring = NULL;

3555 3556 3557 3558
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3569 3570 3571 3572
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3573
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3574 3575
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3576 3577 3578 3579 3580
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3581
	if (args->num_cliprects != 0) {
3582 3583
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3584 3585
		if (cliprects == NULL) {
			ret = -ENOMEM;
3586
			goto pre_mutex_err;
3587
		}
3588 3589 3590 3591 3592 3593 3594 3595

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3596
			ret = -EFAULT;
3597 3598 3599 3600
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3601 3602 3603 3604 3605 3606
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3607 3608 3609 3610 3611
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3612 3613 3614 3615
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

3616
	if (atomic_read(&dev_priv->mm.wedged)) {
3617
		mutex_unlock(&dev->struct_mutex);
3618 3619
		ret = -EIO;
		goto pre_mutex_err;
3620 3621 3622 3623
	}

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3624 3625
		ret = -EBUSY;
		goto pre_mutex_err;
3626 3627
	}

3628
	/* Look up object handles */
3629
	flips = 0;
3630 3631 3632 3633 3634 3635
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3636 3637
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3638
			ret = -ENOENT;
3639 3640
			goto err;
		}
3641

3642
		obj_priv = to_intel_bo(object_list[i]);
3643 3644 3645
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3646 3647
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3648
			ret = -EINVAL;
3649 3650 3651
			goto err;
		}
		obj_priv->in_execbuffer = true;
3652 3653 3654 3655 3656 3657 3658 3659
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3660
	}
3661

3662 3663 3664
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3665 3666
		reloc_index = 0;

3667 3668 3669 3670 3671
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3672 3673
							       &exec_list[i],
							       &relocs[reloc_index]);
3674 3675 3676
			if (ret)
				break;
			pinned = i + 1;
3677
			reloc_index += exec_list[i].relocation_count;
3678 3679 3680 3681 3682 3683
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3684
		if (ret != -ENOSPC || pin_tries >= 1) {
3685 3686
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3687 3688
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3689
					obj_priv = to_intel_bo(object_list[i]);
3690

3691
					total_size += object_list[i]->size;
3692 3693 3694 3695 3696
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3697
					  pinned+1, args->buffer_count,
3698 3699
					  total_size, num_fences,
					  ret);
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3710 3711
			goto err;
		}
3712 3713 3714 3715

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3716
		pinned = 0;
3717 3718 3719

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3720
		if (ret && ret != -ENOSPC)
3721
			goto err;
3722 3723 3724 3725
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3726 3727 3728 3729 3730 3731
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3732

3733 3734 3735 3736 3737 3738 3739 3740
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3741 3742
	i915_verify_inactive(dev, __FILE__, __LINE__);

3743 3744 3745 3746 3747 3748
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3749
	dev_priv->mm.flush_rings = 0;
3750

3751 3752 3753
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3754
		/* Compute new gpu domains and update invalidate/flush */
3755
		i915_gem_object_set_to_gpu_domain(obj);
3756 3757 3758 3759
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3760 3761 3762 3763 3764 3765 3766
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3767
		i915_gem_flush(dev, file_priv,
3768
			       dev->invalidate_domains,
3769 3770
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3771 3772
	}

3773 3774
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3775
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3776
		uint32_t old_write_domain = obj->write_domain;
3777 3778

		obj->write_domain = obj->pending_write_domain;
3779 3780 3781 3782 3783 3784
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);
		else
			list_del_init(&obj_priv->gpu_write_list);

C
Chris Wilson 已提交
3785 3786 3787
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3788 3789
	}

3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3800
	i915_gem_dump_object(batch_obj,
3801 3802 3803 3804 3805 3806
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3807 3808
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
			cliprects, exec_offset);
3809 3810 3811 3812 3813 3814 3815 3816 3817
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3818
	i915_retire_commands(dev, ring);
3819 3820 3821

	i915_verify_inactive(dev, __FILE__, __LINE__);

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
		obj_priv = to_intel_bo(obj);

		i915_gem_object_move_to_active(obj, ring);
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}

3832 3833 3834 3835 3836 3837 3838
	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
C
Chris Wilson 已提交
3839 3840
	seqno = i915_add_request(dev, file_priv, request, ring);
	request = NULL;
3841 3842 3843 3844 3845 3846 3847 3848

