arm-smmu.c 51.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
32
#include <linux/dma-iommu.h>
33 34 35 36 37
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
38
#include <linux/iopoll.h>
39 40
#include <linux/module.h>
#include <linux/of.h>
41
#include <linux/of_address.h>
42
#include <linux/pci.h>
43 44 45 46 47 48
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

49
#include "io-pgtable.h"
50 51

/* Maximum number of stream IDs assigned to a single device */
52
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
53 54 55 56 57 58 59 60 61

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
62
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
63

64 65 66 67 68 69 70 71 72 73
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_64BIT
#define smmu_writeq	writeq_relaxed
#else
#define smmu_writeq(reg64, addr)				\
	do {							\
		u64 __val = (reg64);				\
		void __iomem *__addr = (addr);			\
		writel_relaxed(__val >> 32, __addr + 4);	\
		writel_relaxed(__val, __addr);			\
	} while (0)
#endif

86 87 88 89 90 91 92 93 94 95 96
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
97
#define sCR0_VMID16EN			(1 << 31)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
119
#define ID0_ATOSNS			(1 << 26)
120 121 122
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
123 124
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
145
#define ID2_VMID16			(1 << 15)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

173 174 175
#define S2CR_PRIVCFG_SHIFT		24
#define S2CR_PRIVCFG_UNPRIV		(2 << S2CR_PRIVCFG_SHIFT)

176 177 178 179
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
180 181 182
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
198 199
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
200 201 202

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
203
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
204 205 206 207

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
208 209
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
210 211
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
212
#define ARM_SMMU_CB_S1_MAIR1		0x3c
213 214
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
215 216 217 218
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
219
#define ARM_SMMU_CB_S1_TLBIVA		0x600
220
#define ARM_SMMU_CB_S1_TLBIASID		0x610
221 222 223
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
224
#define ARM_SMMU_CB_ATS1PR		0x800
225
#define ARM_SMMU_CB_ATSR		0x8f0
226 227 228 229 230 231 232 233 234 235 236

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

237 238 239 240
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

241 242 243 244
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
245
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
246

247
#define TTBRn_ASID_SHIFT		48
248 249 250 251 252 253 254 255 256 257 258 259

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

260 261 262
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
263
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
264 265 266

#define FSYNR0_WNR			(1 << 4)

267
static int force_stage;
268
module_param(force_stage, int, S_IRUGO);
269 270
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
271 272 273 274
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
275

276 277 278 279 280
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

281 282 283 284 285 286
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

287
struct arm_smmu_master_cfg {
288 289 290 291 292
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

293 294 295 296 297 298
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

299 300 301 302 303
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
304
	unsigned long			pgshift;
305 306 307 308 309 310

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
311
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
312
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
313
	u32				features;
314 315 316

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
317
	enum arm_smmu_arch_version	version;
318 319 320 321 322 323 324 325 326

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

327 328 329
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
330 331 332 333 334 335 336 337 338 339 340 341 342 343

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
344
#define INVALID_IRPTNDX			0xff
345

346 347 348
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

349 350 351 352 353 354
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

355
struct arm_smmu_domain {
356
	struct arm_smmu_device		*smmu;
357 358
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
359
	struct arm_smmu_cfg		cfg;
360
	enum arm_smmu_domain_stage	stage;
361
	struct mutex			init_mutex; /* Protects smmu pointer */
362
	struct iommu_domain		domain;
363 364
};

365 366
static struct iommu_ops arm_smmu_ops;

367 368 369
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

370 371 372 373 374
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

375
static struct arm_smmu_option_prop arm_smmu_options[] = {
376 377 378 379
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

380 381 382 383 384
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

385 386 387
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
388

389 390 391 392 393 394 395 396 397 398
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

399
static struct device_node *dev_get_dev_node(struct device *dev)
400 401 402
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
403

404 405
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
406
		return bus->bridge->parent->of_node;
407 408
	}

409
	return dev->of_node;
410 411
}

412 413 414 415 416 417 418
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
419

420 421 422 423 424 425 426 427 428 429 430 431 432
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

