arm-smmu.c 52.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
32
#include <linux/dma-iommu.h>
33 34 35 36 37
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
38
#include <linux/iopoll.h>
39 40
#include <linux/module.h>
#include <linux/of.h>
41
#include <linux/of_address.h>
42
#include <linux/pci.h>
43 44 45 46 47 48
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

49
#include "io-pgtable.h"
50 51

/* Maximum number of stream IDs assigned to a single device */
52
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
53 54 55 56 57 58 59 60 61

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
62
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
63

64 65 66 67 68 69 70 71 72 73
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_64BIT
#define smmu_writeq	writeq_relaxed
#else
#define smmu_writeq(reg64, addr)				\
	do {							\
		u64 __val = (reg64);				\
		void __iomem *__addr = (addr);			\
		writel_relaxed(__val >> 32, __addr + 4);	\
		writel_relaxed(__val, __addr);			\
	} while (0)
#endif

86 87 88 89 90 91 92 93 94 95 96
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
97
#define sCR0_VMID16EN			(1 << 31)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
119
#define ID0_ATOSNS			(1 << 26)
120 121 122
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
123 124
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
145
#define ID2_VMID16			(1 << 15)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

173 174 175
#define S2CR_PRIVCFG_SHIFT		24
#define S2CR_PRIVCFG_UNPRIV		(2 << S2CR_PRIVCFG_SHIFT)

176 177 178 179
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
180 181 182
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
198 199
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
200 201 202

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
203
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
204 205 206 207

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
208 209
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
210 211
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
212
#define ARM_SMMU_CB_S1_MAIR1		0x3c
213 214
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
215 216 217 218
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
219
#define ARM_SMMU_CB_S1_TLBIVA		0x600
220
#define ARM_SMMU_CB_S1_TLBIASID		0x610
221 222 223
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
224
#define ARM_SMMU_CB_ATS1PR		0x800
225
#define ARM_SMMU_CB_ATSR		0x8f0
226 227 228 229 230 231 232 233 234 235 236

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

237 238 239 240
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

241 242 243 244
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
245
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
246

247
#define TTBRn_ASID_SHIFT		48
248 249 250 251 252 253 254 255 256 257 258 259

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

260 261 262
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
263
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
264 265 266

#define FSYNR0_WNR			(1 << 4)

267
static int force_stage;
268
module_param(force_stage, int, S_IRUGO);
269 270
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
271 272 273 274
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
275

276 277 278 279 280
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

281 282
enum arm_smmu_implementation {
	GENERIC_SMMU,
283
	CAVIUM_SMMUV2,
284 285
};

286 287 288 289 290 291
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

292
struct arm_smmu_master_cfg {
293 294 295 296 297
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

298 299 300 301 302 303
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

304 305 306 307 308
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
309
	unsigned long			pgshift;
310 311 312 313 314 315

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
316
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
317
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
318
	u32				features;
319 320 321

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
322
	enum arm_smmu_arch_version	version;
323
	enum arm_smmu_implementation	model;
324 325 326 327 328 329 330 331 332

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

333 334 335
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
336 337 338 339 340 341 342

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
343 344

	u32				cavium_id_base; /* Specific to Cavium */
345 346 347 348 349 350 351
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
352
#define INVALID_IRPTNDX			0xff
353

354 355
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
356

357 358 359 360 361 362
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

363
struct arm_smmu_domain {
364
	struct arm_smmu_device		*smmu;
365 366
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
367
	struct arm_smmu_cfg		cfg;
368
	enum arm_smmu_domain_stage	stage;
369
	struct mutex			init_mutex; /* Protects smmu pointer */
370
	struct iommu_domain		domain;
371 372
};

373 374
static struct iommu_ops arm_smmu_ops;

375 376 377
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

378 379 380 381 382
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

383 384
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

385
static struct arm_smmu_option_prop arm_smmu_options[] = {
386 387 388 389
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

390 391 392 393 394
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

395 396 397
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
398

399 400 401 402 403 404 405 406 407 408
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

409
static struct device_node *dev_get_dev_node(struct device *dev)
410 411 412
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
413

414 415
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
416
		return bus->bridge->parent->of_node;
417 418
	}

