arm-smmu.c 52.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
32
#include <linux/dma-iommu.h>
33 34 35 36 37
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
38
#include <linux/iopoll.h>
39 40
#include <linux/module.h>
#include <linux/of.h>
41
#include <linux/of_address.h>
42
#include <linux/pci.h>
43 44 45 46 47 48
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

49
#include "io-pgtable.h"
50 51

/* Maximum number of stream IDs assigned to a single device */
52
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
53 54 55 56 57 58 59 60 61

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
62
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
63

64 65 66 67 68 69 70 71 72 73
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_64BIT
#define smmu_writeq	writeq_relaxed
#else
#define smmu_writeq(reg64, addr)				\
	do {							\
		u64 __val = (reg64);				\
		void __iomem *__addr = (addr);			\
		writel_relaxed(__val >> 32, __addr + 4);	\
		writel_relaxed(__val, __addr);			\
	} while (0)
#endif

86 87 88 89 90 91 92 93 94 95 96
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
97
#define sCR0_VMID16EN			(1 << 31)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
119
#define ID0_ATOSNS			(1 << 26)
120 121 122
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
123 124
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
145
#define ID2_VMID16			(1 << 15)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

173 174 175
#define S2CR_PRIVCFG_SHIFT		24
#define S2CR_PRIVCFG_UNPRIV		(2 << S2CR_PRIVCFG_SHIFT)

176 177 178 179
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
180 181 182
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
198 199
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
200 201 202

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
203
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
204 205 206 207

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
208 209
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
210 211
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
212
#define ARM_SMMU_CB_S1_MAIR1		0x3c
213 214
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
215 216 217 218
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
219
#define ARM_SMMU_CB_S1_TLBIVA		0x600
220
#define ARM_SMMU_CB_S1_TLBIASID		0x610
221 222 223
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
224
#define ARM_SMMU_CB_ATS1PR		0x800
225
#define ARM_SMMU_CB_ATSR		0x8f0
226 227 228 229 230 231 232 233 234 235 236

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

237 238 239 240
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

241 242 243 244
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
245
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
246

247
#define TTBRn_ASID_SHIFT		48
248 249 250 251 252 253 254 255 256 257 258 259

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

260 261 262
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
263
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
264 265 266

#define FSYNR0_WNR			(1 << 4)

267
static int force_stage;
268
module_param(force_stage, int, S_IRUGO);
269 270
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
271 272 273 274
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
275

276 277 278 279 280
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

281 282 283 284
enum arm_smmu_implementation {
	GENERIC_SMMU,
};

285 286 287 288 289 290
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

291
struct arm_smmu_master_cfg {
292 293 294 295 296
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

297 298 299 300 301 302
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

303 304 305 306 307
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
308
	unsigned long			pgshift;
309 310 311 312 313 314

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
315
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
316
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
317
	u32				features;
318 319 320

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
321
	enum arm_smmu_arch_version	version;
322
	enum arm_smmu_implementation	model;
323 324 325 326 327 328 329 330 331

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

332 333 334
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
335 336 337 338 339 340 341

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
342 343

	u32				cavium_id_base; /* Specific to Cavium */
344 345 346 347 348 349 350
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
351
#define INVALID_IRPTNDX			0xff
352

353 354
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
355

356 357 358 359 360 361
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

362
struct arm_smmu_domain {
363
	struct arm_smmu_device		*smmu;
364 365
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
366
	struct arm_smmu_cfg		cfg;
367
	enum arm_smmu_domain_stage	stage;
368
	struct mutex			init_mutex; /* Protects smmu pointer */
369
	struct iommu_domain		domain;
370 371
};

372 373
static struct iommu_ops arm_smmu_ops;

374 375 376
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

377 378 379 380 381
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

382 383
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

384
static struct arm_smmu_option_prop arm_smmu_options[] = {
385 386 387 388
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

389 390 391 392 393
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

394 395 396
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
397

398 399 400 401 402 403 404 405 406 407
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

408
static struct device_node *dev_get_dev_node(struct device *dev)
409 410 411
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
412

413 414
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
415
		return bus->bridge->parent->of_node;
416 417
	}

418
	return dev->of_node;
419 420
}

421 422 423 424 425 426 427
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
428