433
static struct arm_smmu_master_cfg *
434
find_smmu_master_cfg(struct device *dev)
435
{
436 437
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
438

439 440 441 442
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
443

444
	return cfg;
445 446
}

447 448 449 450 451 452 453 454
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
455 456
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

498 499
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
500

501 502
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
503

504 505 506 507 508 509 510 511 512
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
513 514 515
	return insert_smmu_master(smmu, master);
}

516
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
517
{
518
	struct arm_smmu_device *smmu;
519
	struct arm_smmu_master *master = NULL;
520
	struct device_node *dev_node = dev_get_dev_node(dev);
521 522

	spin_lock(&arm_smmu_devices_lock);
523
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
524 525 526 527
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
528
	spin_unlock(&arm_smmu_devices_lock);
529

530
	return master ? smmu : NULL;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
552
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

570 571 572 573 574 575 576
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
577
{
578
	struct arm_smmu_domain *smmu_domain = cookie;
579 580
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
581
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
582
	void __iomem *base;
583 584 585

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
586 587
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
588 589
	} else {
		base = ARM_SMMU_GR0(smmu);
590 591
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
592 593
	}

594 595 596 597
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
598
					  size_t granule, bool leaf, void *cookie)
599 600 601 602 603 604 605 606 607 608 609 610 611 612
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
			iova |= ARM_SMMU_CB_ASID(cfg);
613 614 615 616
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
617 618 619 620
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
			iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
621 622 623 624
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
625 626 627 628 629 630 631
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
632 633 634 635 636
		iova >>= 12;
		do {
			writeq_relaxed(iova, reg);
			iova += granule >> 12;
		} while (size -= granule);
637 638 639 640 641 642 643 644 645 646 647 648 649
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
		writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

650 651 652 653 654 655
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
656
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
657 658
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
659 660
	void __iomem *cb_base;

661
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
662 663 664 665 666 667 668
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
669
				    "Unexpected context fault (fsr 0x%x)\n",
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
686 687
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
688
		    iova, fsynr, cfg->cbndx);
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
707
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
708 709 710 711 712 713

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

714 715 716
	if (!gfsr)
		return IRQ_NONE;

717 718 719 720 721 722 723
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
724
	return IRQ_HANDLED;
725 726
}

727 728
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
729 730
{
	u32 reg;
731
	u64 reg64;
732
	bool stage1;
733 734
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
735
	void __iomem *cb_base, *gr1_base;
736 737

	gr1_base = ARM_SMMU_GR1(smmu);
738 739
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
740

741 742 743 744 745 746
	if (smmu->version > ARM_SMMU_V1) {
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
747 748 749 750
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
			reg |= ARM_SMMU_CB_VMID(cfg) << CBA2R_VMID_SHIFT;

751 752 753
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

754
	/* CBAR */
755
	reg = cfg->cbar;
756
	if (smmu->version == ARM_SMMU_V1)
757
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
758

759 760 761 762 763 764 765
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
766 767
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
768
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
769
	}
770
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
771

772 773
	/* TTBRs */
	if (stage1) {
774 775 776 777 778 779 780 781
		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];

		reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);

		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
		reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
782
	} else {
783 784
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
785
	}
786

787 788 789 790 791 792
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
793
			reg |= TTBCR2_SEP_UPSTREAM;
794
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
795 796
		}
	} else {
797 798
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
799 800
	}

801
	/* MAIRs (stage-1 only) */
802
	if (stage1) {
803
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
804
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
805 806
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
807 808 809 810 811 812 813 814 815
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
816
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
817 818 819
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
820
					struct arm_smmu_device *smmu)
821
{
822
	int irq, start, ret = 0;
823 824 825 826
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
827
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
828
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
829

830
	mutex_lock(&smmu_domain->init_mutex);
831 832 833
	if (smmu_domain->smmu)
		goto out_unlock;

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
861 862 863 864 865 866
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
867 868
		break;
	case ARM_SMMU_DOMAIN_NESTED:
869 870 871 872
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
873
	case ARM_SMMU_DOMAIN_S2:
874 875
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
876 877 878 879 880 881
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
882 883 884 885
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
886 887 888 889 890
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
891
		goto out_unlock;
892

