arm-smmu.c 54.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
32
#include <linux/dma-iommu.h>
33 34 35 36
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
37
#include <linux/io-64-nonatomic-hi-lo.h>
38
#include <linux/iommu.h>
39
#include <linux/iopoll.h>
40 41
#include <linux/module.h>
#include <linux/of.h>
42
#include <linux/of_address.h>
43
#include <linux/pci.h>
44 45 46 47 48 49
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

50
#include "io-pgtable.h"
51 52

/* Maximum number of stream IDs assigned to a single device */
53
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
54 55 56 57 58 59 60 61 62

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
63
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
64

65 66 67 68 69 70 71 72 73 74
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

75 76 77 78 79
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
80
#ifdef CONFIG_64BIT
81
#define smmu_write_atomic_lq		writeq_relaxed
82
#else
83
#define smmu_write_atomic_lq		writel_relaxed
84 85
#endif

86 87 88 89 90 91 92 93 94 95 96
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
97
#define sCR0_VMID16EN			(1 << 31)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
119
#define ID0_ATOSNS			(1 << 26)
120 121
#define ID0_PTFS_NO_AARCH32		(1 << 25)
#define ID0_PTFS_NO_AARCH32S		(1 << 24)
122 123 124
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
125 126
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
147
#define ID2_VMID16			(1 << 15)
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

175 176 177
#define S2CR_PRIVCFG_SHIFT		24
#define S2CR_PRIVCFG_UNPRIV		(2 << S2CR_PRIVCFG_SHIFT)

178 179 180 181
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
182 183 184
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
200 201
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
202 203 204

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
205
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
206 207

#define ARM_SMMU_CB_SCTLR		0x0
208
#define ARM_SMMU_CB_ACTLR		0x4
209 210
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
211 212
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
213 214
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
215
#define ARM_SMMU_CB_S1_MAIR1		0x3c
216
#define ARM_SMMU_CB_PAR			0x50
217
#define ARM_SMMU_CB_FSR			0x58
218
#define ARM_SMMU_CB_FAR			0x60
219
#define ARM_SMMU_CB_FSYNR0		0x68
220
#define ARM_SMMU_CB_S1_TLBIVA		0x600
221
#define ARM_SMMU_CB_S1_TLBIASID		0x610
222 223 224
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
225
#define ARM_SMMU_CB_ATS1PR		0x800
226
#define ARM_SMMU_CB_ATSR		0x8f0
227 228 229 230 231 232 233 234 235 236 237

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

238 239
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

240 241 242 243
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

244 245 246 247
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
248
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
249

250
#define TTBRn_ASID_SHIFT		48
251 252 253 254 255 256 257 258 259 260 261 262

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

263 264 265
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
266
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
267 268 269

#define FSYNR0_WNR			(1 << 4)

270
static int force_stage;
271
module_param(force_stage, int, S_IRUGO);
272 273
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
274 275 276 277
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
278

279
enum arm_smmu_arch_version {
280 281
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
282 283 284
	ARM_SMMU_V2,
};

285 286
enum arm_smmu_implementation {
	GENERIC_SMMU,
287
	ARM_MMU500,
288
	CAVIUM_SMMUV2,
289 290
};

291 292 293 294 295 296
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

297
struct arm_smmu_master_cfg {
298 299 300 301 302
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

303 304 305 306 307 308
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

309 310 311 312 313
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
314
	unsigned long			pgshift;
315 316 317 318 319 320

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
321
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
322
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
323 324 325 326 327
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
328
	u32				features;
329 330 331

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
332
	enum arm_smmu_arch_version	version;
333
	enum arm_smmu_implementation	model;
334 335 336 337 338 339 340 341 342

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

343 344 345
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
346 347 348 349 350 351 352

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
353 354

	u32				cavium_id_base; /* Specific to Cavium */
355 356
};

357 358 359 360 361 362 363
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
};

364 365 366 367
struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
368
	enum arm_smmu_context_fmt	fmt;
369
};
370
#define INVALID_IRPTNDX			0xff
371