419
	return dev->of_node;
420 421
}

422 423 424 425 426 427 428
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
429

430 431 432 433 434 435 436 437 438 439 440 441 442
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

443
static struct arm_smmu_master_cfg *
444
find_smmu_master_cfg(struct device *dev)
445
{
446 447
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
448

449 450 451 452
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
453

454
	return cfg;
455 456
}

457 458 459 460 461 462 463 464
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
465 466
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

508 509
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
510

511 512
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
513

514 515 516 517 518 519 520 521 522
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
523 524 525
	return insert_smmu_master(smmu, master);
}

526
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
527
{
528
	struct arm_smmu_device *smmu;
529
	struct arm_smmu_master *master = NULL;
530
	struct device_node *dev_node = dev_get_dev_node(dev);
531 532

	spin_lock(&arm_smmu_devices_lock);
533
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
534 535 536 537
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
538
	spin_unlock(&arm_smmu_devices_lock);
539

540
	return master ? smmu : NULL;
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
562
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

580 581 582 583 584 585 586
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
587
{
588
	struct arm_smmu_domain *smmu_domain = cookie;
589 590
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
591
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
592
	void __iomem *base;
593 594 595

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
596
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
597
			       base + ARM_SMMU_CB_S1_TLBIASID);
598 599
	} else {
		base = ARM_SMMU_GR0(smmu);
600
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
601
			       base + ARM_SMMU_GR0_TLBIVMID);
602 603
	}

604 605 606 607
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
608
					  size_t granule, bool leaf, void *cookie)
609 610 611 612 613 614 615 616 617 618 619 620 621
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
622
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
623 624 625 626
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
627 628 629
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
630
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
631 632 633 634
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
635 636 637 638 639 640 641
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
642 643 644 645 646
		iova >>= 12;
		do {
			writeq_relaxed(iova, reg);
			iova += granule >> 12;
		} while (size -= granule);
647 648 649
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
650
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
651 652 653 654 655 656 657 658 659
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

660 661 662 663 664 665
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
666
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
667 668
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
669 670
	void __iomem *cb_base;

671
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
672 673 674 675 676 677 678
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
679
				    "Unexpected context fault (fsr 0x%x)\n",
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
696 697
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
698
		    iova, fsynr, cfg->cbndx);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
717
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
718 719 720 721 722 723

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

724 725 726
	if (!gfsr)
		return IRQ_NONE;

727 728 729 730 731 732 733
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
734
	return IRQ_HANDLED;
735 736
}

737 738
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
739 740
{
	u32 reg;
741
	u64 reg64;
742
	bool stage1;
743 744
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
745
	void __iomem *cb_base, *gr1_base;
746 747

	gr1_base = ARM_SMMU_GR1(smmu);
748 749
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
750

751 752 753 754 755 756
	if (smmu->version > ARM_SMMU_V1) {
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
757 758
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
759
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
760

761 762 763
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

764
	/* CBAR */
765
	reg = cfg->cbar;
766
	if (smmu->version == ARM_SMMU_V1)
767
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
768

769 770 771 772 773 774 775
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
776 777
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
778
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
779
	}
780
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
781

782 783
	/* TTBRs */
	if (stage1) {
784 785
		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];

786
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
787 788 789
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);

		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
790
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
791
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
792
	} else {
793 794
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
795
	}
796

797 798 799 800 801 802
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
803
			reg |= TTBCR2_SEP_UPSTREAM;
804
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
805 806
		}
	} else {
807 808
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
809 810
	}

811
	/* MAIRs (stage-1 only) */
812
	if (stage1) {
813
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
814
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
815 816
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
817 818 819 820 821 822 823 824 825
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
826
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
827 828 829
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
830
					struct arm_smmu_device *smmu)
831
{
832
	int irq, start, ret = 0;
833 834 835 836
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
837
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
838
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
839

840
	mutex_lock(&smmu_domain->init_mutex);
841 842 843
	if (smmu_domain->smmu)
		goto out_unlock;

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
871 872 873 874 875 876
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
877 878
		break;
	case ARM_SMMU_DOMAIN_NESTED:
879 880 881 882
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
883
	case ARM_SMMU_DOMAIN_S2:
884 885
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
886 887 888 889 890 891
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
892 893 894 895
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
896 897 898 899 900
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
901
		goto out_unlock;
902

