arm-smmu.c 55.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
32
#include <linux/dma-iommu.h>
33 34 35 36
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
37
#include <linux/io-64-nonatomic-hi-lo.h>
38
#include <linux/iommu.h>
39
#include <linux/iopoll.h>
40 41
#include <linux/module.h>
#include <linux/of.h>
42
#include <linux/of_address.h>
43
#include <linux/pci.h>
44 45 46 47 48 49
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

50
#include "io-pgtable.h"
51 52

/* Maximum number of stream IDs assigned to a single device */
53
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
54 55 56 57 58 59 60 61 62

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
63
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
64

65 66 67 68 69 70 71 72 73 74
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

75 76 77 78 79
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
80
#ifdef CONFIG_64BIT
81
#define smmu_write_atomic_lq		writeq_relaxed
82
#else
83
#define smmu_write_atomic_lq		writel_relaxed
84 85
#endif

86 87 88 89 90 91 92 93 94 95 96
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
97
#define sCR0_VMID16EN			(1 << 31)
98 99 100
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

101 102 103
/* Auxiliary Configuration register */
#define ARM_SMMU_GR0_sACR		0x10

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
122
#define ID0_ATOSNS			(1 << 26)
123 124
#define ID0_PTFS_NO_AARCH32		(1 << 25)
#define ID0_PTFS_NO_AARCH32S		(1 << 24)
125 126 127
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
128 129
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
150
#define ID2_VMID16			(1 << 15)
151

152 153
#define ID7_MAJOR_SHIFT			4
#define ID7_MAJOR_MASK			0xf
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

181 182 183
#define S2CR_PRIVCFG_SHIFT		24
#define S2CR_PRIVCFG_UNPRIV		(2 << S2CR_PRIVCFG_SHIFT)

184 185 186 187
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
188 189 190
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
206 207
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
208 209 210

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
211
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
212 213

#define ARM_SMMU_CB_SCTLR		0x0
214
#define ARM_SMMU_CB_ACTLR		0x4
215 216
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
217 218
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
219 220
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
221
#define ARM_SMMU_CB_S1_MAIR1		0x3c
222
#define ARM_SMMU_CB_PAR			0x50
223
#define ARM_SMMU_CB_FSR			0x58
224
#define ARM_SMMU_CB_FAR			0x60
225
#define ARM_SMMU_CB_FSYNR0		0x68
226
#define ARM_SMMU_CB_S1_TLBIVA		0x600
227
#define ARM_SMMU_CB_S1_TLBIASID		0x610
228 229 230
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
231
#define ARM_SMMU_CB_ATS1PR		0x800
232
#define ARM_SMMU_CB_ATSR		0x8f0
233 234 235 236 237 238 239 240 241 242 243

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

244 245
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

246 247
#define ARM_MMU500_ACR_CACHE_LOCK	(1 << 26)

248 249 250 251
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

252 253 254 255
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
256
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
257

258
#define TTBRn_ASID_SHIFT		48
259 260 261 262 263 264 265 266 267 268 269 270

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

271 272 273
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
274
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
275 276 277

#define FSYNR0_WNR			(1 << 4)

278
static int force_stage;
279
module_param(force_stage, int, S_IRUGO);
280 281
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
282 283 284 285
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
286

287
enum arm_smmu_arch_version {
288 289
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
290 291 292
	ARM_SMMU_V2,
};

293 294
enum arm_smmu_implementation {
	GENERIC_SMMU,
295
	ARM_MMU500,
296
	CAVIUM_SMMUV2,
297 298
};

299 300 301 302 303 304
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

305
struct arm_smmu_master_cfg {
306 307 308 309 310
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

311 312 313 314 315 316
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

317 318 319 320 321
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
322
	unsigned long			pgshift;
323 324 325 326 327 328

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
329
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
330
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
331 332 333 334 335
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
336
	u32				features;
337 338 339

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
340
	enum arm_smmu_arch_version	version;
341
	enum arm_smmu_implementation	model;
342 343 344 345 346 347 348 349 350