372 373
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
374

375 376 377 378 379 380
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

381
struct arm_smmu_domain {
382
	struct arm_smmu_device		*smmu;
383 384
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
385
	struct arm_smmu_cfg		cfg;
386
	enum arm_smmu_domain_stage	stage;
387
	struct mutex			init_mutex; /* Protects smmu pointer */
388
	struct iommu_domain		domain;
389 390
};

391 392
static struct iommu_ops arm_smmu_ops;

393 394 395
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

396 397 398 399 400
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

401 402
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

403
static struct arm_smmu_option_prop arm_smmu_options[] = {
404 405 406 407
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

408 409 410 411 412
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

413 414 415
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
416

417 418 419 420 421 422 423 424 425 426
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

427
static struct device_node *dev_get_dev_node(struct device *dev)
428 429 430
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
431

432 433
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
434
		return bus->bridge->parent->of_node;
435 436
	}

437
	return dev->of_node;
438 439
}

440 441 442 443 444 445 446
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
447

448 449 450 451 452 453 454 455 456 457 458 459 460
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

461
static struct arm_smmu_master_cfg *
462
find_smmu_master_cfg(struct device *dev)
463
{
464 465
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
466

467 468 469 470
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
471

472
	return cfg;
473 474
}

475 476 477 478 479 480 481 482
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
483 484
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

526 527
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
528

529 530
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
531

532 533 534 535 536 537 538 539 540
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
541 542 543
	return insert_smmu_master(smmu, master);
}

544
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
545
{
546
	struct arm_smmu_device *smmu;
547
	struct arm_smmu_master *master = NULL;
548
	struct device_node *dev_node = dev_get_dev_node(dev);
549 550

	spin_lock(&arm_smmu_devices_lock);
551
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
552 553 554 555
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
556
	spin_unlock(&arm_smmu_devices_lock);
557

558
	return master ? smmu : NULL;
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
580
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

598 599 600 601 602 603 604
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
605
{
606
	struct arm_smmu_domain *smmu_domain = cookie;
607 608
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
609
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
610
	void __iomem *base;
611 612 613

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
614
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
615
			       base + ARM_SMMU_CB_S1_TLBIASID);
616 617
	} else {
		base = ARM_SMMU_GR0(smmu);
618
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
619
			       base + ARM_SMMU_GR0_TLBIVMID);
620 621
	}

622 623 624 625
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
626
					  size_t granule, bool leaf, void *cookie)
627 628 629 630 631 632 633 634 635 636 637
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

638
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
639
			iova &= ~12UL;
640
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
641 642 643 644
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
645 646
		} else {
			iova >>= 12;
647
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
648 649 650 651
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
652 653 654 655 656
		}
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
657 658
		iova >>= 12;
		do {
659
			smmu_write_atomic_lq(iova, reg);
660 661
			iova += granule >> 12;
		} while (size -= granule);
662 663
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
664
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
665 666 667 668 669 670 671 672 673
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

674 675 676
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
677
	u32 fsr, fsynr, resume;
678 679
	unsigned long iova;
	struct iommu_domain *domain = dev;
680
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
681 682
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
683 684
	void __iomem *cb_base;

685
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
686 687 688 689 690 691 692
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
693
				    "Unexpected context fault (fsr 0x%x)\n",
694 695 696 697 698
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

699
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
700 701 702 703
	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
704 705
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
706
		    iova, fsynr, cfg->cbndx);
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
725
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
726 727 728 729 730 731

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

732 733 734
	if (!gfsr)
		return IRQ_NONE;

735 736 737 738 739 740 741
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
742
	return IRQ_HANDLED;
743 744
}

745 746
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
747 748
{
	u32 reg;
749
	u64 reg64;
750
	bool stage1;
751 752
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
753
	void __iomem *cb_base, *gr1_base;
754 755

	gr1_base = ARM_SMMU_GR1(smmu);
756 757
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
758

759
	if (smmu->version > ARM_SMMU_V1) {
760 761 762 763
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
764 765
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
766
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
767