429 430 431 432 433 434 435 436 437 438 439 440 441
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

442
static struct arm_smmu_master_cfg *
443
find_smmu_master_cfg(struct device *dev)
444
{
445 446
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
447

448 449 450 451
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
452

453
	return cfg;
454 455
}

456 457 458 459 460 461 462 463
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
464 465
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

507 508
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
509

510 511
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
512

513 514 515 516 517 518 519 520 521
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
522 523 524
	return insert_smmu_master(smmu, master);
}

525
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
526
{
527
	struct arm_smmu_device *smmu;
528
	struct arm_smmu_master *master = NULL;
529
	struct device_node *dev_node = dev_get_dev_node(dev);
530 531

	spin_lock(&arm_smmu_devices_lock);
532
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
533 534 535 536
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
537
	spin_unlock(&arm_smmu_devices_lock);
538

539
	return master ? smmu : NULL;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
561
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

579 580 581 582 583 584 585
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
586
{
587
	struct arm_smmu_domain *smmu_domain = cookie;
588 589
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
590
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
591
	void __iomem *base;
592 593 594

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
595
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
596
			       base + ARM_SMMU_CB_S1_TLBIASID);
597 598
	} else {
		base = ARM_SMMU_GR0(smmu);
599
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
600
			       base + ARM_SMMU_GR0_TLBIVMID);
601 602
	}

603 604 605 606
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
607
					  size_t granule, bool leaf, void *cookie)
608 609 610 611 612 613 614 615 616 617 618 619 620
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
621
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
622 623 624 625
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
626 627 628
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
629
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
630 631 632 633
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
634 635 636 637 638 639 640
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
641 642 643 644 645
		iova >>= 12;
		do {
			writeq_relaxed(iova, reg);
			iova += granule >> 12;
		} while (size -= granule);
646 647 648
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
649
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
650 651 652 653 654 655 656 657 658
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

659 660 661 662 663 664
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
665
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
666 667
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
668 669
	void __iomem *cb_base;

670
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
671 672 673 674 675 676 677
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
678
				    "Unexpected context fault (fsr 0x%x)\n",
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
695 696
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
697
		    iova, fsynr, cfg->cbndx);
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
716
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
717 718 719 720 721 722

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

723 724 725
	if (!gfsr)
		return IRQ_NONE;

726 727 728 729 730 731 732
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
733
	return IRQ_HANDLED;
734 735
}

736 737
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
738 739
{
	u32 reg;
740
	u64 reg64;
741
	bool stage1;
742 743
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
744
	void __iomem *cb_base, *gr1_base;
745 746

	gr1_base = ARM_SMMU_GR1(smmu);
747 748
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
749

750 751 752 753 754 755
	if (smmu->version > ARM_SMMU_V1) {
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
756 757
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
758
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
759

760 761 762
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

763
	/* CBAR */
764
	reg = cfg->cbar;
765
	if (smmu->version == ARM_SMMU_V1)
766
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
767

768 769 770 771 772 773 774
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
775 776
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
777
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
778
	}
779
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
780

781 782
	/* TTBRs */
	if (stage1) {
783 784
		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];

785
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
786 787 788
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);

		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
789
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
790
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
791
	} else {
792 793
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
794
	}
795

796 797 798 799 800 801
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
802
			reg |= TTBCR2_SEP_UPSTREAM;
803
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
804 805
		}
	} else {
806 807
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
808 809
	}

810
	/* MAIRs (stage-1 only) */
811
	if (stage1) {
812
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
813
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
814 815
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
816 817 818 819 820 821 822 823 824
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
825
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
826 827 828
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
829
					struct arm_smmu_device *smmu)
830
{
831
	int irq, start, ret = 0;
832 833 834 835
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
836
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
837
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
838

839
	mutex_lock(&smmu_domain->init_mutex);
840 841 842
	if (smmu_domain->smmu)
		goto out_unlock;

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
870 871 872 873 874 875
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
876 877
		break;
	case ARM_SMMU_DOMAIN_NESTED:
878 879 880 881
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
882
	case ARM_SMMU_DOMAIN_S2:
883 884
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
885 886 887 888 889 890
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
891 892 893 894
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
895 896 897 898 899
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
900
		goto out_unlock;
901