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

351 352 353
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
354 355 356 357 358 359 360

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
361 362

	u32				cavium_id_base; /* Specific to Cavium */
363 364
};

365 366 367 368 369
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
370 371 372 373 374 375
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
376
	enum arm_smmu_context_fmt	fmt;
377
};
378
#define INVALID_IRPTNDX			0xff
379

380 381
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
382

383 384 385 386 387 388
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

389
struct arm_smmu_domain {
390
	struct arm_smmu_device		*smmu;
391 392
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
393
	struct arm_smmu_cfg		cfg;
394
	enum arm_smmu_domain_stage	stage;
395
	struct mutex			init_mutex; /* Protects smmu pointer */
396
	struct iommu_domain		domain;
397 398
};

399 400
static struct iommu_ops arm_smmu_ops;

401 402 403
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

404 405 406 407 408
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

409 410
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

411
static struct arm_smmu_option_prop arm_smmu_options[] = {
412 413 414 415
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

416 417 418 419 420
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

421 422 423
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
424

425 426 427 428 429 430 431 432 433 434
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

435
static struct device_node *dev_get_dev_node(struct device *dev)
436 437 438
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
439

440 441
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
442
		return bus->bridge->parent->of_node;
443 444
	}

445
	return dev->of_node;
446 447
}

448 449 450 451 452 453 454
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
455

456 457 458 459 460 461 462 463 464 465 466 467 468
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

469
static struct arm_smmu_master_cfg *
470
find_smmu_master_cfg(struct device *dev)
471
{
472 473
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
474

475 476 477 478
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
479

480
	return cfg;
481 482
}

483 484 485 486 487 488 489 490
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
491 492
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

534 535
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
536

537 538
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
539

540 541 542 543 544 545 546 547 548
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
549 550 551
	return insert_smmu_master(smmu, master);
}

552
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
553
{
554
	struct arm_smmu_device *smmu;
555
	struct arm_smmu_master *master = NULL;
556
	struct device_node *dev_node = dev_get_dev_node(dev);
557 558

	spin_lock(&arm_smmu_devices_lock);
559
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
560 561 562 563
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
564
	spin_unlock(&arm_smmu_devices_lock);
565

566
	return master ? smmu : NULL;
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
588
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

606 607 608 609 610 611 612
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
613
{
614
	struct arm_smmu_domain *smmu_domain = cookie;
615 616
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
617
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
618
	void __iomem *base;
619 620 621

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
622
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
623
			       base + ARM_SMMU_CB_S1_TLBIASID);
624 625
	} else {
		base = ARM_SMMU_GR0(smmu);
626
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
627
			       base + ARM_SMMU_GR0_TLBIVMID);
628 629
	}

630 631 632 633
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
634
					  size_t granule, bool leaf, void *cookie)
635 636 637 638 639 640 641 642 643 644 645
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

646
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
647
			iova &= ~12UL;
648
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
649 650 651 652
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
653 654
		} else {
			iova >>= 12;
655
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
656 657 658 659
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
660 661 662 663 664
		}
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
665 666
		iova >>= 12;
		do {
667
			smmu_write_atomic_lq(iova, reg);
668 669
			iova += granule >> 12;
		} while (size -= granule);
670 671
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
672
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
673 674 675 676 677 678 679 680 681
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

682 683 684
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
685
	u32 fsr, fsynr, resume;
686 687
	unsigned long iova;
	struct iommu_domain *domain = dev;
688
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
689 690
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
691 692
	void __iomem *cb_base;

693
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
694 695 696 697 698 699 700
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
701
				    "Unexpected context fault (fsr 0x%x)\n",
702 703 704 705 706
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

707
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
708 709 710 711
	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
712 713
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
714
		    iova, fsynr, cfg->cbndx);
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
733
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
734 735 736 737 738 739

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

740 741 742
	if (!gfsr)
		return IRQ_NONE;