768 769 770
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

771
	/* CBAR */
772
	reg = cfg->cbar;
773
	if (smmu->version < ARM_SMMU_V2)
774
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
775

776 777 778 779 780 781 782
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
783 784
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
785
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
786
	}
787
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
788

789 790
	/* TTBRs */
	if (stage1) {
791 792
		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];

793
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
794
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
795 796

		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
797
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
798
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
799
	} else {
800
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
801
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
802
	}
803

804 805 806 807 808 809
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
810
			reg |= TTBCR2_SEP_UPSTREAM;
811
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
812 813
		}
	} else {
814 815
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
816 817
	}

818
	/* MAIRs (stage-1 only) */
819
	if (stage1) {
820
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
821
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
822 823
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
824 825 826 827 828 829 830 831 832
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
833
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
834 835 836
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
837
					struct arm_smmu_device *smmu)
838
{
839
	int irq, start, ret = 0;
840 841 842 843
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
844
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
845
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
846

847
	mutex_lock(&smmu_domain->init_mutex);
848 849 850
	if (smmu_domain->smmu)
		goto out_unlock;

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

895 896 897 898
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
899 900
		ias = smmu->va_size;
		oas = smmu->ipa_size;
901
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
902
			fmt = ARM_64_LPAE_S1;
903
		} else {
904
			fmt = ARM_32_LPAE_S1;
905 906 907
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
		}
908 909
		break;
	case ARM_SMMU_DOMAIN_NESTED:
910 911 912 913
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
914
	case ARM_SMMU_DOMAIN_S2:
915 916
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
917 918
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
919
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
920
			fmt = ARM_64_LPAE_S2;
921
		} else {
922
			fmt = ARM_32_LPAE_S2;
923 924 925
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
926 927 928 929
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
930 931 932 933 934
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
935
		goto out_unlock;
936

937
	cfg->cbndx = ret;
938
	if (smmu->version < ARM_SMMU_V2) {
939 940
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
941
	} else {
942
		cfg->irptndx = cfg->cbndx;
943 944
	}

945 946 947 948 949
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
950
		.iommu_dev	= smmu->dev,
951 952 953 954 955 956 957 958 959 960 961
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
962

963 964 965 966 967 968 969
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
970
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
971 972 973 974
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
975 976
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
977 978
	}

979 980 981 982
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
983
	return 0;
984

985 986
out_clear_smmu:
	smmu_domain->smmu = NULL;
987
out_unlock:
988
	mutex_unlock(&smmu_domain->init_mutex);
989 990 991 992 993
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
994
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
995 996
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
997
	void __iomem *cb_base;
998 999 1000 1001 1002
	int irq;

	if (!smmu)
		return;

1003 1004 1005 1006
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
1007
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1008 1009
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

1010 1011
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1012 1013 1014
		free_irq(irq, domain);
	}

1015
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1016
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1017 1018
}

1019
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1020 1021 1022
{
	struct arm_smmu_domain *smmu_domain;

1023
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1024
		return NULL;
1025 1026 1027 1028 1029 1030 1031
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1032
		return NULL;
1033

1034 1035 1036 1037 1038 1039
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1040 1041
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1042 1043

	return &smmu_domain->domain;
1044 1045
}

1046
static void arm_smmu_domain_free(struct iommu_domain *domain)
1047
{
1048
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1049 1050 1051 1052 1053

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1054
	iommu_put_dma_cookie(domain);
1055 1056 1057 1058 1059
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1060
					  struct arm_smmu_master_cfg *cfg)
1061 1062 1063 1064 1065 1066 1067 1068
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1069
	if (cfg->smrs)
1070 1071
		return -EEXIST;

1072
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1073
	if (!smrs) {
1074 1075
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1076 1077 1078
		return -ENOMEM;
	}

1079
	/* Allocate the SMRs on the SMMU */
1080
	for (i = 0; i < cfg->num_streamids; ++i) {
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1091
			.id	= cfg->streamids[i],
1092 1093 1094 1095
		};
	}