902
	cfg->cbndx = ret;
903
	if (smmu->version == ARM_SMMU_V1) {
904 905
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
906
	} else {
907
		cfg->irptndx = cfg->cbndx;
908 909
	}

910 911 912 913 914
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
915
		.iommu_dev	= smmu->dev,
916 917 918 919 920 921 922 923 924 925 926
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
927

928 929 930 931 932 933 934
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
935
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
936 937 938 939
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
940 941
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
942 943
	}

944 945 946 947
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
948
	return 0;
949

950 951
out_clear_smmu:
	smmu_domain->smmu = NULL;
952
out_unlock:
953
	mutex_unlock(&smmu_domain->init_mutex);
954 955 956 957 958
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
959
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
960 961
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
962
	void __iomem *cb_base;
963 964 965 966 967
	int irq;

	if (!smmu)
		return;

968 969 970 971
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
972
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
973 974
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

975 976
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
977 978 979
		free_irq(irq, domain);
	}

980
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
981
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
982 983
}

984
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
985 986 987
{
	struct arm_smmu_domain *smmu_domain;

988
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
989
		return NULL;
990 991 992 993 994 995 996
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
997
		return NULL;
998

999 1000 1001 1002 1003 1004
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1005 1006
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1007 1008

	return &smmu_domain->domain;
1009 1010
}

1011
static void arm_smmu_domain_free(struct iommu_domain *domain)
1012
{
1013
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1014 1015 1016 1017 1018

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1019
	iommu_put_dma_cookie(domain);
1020 1021 1022 1023 1024
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1025
					  struct arm_smmu_master_cfg *cfg)
1026 1027 1028 1029 1030 1031 1032 1033
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1034
	if (cfg->smrs)
1035 1036
		return -EEXIST;

1037
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1038
	if (!smrs) {
1039 1040
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1041 1042 1043
		return -ENOMEM;
	}

1044
	/* Allocate the SMRs on the SMMU */
1045
	for (i = 0; i < cfg->num_streamids; ++i) {
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1056
			.id	= cfg->streamids[i],
1057 1058 1059 1060
		};
	}

	/* It worked! Now, poke the actual hardware */
1061
	for (i = 0; i < cfg->num_streamids; ++i) {
1062 1063 1064 1065 1066
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1067
	cfg->smrs = smrs;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1078
				      struct arm_smmu_master_cfg *cfg)
1079 1080 1081
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1082
	struct arm_smmu_smr *smrs = cfg->smrs;
1083

1084 1085 1086
	if (!smrs)
		return;

1087
	/* Invalidate the SMRs before freeing back to the allocator */
1088
	for (i = 0; i < cfg->num_streamids; ++i) {
1089
		u8 idx = smrs[i].idx;
1090

1091 1092 1093 1094
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1095
	cfg->smrs = NULL;
1096 1097 1098 1099
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1100
				      struct arm_smmu_master_cfg *cfg)
1101 1102
{
	int i, ret;
1103
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1104 1105
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1106
	/* Devices in an IOMMU group may already be configured */
1107
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1108
	if (ret)
1109
		return ret == -EEXIST ? 0 : ret;
1110

1111 1112 1113 1114 1115 1116 1117
	/*
	 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
	 * for all devices behind the SMMU.
	 */
	if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
		return 0;

1118
	for (i = 0; i < cfg->num_streamids; ++i) {
1119
		u32 idx, s2cr;
1120

1121
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1122
		s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1123
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1124 1125 1126 1127 1128 1129 1130
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1131
					  struct arm_smmu_master_cfg *cfg)
1132
{
1133
	int i;
1134
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1135
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1136

1137 1138 1139
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1140 1141 1142 1143 1144

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1145 1146
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1147
		u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1148

1149
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1150 1151
	}

1152
	arm_smmu_master_free_smrs(smmu, cfg);
1153 1154
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
static void arm_smmu_detach_dev(struct device *dev,
				struct arm_smmu_master_cfg *cfg)
{
	struct iommu_domain *domain = dev->archdata.iommu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
}