743 744 745 746 747 748 749
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
750
	return IRQ_HANDLED;
751 752
}

753 754
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
755 756
{
	u32 reg;
757
	u64 reg64;
758
	bool stage1;
759 760
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
761
	void __iomem *cb_base, *gr1_base;
762 763

	gr1_base = ARM_SMMU_GR1(smmu);
764 765
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
766

767
	if (smmu->version > ARM_SMMU_V1) {
768 769 770 771
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
772 773
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
774
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
775

776 777 778
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

779
	/* CBAR */
780
	reg = cfg->cbar;
781
	if (smmu->version < ARM_SMMU_V2)
782
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
783

784 785 786 787 788 789 790
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
791 792
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
793
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
794
	}
795
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
796

797 798
	/* TTBRs */
	if (stage1) {
799 800
		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];

801
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
802
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
803 804

		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
805
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
806
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
807
	} else {
808
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
809
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
810
	}
811

812 813 814 815 816 817
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
818
			reg |= TTBCR2_SEP_UPSTREAM;
819
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
820 821
		}
	} else {
822 823
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
824 825
	}

826
	/* MAIRs (stage-1 only) */
827
	if (stage1) {
828
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
829
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
830 831
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
832 833 834 835 836 837 838 839 840
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
841
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
842 843 844
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
845
					struct arm_smmu_device *smmu)
846
{
847
	int irq, start, ret = 0;
848 849 850 851
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
852
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
853
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
854

855
	mutex_lock(&smmu_domain->init_mutex);
856 857 858
	if (smmu_domain->smmu)
		goto out_unlock;

859 860 861 862 863 864
	/* We're bypassing these SIDs, so don't allocate an actual context */
	if (domain->type == IOMMU_DOMAIN_DMA) {
		smmu_domain->smmu = smmu;
		goto out_unlock;
	}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

909 910 911 912
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
913 914
		ias = smmu->va_size;
		oas = smmu->ipa_size;
915
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
916
			fmt = ARM_64_LPAE_S1;
917
		} else {
918
			fmt = ARM_32_LPAE_S1;
919 920 921
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
		}
922 923
		break;
	case ARM_SMMU_DOMAIN_NESTED:
924 925 926 927
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
928
	case ARM_SMMU_DOMAIN_S2:
929 930
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
931 932
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
933
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
934
			fmt = ARM_64_LPAE_S2;
935
		} else {
936
			fmt = ARM_32_LPAE_S2;
937 938 939
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
940 941 942 943
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
944 945 946 947 948
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
949
		goto out_unlock;
950

951
	cfg->cbndx = ret;
952
	if (smmu->version < ARM_SMMU_V2) {
953 954
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
955
	} else {
956
		cfg->irptndx = cfg->cbndx;
957 958
	}

959 960 961 962 963
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
964
		.iommu_dev	= smmu->dev,
965 966 967 968 969 970 971 972 973 974 975
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
976

977 978 979 980 981 982 983
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
984
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
985 986 987 988
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
989 990
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
991 992
	}

993 994 995 996
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
997
	return 0;
998

999 1000
out_clear_smmu:
	smmu_domain->smmu = NULL;
1001
out_unlock:
1002
	mutex_unlock(&smmu_domain->init_mutex);
1003 1004 1005 1006 1007
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
1008
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1009 1010
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1011
	void __iomem *cb_base;
1012 1013
	int irq;

1014
	if (!smmu || domain->type == IOMMU_DOMAIN_DMA)
1015 1016
		return;

1017 1018 1019 1020
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
1021
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1022 1023
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

1024 1025
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1026 1027 1028
		free_irq(irq, domain);
	}

1029
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1030
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1031 1032
}

1033
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1034 1035 1036
{
	struct arm_smmu_domain *smmu_domain;

1037
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1038
		return NULL;
1039 1040 1041 1042 1043 1044 1045
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1046
		return NULL;
1047