903
	cfg->cbndx = ret;
904
	if (smmu->version == ARM_SMMU_V1) {
905 906
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
907
	} else {
908
		cfg->irptndx = cfg->cbndx;
909 910
	}

911 912 913 914 915
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
916
		.iommu_dev	= smmu->dev,
917 918 919 920 921 922 923 924 925 926 927
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
928

929 930 931 932 933 934 935
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
936
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
937 938 939 940
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
941 942
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
943 944
	}

945 946 947 948
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
949
	return 0;
950

951 952
out_clear_smmu:
	smmu_domain->smmu = NULL;
953
out_unlock:
954
	mutex_unlock(&smmu_domain->init_mutex);
955 956 957 958 959
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
960
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
961 962
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
963
	void __iomem *cb_base;
964 965 966 967 968
	int irq;

	if (!smmu)
		return;

969 970 971 972
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
973
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
974 975
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

976 977
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
978 979 980
		free_irq(irq, domain);
	}

981
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
982
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
983 984
}

985
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
986 987 988
{
	struct arm_smmu_domain *smmu_domain;

989
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
990
		return NULL;
991 992 993 994 995 996 997
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
998
		return NULL;
999

1000 1001 1002 1003 1004 1005
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1006 1007
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1008 1009

	return &smmu_domain->domain;
1010 1011
}

1012
static void arm_smmu_domain_free(struct iommu_domain *domain)
1013
{
1014
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1015 1016 1017 1018 1019

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1020
	iommu_put_dma_cookie(domain);
1021 1022 1023 1024 1025
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1026
					  struct arm_smmu_master_cfg *cfg)
1027 1028 1029 1030 1031 1032 1033 1034
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1035
	if (cfg->smrs)
1036 1037
		return -EEXIST;

1038
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1039
	if (!smrs) {
1040 1041
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1042 1043 1044
		return -ENOMEM;
	}

1045
	/* Allocate the SMRs on the SMMU */
1046
	for (i = 0; i < cfg->num_streamids; ++i) {
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1057
			.id	= cfg->streamids[i],
1058 1059 1060 1061
		};
	}

	/* It worked! Now, poke the actual hardware */
1062
	for (i = 0; i < cfg->num_streamids; ++i) {
1063 1064 1065 1066 1067
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1068
	cfg->smrs = smrs;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1079
				      struct arm_smmu_master_cfg *cfg)
1080 1081 1082
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1083
	struct arm_smmu_smr *smrs = cfg->smrs;
1084

1085 1086 1087
	if (!smrs)
		return;

1088
	/* Invalidate the SMRs before freeing back to the allocator */
1089
	for (i = 0; i < cfg->num_streamids; ++i) {
1090
		u8 idx = smrs[i].idx;
1091

1092 1093 1094 1095
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1096
	cfg->smrs = NULL;
1097 1098 1099 1100
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1101
				      struct arm_smmu_master_cfg *cfg)
1102 1103
{
	int i, ret;
1104
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1105 1106
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1107
	/* Devices in an IOMMU group may already be configured */
1108
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1109
	if (ret)
1110
		return ret == -EEXIST ? 0 : ret;
1111

1112 1113 1114 1115 1116 1117 1118
	/*
	 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
	 * for all devices behind the SMMU.
	 */
	if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
		return 0;

1119
	for (i = 0; i < cfg->num_streamids; ++i) {
1120
		u32 idx, s2cr;
1121

1122
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1123
		s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1124
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1125 1126 1127 1128 1129 1130 1131
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1132
					  struct arm_smmu_master_cfg *cfg)
1133
{
1134
	int i;
1135
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1136
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1137

1138 1139 1140
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1141 1142 1143 1144 1145

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1146 1147
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1148
		u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1149

1150
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1151 1152
	}

1153
	arm_smmu_master_free_smrs(smmu, cfg);
1154 1155
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static void arm_smmu_detach_dev(struct device *dev,
				struct arm_smmu_master_cfg *cfg)
{
	struct iommu_domain *domain = dev->archdata.iommu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
}