	/* It worked! Now, poke the actual hardware */
1096
	for (i = 0; i < cfg->num_streamids; ++i) {
1097 1098 1099 1100 1101
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1102
	cfg->smrs = smrs;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1113
				      struct arm_smmu_master_cfg *cfg)
1114 1115 1116
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1117
	struct arm_smmu_smr *smrs = cfg->smrs;
1118

1119 1120 1121
	if (!smrs)
		return;

1122
	/* Invalidate the SMRs before freeing back to the allocator */
1123
	for (i = 0; i < cfg->num_streamids; ++i) {
1124
		u8 idx = smrs[i].idx;
1125

1126 1127 1128 1129
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1130
	cfg->smrs = NULL;
1131 1132 1133 1134
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1135
				      struct arm_smmu_master_cfg *cfg)
1136 1137
{
	int i, ret;
1138
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1139 1140
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1141
	/* Devices in an IOMMU group may already be configured */
1142
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1143
	if (ret)
1144
		return ret == -EEXIST ? 0 : ret;
1145

1146 1147 1148 1149 1150 1151 1152
	/*
	 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
	 * for all devices behind the SMMU.
	 */
	if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
		return 0;

1153
	for (i = 0; i < cfg->num_streamids; ++i) {
1154
		u32 idx, s2cr;
1155

1156
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1157
		s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1158
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1159 1160 1161 1162 1163 1164 1165
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1166
					  struct arm_smmu_master_cfg *cfg)
1167
{
1168
	int i;
1169
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1170
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1171

1172 1173 1174
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1175 1176 1177 1178 1179

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1180 1181
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1182
		u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1183

1184
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1185 1186
	}

1187
	arm_smmu_master_free_smrs(smmu, cfg);
1188 1189
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
static void arm_smmu_detach_dev(struct device *dev,
				struct arm_smmu_master_cfg *cfg)
{
	struct iommu_domain *domain = dev->archdata.iommu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
}

1200 1201
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1202
	int ret;
1203
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1204
	struct arm_smmu_device *smmu;
1205
	struct arm_smmu_master_cfg *cfg;
1206

1207
	smmu = find_smmu_for_device(dev);
1208
	if (!smmu) {
1209 1210 1211 1212
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1213 1214 1215 1216 1217
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1218
	/*
1219 1220
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1221
	 */
1222
	if (smmu_domain->smmu != smmu) {
1223 1224
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1225 1226
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1227 1228 1229
	}

	/* Looks ok, so add the device to the domain */
1230
	cfg = find_smmu_master_cfg(dev);
1231
	if (!cfg)
1232 1233
		return -ENODEV;

1234 1235 1236 1237
	/* Detach the dev from its current domain */
	if (dev->archdata.iommu)
		arm_smmu_detach_dev(dev, cfg);

1238 1239 1240
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1241 1242 1243 1244
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1245
			phys_addr_t paddr, size_t size, int prot)
1246
{
1247 1248
	int ret;
	unsigned long flags;
1249
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1250
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1251

1252
	if (!ops)
1253 1254
		return -ENODEV;

1255 1256 1257 1258
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1259 1260 1261 1262 1263
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1264 1265
	size_t ret;
	unsigned long flags;
1266
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1267
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1268

1269 1270 1271 1272 1273 1274 1275
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1276 1277
}

1278 1279 1280
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1281
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1282 1283 1284 1285 1286 1287 1288
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1289
	unsigned long va;
1290 1291 1292

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1293 1294 1295
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1296 1297
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1298
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1299 1300 1301 1302

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1303
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1304 1305 1306 1307
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1308
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1309 1310 1311 1312 1313 1314 1315 1316 1317
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1318
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1319
					dma_addr_t iova)
1320
{
1321 1322
	phys_addr_t ret;
	unsigned long flags;
1323
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1324
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1325

1326
	if (!ops)
1327
		return 0;
1328

1329
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1330 1331
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1332
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1333
	} else {
1334
		ret = ops->iova_to_phys(ops, iova);
1335 1336
	}