1048 1049 1050 1051 1052 1053
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1054 1055
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1056 1057

	return &smmu_domain->domain;
1058 1059
}

1060
static void arm_smmu_domain_free(struct iommu_domain *domain)
1061
{
1062
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1063 1064 1065 1066 1067

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1068
	iommu_put_dma_cookie(domain);
1069 1070 1071 1072 1073
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1074
					  struct arm_smmu_master_cfg *cfg)
1075 1076 1077 1078 1079 1080 1081 1082
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1083
	if (cfg->smrs)
1084 1085
		return -EEXIST;

1086
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1087
	if (!smrs) {
1088 1089
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1090 1091 1092
		return -ENOMEM;
	}

1093
	/* Allocate the SMRs on the SMMU */
1094
	for (i = 0; i < cfg->num_streamids; ++i) {
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1105
			.id	= cfg->streamids[i],
1106 1107 1108 1109
		};
	}

	/* It worked! Now, poke the actual hardware */
1110
	for (i = 0; i < cfg->num_streamids; ++i) {
1111 1112 1113 1114 1115
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1116
	cfg->smrs = smrs;
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1127
				      struct arm_smmu_master_cfg *cfg)
1128 1129 1130
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1131
	struct arm_smmu_smr *smrs = cfg->smrs;
1132

1133 1134 1135
	if (!smrs)
		return;

1136
	/* Invalidate the SMRs before freeing back to the allocator */
1137
	for (i = 0; i < cfg->num_streamids; ++i) {
1138
		u8 idx = smrs[i].idx;
1139

1140 1141 1142 1143
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1144
	cfg->smrs = NULL;
1145 1146 1147 1148
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1149
				      struct arm_smmu_master_cfg *cfg)
1150 1151
{
	int i, ret;
1152
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1153 1154
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1155 1156
	/*
	 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
1157 1158 1159
	 * for all devices behind the SMMU. Note that we need to take
	 * care configuring SMRs for devices both a platform_device and
	 * and a PCI device (i.e. a PCI host controller)
1160 1161 1162 1163
	 */
	if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
		return 0;

1164 1165 1166 1167 1168
	/* Devices in an IOMMU group may already be configured */
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
	if (ret)
		return ret == -EEXIST ? 0 : ret;

1169
	for (i = 0; i < cfg->num_streamids; ++i) {
1170
		u32 idx, s2cr;
1171

1172
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1173
		s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1174
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1175 1176 1177 1178 1179 1180 1181
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1182
					  struct arm_smmu_master_cfg *cfg)
1183
{
1184
	int i;
1185
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1186
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1187

1188 1189 1190
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1191 1192 1193 1194 1195

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1196 1197
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1198
		u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1199

1200
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1201 1202
	}

1203
	arm_smmu_master_free_smrs(smmu, cfg);
1204 1205
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
static void arm_smmu_detach_dev(struct device *dev,
				struct arm_smmu_master_cfg *cfg)
{
	struct iommu_domain *domain = dev->archdata.iommu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
}

1216 1217
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1218
	int ret;
1219
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1220
	struct arm_smmu_device *smmu;
1221
	struct arm_smmu_master_cfg *cfg;
1222

1223
	smmu = find_smmu_for_device(dev);
1224
	if (!smmu) {
1225 1226 1227 1228
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1229 1230 1231 1232 1233
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1234
	/*
1235 1236
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1237
	 */
1238
	if (smmu_domain->smmu != smmu) {
1239 1240
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1241 1242
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1243 1244 1245
	}

	/* Looks ok, so add the device to the domain */
1246
	cfg = find_smmu_master_cfg(dev);
1247
	if (!cfg)
1248 1249
		return -ENODEV;

1250 1251 1252 1253
	/* Detach the dev from its current domain */
	if (dev->archdata.iommu)
		arm_smmu_detach_dev(dev, cfg);

1254 1255 1256
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1257 1258 1259 1260
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1261
			phys_addr_t paddr, size_t size, int prot)
1262
{
1263 1264
	int ret;
	unsigned long flags;
1265
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1266
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1267