893
	cfg->cbndx = ret;
894
	if (smmu->version == ARM_SMMU_V1) {
895 896
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
897
	} else {
898
		cfg->irptndx = cfg->cbndx;
899 900
	}

901 902 903 904 905
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
906
		.iommu_dev	= smmu->dev,
907 908 909 910 911 912 913 914 915 916 917
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
918

919 920 921 922 923 924 925
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
926
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
927 928 929 930
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
931 932
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
933 934
	}

935 936 937 938
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
939
	return 0;
940

941 942
out_clear_smmu:
	smmu_domain->smmu = NULL;
943
out_unlock:
944
	mutex_unlock(&smmu_domain->init_mutex);
945 946 947 948 949
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
950
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
951 952
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
953
	void __iomem *cb_base;
954 955 956 957 958
	int irq;

	if (!smmu)
		return;

959 960 961 962
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
963
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
964 965
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

966 967
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
968 969 970
		free_irq(irq, domain);
	}

971
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
972
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
973 974
}

975
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
976 977 978
{
	struct arm_smmu_domain *smmu_domain;

979
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
980
		return NULL;
981 982 983 984 985 986 987
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
988
		return NULL;
989

990 991 992 993 994 995
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

996 997
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
998 999

	return &smmu_domain->domain;
1000 1001
}

1002
static void arm_smmu_domain_free(struct iommu_domain *domain)
1003
{
1004
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1005 1006 1007 1008 1009

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1010
	iommu_put_dma_cookie(domain);
1011 1012 1013 1014 1015
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1016
					  struct arm_smmu_master_cfg *cfg)
1017 1018 1019 1020 1021 1022 1023 1024
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1025
	if (cfg->smrs)
1026 1027
		return -EEXIST;

1028
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1029
	if (!smrs) {
1030 1031
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1032 1033 1034
		return -ENOMEM;
	}

1035
	/* Allocate the SMRs on the SMMU */
1036
	for (i = 0; i < cfg->num_streamids; ++i) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1047
			.id	= cfg->streamids[i],
1048 1049 1050 1051
		};
	}

	/* It worked! Now, poke the actual hardware */
1052
	for (i = 0; i < cfg->num_streamids; ++i) {
1053 1054 1055 1056 1057
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1058
	cfg->smrs = smrs;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1069
				      struct arm_smmu_master_cfg *cfg)
1070 1071 1072
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1073
	struct arm_smmu_smr *smrs = cfg->smrs;
1074

1075 1076 1077
	if (!smrs)
		return;

1078
	/* Invalidate the SMRs before freeing back to the allocator */
1079
	for (i = 0; i < cfg->num_streamids; ++i) {
1080
		u8 idx = smrs[i].idx;
1081

1082 1083 1084 1085
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1086
	cfg->smrs = NULL;
1087 1088 1089 1090
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1091
				      struct arm_smmu_master_cfg *cfg)
1092 1093
{
	int i, ret;
1094
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1095 1096
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1097
	/* Devices in an IOMMU group may already be configured */
1098
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1099
	if (ret)
1100
		return ret == -EEXIST ? 0 : ret;
1101

1102 1103 1104 1105 1106 1107 1108
	/*
	 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
	 * for all devices behind the SMMU.
	 */
	if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
		return 0;

1109
	for (i = 0; i < cfg->num_streamids; ++i) {
1110
		u32 idx, s2cr;
1111

1112
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1113
		s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1114
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1115 1116 1117 1118 1119 1120 1121
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1122
					  struct arm_smmu_master_cfg *cfg)
1123
{
1124
	int i;
1125
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1126
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1127

1128 1129 1130
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1131 1132 1133 1134 1135

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1136 1137
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1138
		u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1139

1140
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1141 1142
	}

1143
	arm_smmu_master_free_smrs(smmu, cfg);
1144 1145
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
static void arm_smmu_detach_dev(struct device *dev,
				struct arm_smmu_master_cfg *cfg)
{
	struct iommu_domain *domain = dev->archdata.iommu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
}