1166 1167
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1168
	int ret;
1169
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1170
	struct arm_smmu_device *smmu;
1171
	struct arm_smmu_master_cfg *cfg;
1172

1173
	smmu = find_smmu_for_device(dev);
1174
	if (!smmu) {
1175 1176 1177 1178
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1179 1180 1181 1182 1183
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1184
	/*
1185 1186
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1187
	 */
1188
	if (smmu_domain->smmu != smmu) {
1189 1190
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1191 1192
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1193 1194 1195
	}

	/* Looks ok, so add the device to the domain */
1196
	cfg = find_smmu_master_cfg(dev);
1197
	if (!cfg)
1198 1199
		return -ENODEV;

1200 1201 1202 1203
	/* Detach the dev from its current domain */
	if (dev->archdata.iommu)
		arm_smmu_detach_dev(dev, cfg);

1204 1205 1206
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1207 1208 1209 1210
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1211
			phys_addr_t paddr, size_t size, int prot)
1212
{
1213 1214
	int ret;
	unsigned long flags;
1215
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1216
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1217

1218
	if (!ops)
1219 1220
		return -ENODEV;

1221 1222 1223 1224
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1225 1226 1227 1228 1229
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1230 1231
	size_t ret;
	unsigned long flags;
1232
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1233
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1234

1235 1236 1237 1238 1239 1240 1241
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1242 1243
}

1244 1245 1246
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1247
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1248 1249 1250 1251 1252 1253 1254
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1255
	unsigned long va;
1256 1257 1258

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1259 1260 1261
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1262
		smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1263 1264
	else
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1265 1266 1267 1268

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1269
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1286
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1287
					dma_addr_t iova)
1288
{
1289 1290
	phys_addr_t ret;
	unsigned long flags;
1291
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1292
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1293

1294
	if (!ops)
1295
		return 0;
1296

1297
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1298 1299
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1300
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1301
	} else {
1302
		ret = ops->iova_to_phys(ops, iova);
1303 1304
	}

1305
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1306

1307
	return ret;
1308 1309
}

1310
static bool arm_smmu_capable(enum iommu_cap cap)
1311
{
1312 1313
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1314 1315 1316 1317 1318
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1319
	case IOMMU_CAP_INTR_REMAP:
1320
		return true; /* MSIs are just memory writes */
1321 1322
	case IOMMU_CAP_NOEXEC:
		return true;
1323
	default:
1324
		return false;
1325
	}
1326 1327
}

1328 1329 1330 1331
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1332 1333
}

1334 1335 1336 1337 1338
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1339 1340
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1341
{
1342
	struct arm_smmu_master_cfg *cfg;
1343 1344
	u16 sid;
	int i;
1345

1346 1347
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1348
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1349 1350
		if (!cfg)
			return -ENOMEM;
1351

1352 1353 1354
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1355

1356 1357
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1371

1372
	return 0;
1373 1374
}

1375 1376
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1377 1378
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1379
	struct arm_smmu_master *master;
1380 1381 1382 1383 1384 1385 1386 1387 1388

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1389 1390

	return 0;
1391 1392 1393 1394
}

static int arm_smmu_add_device(struct device *dev)
{
1395
	struct iommu_group *group;
1396

1397 1398 1399
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1400

1401
	iommu_group_put(group);
1402
	return 0;
1403 1404
}

1405 1406
static void arm_smmu_remove_device(struct device *dev)
{
1407
	iommu_group_remove_device(dev);
1408 1409
}

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1436 1437 1438
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1439
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1453
	int ret = 0;
1454
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1455

1456 1457
	mutex_lock(&smmu_domain->init_mutex);

1458 1459
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1460 1461 1462 1463 1464
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1465 1466 1467 1468 1469
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1470
		break;
1471
	default:
1472
		ret = -ENODEV;
1473
	}
1474 1475 1476 1477

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1478 1479
}

1480
static struct iommu_ops arm_smmu_ops = {
1481
	.capable		= arm_smmu_capable,
1482 1483
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1484 1485 1486
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1487
	.map_sg			= default_iommu_map_sg,
1488 1489 1490
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1491
	.device_group		= arm_smmu_device_group,
1492 1493
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1494
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1495 1496 1497 1498 1499
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1500
	void __iomem *cb_base;
1501
	int i = 0;
1502 1503
	u32 reg;