1268
	if (!ops)
1269 1270
		return -ENODEV;

1271 1272 1273 1274
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1275 1276 1277 1278 1279
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1280 1281
	size_t ret;
	unsigned long flags;
1282
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1283
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1284

1285 1286 1287 1288 1289 1290 1291
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1292 1293
}

1294 1295 1296
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1297
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1298 1299 1300 1301 1302 1303 1304
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1305
	unsigned long va;
1306 1307 1308

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1309 1310 1311
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1312 1313
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1314
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1315 1316 1317 1318

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1319
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1320 1321 1322 1323
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1324
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1325 1326 1327 1328 1329 1330 1331 1332 1333
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1334
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1335
					dma_addr_t iova)
1336
{
1337 1338
	phys_addr_t ret;
	unsigned long flags;
1339
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1340
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1341

1342
	if (!ops)
1343
		return 0;
1344

1345
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1346 1347
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1348
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1349
	} else {
1350
		ret = ops->iova_to_phys(ops, iova);
1351 1352
	}

1353
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1354

1355
	return ret;
1356 1357
}

1358
static bool arm_smmu_capable(enum iommu_cap cap)
1359
{
1360 1361
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1362 1363 1364 1365 1366
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1367
	case IOMMU_CAP_INTR_REMAP:
1368
		return true; /* MSIs are just memory writes */
1369 1370
	case IOMMU_CAP_NOEXEC:
		return true;
1371
	default:
1372
		return false;
1373
	}
1374 1375
}

1376 1377 1378 1379
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1380 1381
}

1382 1383 1384 1385 1386
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1387 1388
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1389
{
1390
	struct arm_smmu_master_cfg *cfg;
1391 1392
	u16 sid;
	int i;
1393

1394 1395
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1396
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1397 1398
		if (!cfg)
			return -ENOMEM;
1399

1400 1401 1402
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1403

1404 1405
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1419

1420
	return 0;
1421 1422
}

1423 1424
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1425 1426
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1427
	struct arm_smmu_master *master;
1428 1429 1430 1431 1432 1433 1434 1435 1436

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1437 1438

	return 0;
1439 1440 1441 1442
}

static int arm_smmu_add_device(struct device *dev)
{
1443
	struct iommu_group *group;
1444

1445 1446 1447
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1448

1449
	iommu_group_put(group);
1450
	return 0;
1451 1452
}

1453 1454
static void arm_smmu_remove_device(struct device *dev)
{
1455
	iommu_group_remove_device(dev);
1456 1457
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1484 1485 1486
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1487
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1501
	int ret = 0;
1502
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1503

1504 1505
	mutex_lock(&smmu_domain->init_mutex);

1506 1507
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1508 1509 1510 1511 1512
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1513 1514 1515 1516 1517
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1518
		break;
1519
	default:
1520
		ret = -ENODEV;
1521
	}
1522 1523 1524 1525

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1526 1527
}

1528
static struct iommu_ops arm_smmu_ops = {
1529
	.capable		= arm_smmu_capable,
1530 1531
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1532 1533 1534
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1535
	.map_sg			= default_iommu_map_sg,
1536 1537 1538
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1539
	.device_group		= arm_smmu_device_group,
1540 1541
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1542
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1543 1544 1545 1546 1547
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1548
	void __iomem *cb_base;
1549
	int i = 0;
1550
	u32 reg, major;
1551

1552 1553 1554
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1555

1556 1557
	/* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
	reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1558
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1559
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1560
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1561 1562
	}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	/*
	 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
	 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
	 * bit is only present in MMU-500r2 onwards.
	 */
	reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
	major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
	if ((smmu->model == ARM_MMU500) && (major >= 2)) {
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
		reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
	}

1576 1577 1578 1579 1580
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1581 1582 1583 1584 1585 1586 1587 1588 1589
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1590
	}
1591

1592 1593 1594 1595
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1596
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1597

1598
	/* Enable fault reporting */
1599
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1600 1601

	/* Disable TLB broadcasting. */
1602
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1603