1165 1166
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1167
	int ret;
1168
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1169
	struct arm_smmu_device *smmu;
1170
	struct arm_smmu_master_cfg *cfg;
1171

1172
	smmu = find_smmu_for_device(dev);
1173
	if (!smmu) {
1174 1175 1176 1177
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1178 1179 1180 1181 1182
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1183
	/*
1184 1185
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1186
	 */
1187
	if (smmu_domain->smmu != smmu) {
1188 1189
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1190 1191
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1192 1193 1194
	}

	/* Looks ok, so add the device to the domain */
1195
	cfg = find_smmu_master_cfg(dev);
1196
	if (!cfg)
1197 1198
		return -ENODEV;

1199 1200 1201 1202
	/* Detach the dev from its current domain */
	if (dev->archdata.iommu)
		arm_smmu_detach_dev(dev, cfg);

1203 1204 1205
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1206 1207 1208 1209
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1210
			phys_addr_t paddr, size_t size, int prot)
1211
{
1212 1213
	int ret;
	unsigned long flags;
1214
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1215
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1216

1217
	if (!ops)
1218 1219
		return -ENODEV;

1220 1221 1222 1223
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1224 1225 1226 1227 1228
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1229 1230
	size_t ret;
	unsigned long flags;
1231
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1232
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1233

1234 1235 1236 1237 1238 1239 1240
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1241 1242
}

1243 1244 1245
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1246
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1247 1248 1249 1250 1251 1252 1253
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1254
	unsigned long va;
1255 1256 1257

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1258 1259 1260
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1261
		smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1262 1263
	else
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1264 1265 1266 1267

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1268
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1285
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1286
					dma_addr_t iova)
1287
{
1288 1289
	phys_addr_t ret;
	unsigned long flags;
1290
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1291
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1292

1293
	if (!ops)
1294
		return 0;
1295

1296
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1297 1298
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1299
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1300
	} else {
1301
		ret = ops->iova_to_phys(ops, iova);
1302 1303
	}

1304
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1305

1306
	return ret;
1307 1308
}

1309
static bool arm_smmu_capable(enum iommu_cap cap)
1310
{
1311 1312
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1313 1314 1315 1316 1317
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1318
	case IOMMU_CAP_INTR_REMAP:
1319
		return true; /* MSIs are just memory writes */
1320 1321
	case IOMMU_CAP_NOEXEC:
		return true;
1322
	default:
1323
		return false;
1324
	}
1325 1326
}

1327 1328 1329 1330
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1331 1332
}

1333 1334 1335 1336 1337
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1338 1339
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1340
{
1341
	struct arm_smmu_master_cfg *cfg;
1342 1343
	u16 sid;
	int i;
1344

1345 1346
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1347
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1348 1349
		if (!cfg)
			return -ENOMEM;
1350

1351 1352 1353
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1354

1355 1356
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1370

1371
	return 0;
1372 1373
}

1374 1375
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1376 1377
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1378
	struct arm_smmu_master *master;
1379 1380 1381 1382 1383 1384 1385 1386 1387

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1388 1389

	return 0;
1390 1391 1392 1393
}

static int arm_smmu_add_device(struct device *dev)
{
1394
	struct iommu_group *group;
1395

1396 1397 1398
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1399

1400
	iommu_group_put(group);
1401
	return 0;
1402 1403
}

1404 1405
static void arm_smmu_remove_device(struct device *dev)
{
1406
	iommu_group_remove_device(dev);
1407 1408
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1435 1436 1437
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1438
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1452
	int ret = 0;
1453
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1454

1455 1456
	mutex_lock(&smmu_domain->init_mutex);

1457 1458
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1459 1460 1461 1462 1463
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1464 1465 1466 1467 1468
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1469
		break;
1470
	default:
1471
		ret = -ENODEV;
1472
	}
1473 1474 1475 1476

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1477 1478
}

1479
static struct iommu_ops arm_smmu_ops = {
1480
	.capable		= arm_smmu_capable,
1481 1482
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1483 1484 1485
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1486
	.map_sg			= default_iommu_map_sg,
1487 1488 1489
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1490
	.device_group		= arm_smmu_device_group,
1491 1492
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1493
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1494 1495 1496 1497 1498
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1499
	void __iomem *cb_base;
1500
	int i = 0;
1501 1502
	u32 reg;