#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3849 3850 3851
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3852 3853
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3854
			obj_priv = to_intel_bo(object_list[i]);
3855 3856
			obj_priv->in_execbuffer = false;
		}
3857
		drm_gem_object_unreference(object_list[i]);
3858
	}
3859 3860 3861

	mutex_unlock(&dev->struct_mutex);

3862
pre_mutex_err:
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3877
	drm_free_large(object_list);
3878
	kfree(cliprects);
C
Chris Wilson 已提交
3879
	kfree(request);
3880 3881 3882 3883

	return ret;
}

J
Jesse Barnes 已提交
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3936
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
3950
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4029 4030 4031 4032
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
4033
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4034 4035
	int ret;

4036 4037
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);

4038
	i915_verify_inactive(dev, __FILE__, __LINE__);
4039 4040 4041 4042 4043

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4044 4045 4046 4047
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4048 4049 4050 4051 4052 4053
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4054 4055
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4056
		if (ret)
4057
			return ret;
4058
	}
J
Jesse Barnes 已提交
4059

4060 4061 4062 4063 4064 4065 4066 4067 4068
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
4069
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4082
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
4095
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
4120
		return -ENOENT;
4121
	}
4122
	obj_priv = to_intel_bo(obj);
4123

C
Chris Wilson 已提交
4124 4125
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4126 4127 4128 4129 4130
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4131 4132 4133
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4134
		drm_gem_object_unreference(obj);
4135
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4148 4149 4150 4151 4152
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4153
	i915_gem_object_flush_cpu_write_domain(obj);
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4167
	struct drm_i915_gem_object *obj_priv;
4168 4169 4170 4171 4172 4173 4174 4175

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
4176
		return -ENOENT;
4177 4178
	}

4179
	obj_priv = to_intel_bo(obj);
J
Jesse Barnes 已提交
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
4210
		return -ENOENT;
4211 4212
	}

4213
	mutex_lock(&dev->struct_mutex);
4214

4215 4216 4217 4218
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4219
	 */
4220 4221 4222 4223 4224 4225 4226 4227
	obj_priv = to_intel_bo(obj);
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4228 4229
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4230 4231
					    obj_priv->ring,
					    0, obj->write_domain);
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
4275
		return -ENOENT;
4276 4277 4278
	}

	mutex_lock(&dev->struct_mutex);
4279
	obj_priv = to_intel_bo(obj);
4280 4281 4282 4283 4284 4285 4286 4287 4288

	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4289 4290
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4291

4292 4293 4294 4295 4296
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4297 4298
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4299 4300 4301 4302 4303 4304
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4305 4306 4307
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4308
	struct drm_i915_gem_object *obj;
4309

4310 4311 4312
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4313

4314 4315 4316 4317
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4318

4319 4320
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4321

4322
	obj->agp_type = AGP_USER_MEMORY;
4323
	obj->base.driver_private = NULL;
4324 4325 4326 4327
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4328

4329 4330 4331 4332 4333 4334 4335 4336
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4337

4338 4339 4340
	return 0;
}

4341
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4342
{
4343
	struct drm_device *dev = obj->dev;
4344
	drm_i915_private_t *dev_priv = dev->dev_private;
4345
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4346
	int ret;
4347

4348 4349 4350 4351 4352 4353
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4354

4355 4356
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4357

4358 4359
	drm_gem_object_release(obj);

4360
	kfree(obj_priv->page_cpu_valid);
4361
	kfree(obj_priv->bit_17);
4362
	kfree(obj_priv);
4363 4364
}

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4381 4382 4383 4384 4385
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4386

4387
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4388

4389
	if (dev_priv->mm.suspended ||
4390 4391 4392
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4393 4394
		mutex_unlock(&dev->struct_mutex);
		return 0;
4395 4396
	}

4397
	ret = i915_gpu_idle(dev);
4398 4399
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4400
		return ret;
4401
	}
4402

4403 4404
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4405
		ret = i915_gem_evict_inactive(dev);
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4417
	del_timer_sync(&dev_priv->hangcheck_timer);
4418 4419

	i915_kernel_lost_context(dev);
4420
	i915_gem_cleanup_ringbuffer(dev);
4421

4422 4423
	mutex_unlock(&dev->struct_mutex);

4424 4425 4426
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4427 4428 4429
	return 0;
}

4430 4431 4432 4433
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4434
static int
4435 4436 4437 4438 4439 4440 4441
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4442
	obj = i915_gem_alloc_object(dev, 4096);
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4473 4474

static void
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4489 4490
}

4491 4492 4493 4494 4495
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4496