1504 1505 1506
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1507

1508 1509
	/* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
	reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1510
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1511
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1512
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1513 1514
	}

1515 1516 1517 1518 1519 1520
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1521

1522 1523 1524 1525
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1526
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1527

1528
	/* Enable fault reporting */
1529
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1530 1531

	/* Disable TLB broadcasting. */
1532
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1533

1534 1535 1536 1537 1538 1539
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1540 1541

	/* Disable forced broadcasting */
1542
	reg &= ~sCR0_FB;
1543 1544

	/* Don't upgrade barriers */
1545
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1546

1547 1548 1549
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1550
	/* Push the button */
1551
	__arm_smmu_tlb_sync(smmu);
1552
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1579
	bool cttw_dt, cttw_reg;
1580 1581 1582 1583 1584 1585

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1586 1587 1588 1589 1590 1591 1592

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1609
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1610 1611 1612 1613
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1614
	if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1615 1616 1617 1618
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1619 1620 1621 1622 1623 1624 1625 1626 1627
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1628
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1629 1630 1631 1632 1633 1634
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1665 1666 1667
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1668 1669 1670 1671
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1672
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1673

1674
	/* Check for size mismatch of SMMU address space from mapped region */
1675
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1676
	size *= 2 << smmu->pgshift;
1677
	if (smmu->size != size)
1678 1679 1680
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1681

1682
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1683 1684 1685 1686 1687 1688 1689
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}
1701 1702 1703 1704

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1705
	smmu->ipa_size = size;
1706

1707
	/* The output mask is also applied for bypass */
1708
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1709
	smmu->pa_size = size;
1710

1711 1712 1713
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1714 1715 1716 1717 1718 1719 1720 1721 1722
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1723
	if (smmu->version == ARM_SMMU_V1) {
1724 1725
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1726 1727
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1728 1729 1730
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1731
#endif
1732 1733 1734 1735 1736 1737 1738
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1739 1740
	}

1741 1742 1743
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1744 1745
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1746
			   smmu->va_size, smmu->ipa_size);
1747 1748 1749

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1750
			   smmu->ipa_size, smmu->pa_size);
1751

1752 1753 1754
	return 0;
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1765
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1766

1767
static const struct of_device_id arm_smmu_of_match[] = {
1768 1769 1770 1771 1772
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
	{ .compatible = "arm,mmu-401", .data = &smmu_generic_v1 },
	{ .compatible = "arm,mmu-500", .data = &smmu_generic_v2 },
1773
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1774 1775 1776 1777
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1778 1779
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1780
	const struct of_device_id *of_id;
1781
	const struct arm_smmu_match_data *data;
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1796
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1797 1798 1799
	data = of_id->data;
	smmu->version = data->version;
	smmu->model = data->model;
1800

1801
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1802 1803 1804
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1820 1821 1822 1823
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1835

1836 1837 1838 1839 1840 1841 1842
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1843 1844 1845 1846
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1863 1864
	parse_driver_options(smmu);

1865
	if (smmu->version > ARM_SMMU_V1 &&
1866 1867 1868 1869
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1870
		err = -ENODEV;
1871
		goto out_put_masters;
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1891 1892

	arm_smmu_device_reset(smmu);
1893 1894 1895 1896 1897 1898 1899 1900
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1901 1902
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1930 1931
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1932 1933 1934
		of_node_put(master->of_node);
	}

1935
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1936 1937 1938 1939 1940 1941
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1942
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1957
	struct device_node *np;
1958 1959
	int ret;

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1971 1972 1973 1974 1975
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1976
	if (!iommu_present(&platform_bus_type))
1977 1978
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1979
#ifdef CONFIG_ARM_AMBA
1980
	if (!iommu_present(&amba_bustype))
1981
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1982
#endif
1983

1984 1985 1986 1987 1988
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1989 1990 1991 1992 1993 1994 1995 1996
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1997
subsys_initcall(arm_smmu_init);
1998 1999 2000 2001 2002
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");