1604 1605 1606 1607 1608 1609
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1610 1611

	/* Disable forced broadcasting */
1612
	reg &= ~sCR0_FB;
1613 1614

	/* Don't upgrade barriers */
1615
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1616

1617 1618 1619
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1620
	/* Push the button */
1621
	__arm_smmu_tlb_sync(smmu);
1622
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1649
	bool cttw_dt, cttw_reg;
1650 1651

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1652 1653
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1654 1655 1656

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1657 1658 1659 1660 1661 1662 1663

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1680
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1681 1682 1683 1684
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1685 1686
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1687 1688 1689 1690
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1691 1692 1693 1694 1695 1696 1697 1698 1699
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1700
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1701 1702 1703 1704 1705 1706
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1737 1738 1739
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1740 1741
	}

1742 1743 1744 1745 1746 1747
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1748 1749
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1750
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1751

1752
	/* Check for size mismatch of SMMU address space from mapped region */
1753
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1754
	size *= 2 << smmu->pgshift;
1755
	if (smmu->size != size)
1756 1757 1758
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1759

1760
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1761 1762 1763 1764 1765 1766 1767
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}
1779 1780 1781 1782

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1783
	smmu->ipa_size = size;
1784

1785
	/* The output mask is also applied for bypass */
1786
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1787
	smmu->pa_size = size;
1788

1789 1790 1791
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1792 1793 1794 1795 1796 1797 1798 1799 1800
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1801
	if (smmu->version < ARM_SMMU_V2) {
1802
		smmu->va_size = smmu->ipa_size;
1803 1804
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1805 1806
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1807 1808
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
1809
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1810
		if (id & ID2_PTFS_16K)
1811
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1812
		if (id & ID2_PTFS_64K)
1813
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1814 1815
	}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	/* Now we've corralled the various formats, what'll it do? */
	size = 0;
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
		size |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
		size |= SZ_4K | SZ_2M | SZ_1G;
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
		size |= SZ_16K | SZ_32M;
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
		size |= SZ_64K | SZ_512M;

1828 1829 1830
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1831 1832
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1833
			   smmu->va_size, smmu->ipa_size);
1834 1835 1836

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1837
			   smmu->ipa_size, smmu->pa_size);
1838

1839 1840 1841
	return 0;
}

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1852
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1853
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1854
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1855

1856
static const struct of_device_id arm_smmu_of_match[] = {
1857 1858 1859
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1860
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1861
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1862
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1863 1864 1865 1866
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1867 1868
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1869
	const struct of_device_id *of_id;
1870
	const struct arm_smmu_match_data *data;
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1885
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1886 1887 1888
	data = of_id->data;
	smmu->version = data->version;
	smmu->model = data->model;
1889

1890
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1891 1892 1893
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1909 1910 1911 1912
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1924

1925 1926 1927 1928 1929 1930 1931
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1932 1933 1934 1935
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1952 1953
	parse_driver_options(smmu);

1954
	if (smmu->version == ARM_SMMU_V2 &&
1955 1956 1957 1958
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1959
		err = -ENODEV;
1960
		goto out_put_masters;
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1980 1981

	arm_smmu_device_reset(smmu);
1982 1983 1984 1985 1986 1987 1988 1989
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1990 1991
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2019 2020
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
2021 2022 2023
		of_node_put(master->of_node);
	}

2024
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2025 2026 2027 2028 2029 2030
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
2031
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
2046
	struct device_node *np;
2047 2048
	int ret;

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

2060 2061 2062 2063 2064
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
2065
	if (!iommu_present(&platform_bus_type))
2066 2067
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

2068
#ifdef CONFIG_ARM_AMBA
2069
	if (!iommu_present(&amba_bustype))
2070
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2071
#endif
2072

2073 2074 2075 2076 2077
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

2078 2079 2080 2081 2082 2083 2084 2085
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2086
subsys_initcall(arm_smmu_init);
2087 2088 2089 2090 2091
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");