1156 1157
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1158
	int ret;
1159
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1160
	struct arm_smmu_device *smmu;
1161
	struct arm_smmu_master_cfg *cfg;
1162

1163
	smmu = find_smmu_for_device(dev);
1164
	if (!smmu) {
1165 1166 1167 1168
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1169 1170 1171 1172 1173
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1174
	/*
1175 1176
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1177
	 */
1178
	if (smmu_domain->smmu != smmu) {
1179 1180
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1181 1182
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1183 1184 1185
	}

	/* Looks ok, so add the device to the domain */
1186
	cfg = find_smmu_master_cfg(dev);
1187
	if (!cfg)
1188 1189
		return -ENODEV;

1190 1191 1192 1193
	/* Detach the dev from its current domain */
	if (dev->archdata.iommu)
		arm_smmu_detach_dev(dev, cfg);

1194 1195 1196
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1197 1198 1199 1200
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1201
			phys_addr_t paddr, size_t size, int prot)
1202
{
1203 1204
	int ret;
	unsigned long flags;
1205
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1206
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1207

1208
	if (!ops)
1209 1210
		return -ENODEV;

1211 1212 1213 1214
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1215 1216 1217 1218 1219
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1220 1221
	size_t ret;
	unsigned long flags;
1222
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1223
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1224

1225 1226 1227 1228 1229 1230 1231
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1232 1233
}

1234 1235 1236
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1237
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1238 1239 1240 1241 1242 1243 1244
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1245
	unsigned long va;
1246 1247 1248

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1249 1250 1251
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1252
		smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1253 1254
	else
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1255 1256 1257 1258

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1259
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1276
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1277
					dma_addr_t iova)
1278
{
1279 1280
	phys_addr_t ret;
	unsigned long flags;
1281
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1282
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1283

1284
	if (!ops)
1285
		return 0;
1286

1287
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1288 1289
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1290
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1291
	} else {
1292
		ret = ops->iova_to_phys(ops, iova);
1293 1294
	}

1295
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1296

1297
	return ret;
1298 1299
}

1300
static bool arm_smmu_capable(enum iommu_cap cap)
1301
{
1302 1303
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1304 1305 1306 1307 1308
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1309
	case IOMMU_CAP_INTR_REMAP:
1310
		return true; /* MSIs are just memory writes */
1311 1312
	case IOMMU_CAP_NOEXEC:
		return true;
1313
	default:
1314
		return false;
1315
	}
1316 1317
}

1318 1319 1320 1321
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1322 1323
}

1324 1325 1326 1327 1328
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1329 1330
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1331
{
1332
	struct arm_smmu_master_cfg *cfg;
1333 1334
	u16 sid;
	int i;
1335

1336 1337
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1338
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1339 1340
		if (!cfg)
			return -ENOMEM;
1341

1342 1343 1344
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1345

1346 1347
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1361

1362
	return 0;
1363 1364
}

1365 1366
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1367 1368
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1369
	struct arm_smmu_master *master;
1370 1371 1372 1373 1374 1375 1376 1377 1378

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1379 1380

	return 0;
1381 1382 1383 1384
}

static int arm_smmu_add_device(struct device *dev)
{
1385
	struct iommu_group *group;
1386

1387 1388 1389
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1390

1391
	iommu_group_put(group);
1392
	return 0;
1393 1394
}

1395 1396
static void arm_smmu_remove_device(struct device *dev)
{
1397
	iommu_group_remove_device(dev);
1398 1399
}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1426 1427 1428
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1429
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1443
	int ret = 0;
1444
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1445

1446 1447
	mutex_lock(&smmu_domain->init_mutex);

1448 1449
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1450 1451 1452 1453 1454
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1455 1456 1457 1458 1459
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1460
		break;
1461
	default:
1462
		ret = -ENODEV;
1463
	}
1464 1465 1466 1467