4497 4498 4499 4500 4501
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4502

4503
	ret = intel_init_render_ring_buffer(dev);
4504 4505 4506 4507
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4508
		ret = intel_init_bsd_ring_buffer(dev);
4509 4510
		if (ret)
			goto cleanup_render_ring;
4511
	}
4512

4513 4514
	dev_priv->next_seqno = 1;

4515 4516 4517 4518 4519 4520 4521
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4522 4523 4524 4525 4526 4527 4528 4529 4530
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4531 4532
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4533 4534 4535 4536
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4537 4538 4539 4540 4541 4542 4543
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4544 4545 4546
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4547
	if (atomic_read(&dev_priv->mm.wedged)) {
4548
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4549
		atomic_set(&dev_priv->mm.wedged, 0);
4550 4551 4552
	}

	mutex_lock(&dev->struct_mutex);
4553 4554 4555
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4556 4557
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4558
		return ret;
4559
	}
4560

4561
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4562
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4563 4564
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4565
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4566
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4567
	mutex_unlock(&dev->struct_mutex);
4568

4569 4570 4571
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4572

4573
	return 0;
4574 4575 4576 4577 4578 4579 4580 4581

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4582 4583 4584 4585 4586 4587
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4588 4589 4590
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4591
	drm_irq_uninstall(dev);
4592
	return i915_gem_idle(dev);
4593 4594 4595 4596 4597 4598 4599
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4600 4601 4602
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4603 4604 4605
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4606 4607 4608 4609 4610
}

void
i915_gem_load(struct drm_device *dev)
{
4611
	int i;
4612 4613 4614
	drm_i915_private_t *dev_priv = dev->dev_private;

	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4615
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4616
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4617
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4618
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4619 4620
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4621 4622 4623 4624
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4625 4626
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4627 4628
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4629 4630 4631 4632
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4643
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4644 4645
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4646

4647
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4648 4649 4650 4651
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4652
	/* Initialize fence registers to zero */
4653 4654 4655 4656 4657 4658 4659
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4660 4661
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4662 4663
		break;
	case 3:
4664 4665 4666
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4667 4668 4669 4670
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4671
	}
4672
	i915_gem_detect_bit_6_swizzle(dev);
4673
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4674
}
4675 4676 4677 4678 4679

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4680 4681
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4682 4683 4684 4685 4686 4687 4688 4689
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4690
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4691 4692 4693 4694 4695
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4696
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4709
	kfree(phys_obj);
4710 4711 4712
	return ret;
}

4713
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4738
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4750
	obj_priv = to_intel_bo(obj);
4751 4752 4753
	if (!obj_priv->phys_obj)
		return;

4754
	ret = i915_gem_object_get_pages(obj, 0);
4755 4756 4757 4758 4759 4760
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4761
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4762 4763 4764 4765 4766
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4767
	drm_clflush_pages(obj_priv->pages, page_count);
4768
	drm_agp_chipset_flush(dev);
4769 4770

	i915_gem_object_put_pages(obj);
4771 4772 4773 4774 4775 4776 4777
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4778 4779 4780
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4791
	obj_priv = to_intel_bo(obj);
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4802
						obj->size, align);
4803
		if (ret) {
4804
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4805 4806 4807 4808 4809 4810 4811 4812
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4813
	ret = i915_gem_object_get_pages(obj, 0);
4814 4815 4816 4817 4818 4819 4820 4821
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4822
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4823 4824 4825 4826 4827 4828
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4829 4830
	i915_gem_object_put_pages(obj);

4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4841
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4842 4843 4844 4845 4846 4847 4848
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4849
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4850 4851 4852 4853 4854 4855 4856
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}
4871

4872 4873 4874 4875 4876 4877 4878
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4879
		      list_empty(&dev_priv->render_ring.active_list);
4880 4881
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4882 4883 4884 4885

	return !lists_empty;
}

4886
static int
4887
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4915
rescan:
4916 4917 4918 4919 4920 4921 4922 4923 4924
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4925
		i915_gem_retire_requests(dev);
4926 4927 4928 4929 4930

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
4931
				i915_gem_object_unbind(&obj_priv->base);
4932 4933 4934 4935 4936 4937 4938 4939
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

4940 4941
		would_deadlock = 0;

4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
4960
				i915_gem_object_unbind(&obj_priv->base);
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}