1503 1504 1505
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1506

1507 1508
	/* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
	reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1509
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1510
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1511
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1512 1513
	}

1514 1515 1516 1517 1518 1519
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1520

1521 1522 1523 1524
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1525
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1526

1527
	/* Enable fault reporting */
1528
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1529 1530

	/* Disable TLB broadcasting. */
1531
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1532

1533 1534 1535 1536 1537 1538
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1539 1540

	/* Disable forced broadcasting */
1541
	reg &= ~sCR0_FB;
1542 1543

	/* Don't upgrade barriers */
1544
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1545

1546 1547 1548
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1549
	/* Push the button */
1550
	__arm_smmu_tlb_sync(smmu);
1551
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1578
	bool cttw_dt, cttw_reg;
1579 1580 1581 1582 1583 1584

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1585 1586 1587 1588 1589 1590 1591

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1608
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1609 1610 1611 1612
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1613
	if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1614 1615 1616 1617
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1618 1619 1620 1621 1622 1623 1624 1625 1626
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1627
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1628 1629 1630 1631 1632 1633
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1664 1665 1666
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1667 1668 1669 1670
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1671
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1672

1673
	/* Check for size mismatch of SMMU address space from mapped region */
1674
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1675
	size *= 2 << smmu->pgshift;
1676
	if (smmu->size != size)
1677 1678 1679
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1680

1681
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1693
	smmu->ipa_size = size;
1694

1695
	/* The output mask is also applied for bypass */
1696
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1697
	smmu->pa_size = size;
1698

1699 1700 1701
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1702 1703 1704 1705 1706 1707 1708 1709 1710
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1711
	if (smmu->version == ARM_SMMU_V1) {
1712 1713
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1714 1715
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1716 1717 1718
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1719
#endif
1720 1721 1722 1723 1724 1725 1726
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1727 1728
	}

1729 1730 1731
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1732 1733
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1734
			   smmu->va_size, smmu->ipa_size);
1735 1736 1737

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1738
			   smmu->ipa_size, smmu->pa_size);
1739

1740 1741 1742
	return 0;
}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);

1754
static const struct of_device_id arm_smmu_of_match[] = {
1755 1756 1757 1758 1759 1760
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
	{ .compatible = "arm,mmu-401", .data = &smmu_generic_v1 },
	{ .compatible = "arm,mmu-500", .data = &smmu_generic_v2 },
	{ .compatible = "cavium,smmu-v2", .data = &smmu_generic_v2 },
1761 1762 1763 1764
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1765 1766
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1767
	const struct of_device_id *of_id;
1768
	const struct arm_smmu_match_data *data;
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1783
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1784 1785 1786
	data = of_id->data;
	smmu->version = data->version;
	smmu->model = data->model;
1787

1788
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1789 1790 1791
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1807 1808 1809 1810
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1822

1823 1824 1825 1826 1827 1828 1829
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1830 1831 1832 1833
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1850 1851
	parse_driver_options(smmu);

1852
	if (smmu->version > ARM_SMMU_V1 &&
1853 1854 1855 1856
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1857
		err = -ENODEV;
1858
		goto out_put_masters;
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (of_device_is_compatible(dev->of_node, "cavium,smmu-v2")) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}

1886 1887 1888 1889
	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1890 1891

	arm_smmu_device_reset(smmu);
1892 1893 1894 1895 1896 1897 1898 1899
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1900 1901
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1929 1930
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1931 1932 1933
		of_node_put(master->of_node);
	}

1934
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1935 1936 1937 1938 1939 1940
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1941
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1956
	struct device_node *np;
1957 1958
	int ret;

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1970 1971 1972 1973 1974
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1975
	if (!iommu_present(&platform_bus_type))
1976 1977
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1978
#ifdef CONFIG_ARM_AMBA
1979
	if (!iommu_present(&amba_bustype))
1980
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1981
#endif
1982

1983 1984 1985 1986 1987
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1988 1989 1990 1991 1992 1993 1994 1995
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1996
subsys_initcall(arm_smmu_init);
1997 1998 1999 2000 2001
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");