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1468 1469
}

1470
static struct iommu_ops arm_smmu_ops = {
1471
	.capable		= arm_smmu_capable,
1472 1473
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1474 1475 1476
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1477
	.map_sg			= default_iommu_map_sg,
1478 1479 1480
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1481
	.device_group		= arm_smmu_device_group,
1482 1483
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1484
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1485 1486 1487 1488 1489
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1490
	void __iomem *cb_base;
1491
	int i = 0;
1492 1493
	u32 reg;

1494 1495 1496
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1497

1498 1499
	/* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
	reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1500
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1501
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1502
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1503 1504
	}

1505 1506 1507 1508 1509 1510
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1511

1512 1513 1514 1515
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1516
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1517

1518
	/* Enable fault reporting */
1519
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1520 1521

	/* Disable TLB broadcasting. */
1522
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1523

1524 1525 1526 1527 1528 1529
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1530 1531

	/* Disable forced broadcasting */
1532
	reg &= ~sCR0_FB;
1533 1534

	/* Don't upgrade barriers */
1535
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1536

1537 1538 1539
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1540
	/* Push the button */
1541
	__arm_smmu_tlb_sync(smmu);
1542
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1569
	bool cttw_dt, cttw_reg;
1570 1571 1572 1573 1574 1575

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1576 1577 1578 1579 1580 1581 1582

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1599
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1600 1601 1602 1603
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1604
	if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1605 1606 1607 1608
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1609 1610 1611 1612 1613 1614 1615 1616 1617
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1618
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1619 1620 1621 1622 1623 1624
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1655 1656 1657
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1658 1659 1660 1661
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1662
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1663

1664
	/* Check for size mismatch of SMMU address space from mapped region */
1665
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1666
	size *= 2 << smmu->pgshift;
1667
	if (smmu->size != size)
1668 1669 1670
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1671

1672
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1684
	smmu->ipa_size = size;
1685

1686
	/* The output mask is also applied for bypass */
1687
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1688
	smmu->pa_size = size;
1689

1690 1691 1692
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1693 1694 1695 1696 1697 1698 1699 1700 1701
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1702
	if (smmu->version == ARM_SMMU_V1) {
1703 1704
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1705 1706
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1707 1708 1709
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1710
#endif
1711 1712 1713 1714 1715 1716 1717
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1718 1719
	}

1720 1721 1722
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1723 1724
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1725
			   smmu->va_size, smmu->ipa_size);
1726 1727 1728

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1729
			   smmu->ipa_size, smmu->pa_size);
1730

1731 1732 1733
	return 0;
}

1734
static const struct of_device_id arm_smmu_of_match[] = {
1735 1736 1737
	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
R
Robin Murphy 已提交
1738
	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1739 1740 1741 1742 1743
	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1744 1745
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1746
	const struct of_device_id *of_id;
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1761 1762 1763
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
	smmu->version = (enum arm_smmu_arch_version)of_id->data;

1764
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1765 1766 1767
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1783 1784 1785 1786
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1798

1799 1800 1801 1802 1803 1804 1805
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1806 1807 1808 1809
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1826 1827
	parse_driver_options(smmu);

1828
	if (smmu->version > ARM_SMMU_V1 &&
1829 1830 1831 1832
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1833
		err = -ENODEV;
1834
		goto out_put_masters;
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1854 1855

	arm_smmu_device_reset(smmu);
1856 1857 1858 1859 1860 1861 1862 1863
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1864 1865
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1893 1894
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1895 1896 1897
		of_node_put(master->of_node);
	}

1898
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1899 1900 1901 1902 1903 1904
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1905
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1920
	struct device_node *np;
1921 1922
	int ret;

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1934 1935 1936 1937 1938
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1939
	if (!iommu_present(&platform_bus_type))
1940 1941
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1942
#ifdef CONFIG_ARM_AMBA
1943
	if (!iommu_present(&amba_bustype))
1944
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1945
#endif
1946

1947 1948 1949 1950 1951
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1952 1953 1954 1955 1956 1957 1958 1959
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1960
subsys_initcall(arm_smmu_init);
1961 1962 1963 1964 1965
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");