1337
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1338

1339
	return ret;
1340 1341
}

1342
static bool arm_smmu_capable(enum iommu_cap cap)
1343
{
1344 1345
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1346 1347 1348 1349 1350
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1351
	case IOMMU_CAP_INTR_REMAP:
1352
		return true; /* MSIs are just memory writes */
1353 1354
	case IOMMU_CAP_NOEXEC:
		return true;
1355
	default:
1356
		return false;
1357
	}
1358 1359
}

1360 1361 1362 1363
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1364 1365
}

1366 1367 1368 1369 1370
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1371 1372
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1373
{
1374
	struct arm_smmu_master_cfg *cfg;
1375 1376
	u16 sid;
	int i;
1377

1378 1379
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1380
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1381 1382
		if (!cfg)
			return -ENOMEM;
1383

1384 1385 1386
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1387

1388 1389
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1390

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1403

1404
	return 0;
1405 1406
}

1407 1408
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1409 1410
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1411
	struct arm_smmu_master *master;
1412 1413 1414 1415 1416 1417 1418 1419 1420

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1421 1422

	return 0;
1423 1424 1425 1426
}

static int arm_smmu_add_device(struct device *dev)
{
1427
	struct iommu_group *group;
1428

1429 1430 1431
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1432

1433
	iommu_group_put(group);
1434
	return 0;
1435 1436
}

1437 1438
static void arm_smmu_remove_device(struct device *dev)
{
1439
	iommu_group_remove_device(dev);
1440 1441
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1468 1469 1470
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1471
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1485
	int ret = 0;
1486
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1487

1488 1489
	mutex_lock(&smmu_domain->init_mutex);

1490 1491
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1492 1493 1494 1495 1496
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1497 1498 1499 1500 1501
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1502
		break;
1503
	default:
1504
		ret = -ENODEV;
1505
	}
1506 1507 1508 1509

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1510 1511
}

1512
static struct iommu_ops arm_smmu_ops = {
1513
	.capable		= arm_smmu_capable,
1514 1515
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1516 1517 1518
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1519
	.map_sg			= default_iommu_map_sg,
1520 1521 1522
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1523
	.device_group		= arm_smmu_device_group,
1524 1525
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1526
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1527 1528 1529 1530 1531
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1532
	void __iomem *cb_base;
1533
	int i = 0;
1534 1535
	u32 reg;

1536 1537 1538
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1539

1540 1541
	/* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
	reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1542
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1543
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1544
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1545 1546
	}

1547 1548 1549 1550 1551
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1552 1553 1554 1555 1556 1557 1558 1559 1560
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1561
	}
1562

1563 1564 1565 1566
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1567
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1568

1569
	/* Enable fault reporting */
1570
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1571 1572

	/* Disable TLB broadcasting. */
1573
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1574

1575 1576 1577 1578 1579 1580
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1581 1582

	/* Disable forced broadcasting */
1583
	reg &= ~sCR0_FB;
1584 1585

	/* Don't upgrade barriers */
1586
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1587

1588 1589 1590
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1591
	/* Push the button */
1592
	__arm_smmu_tlb_sync(smmu);
1593
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1620
	bool cttw_dt, cttw_reg;
1621 1622

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1623 1624
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1625 1626 1627

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1628 1629 1630 1631 1632 1633 1634

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1651
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1652 1653 1654 1655
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1656 1657
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1658 1659 1660 1661
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1662 1663 1664 1665 1666 1667 1668 1669 1670
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1671
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1672 1673 1674 1675 1676 1677
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1708 1709 1710
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1711 1712
	}

1713 1714 1715 1716 1717 1718
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1719 1720
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1721
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1722

1723
	/* Check for size mismatch of SMMU address space from mapped region */
1724
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1725
	size *= 2 << smmu->pgshift;
1726
	if (smmu->size != size)
1727 1728 1729
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1730

1731
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1732 1733 1734 1735 1736 1737 1738
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}
1750 1751 1752 1753

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1754
	smmu->ipa_size = size;
1755

1756
	/* The output mask is also applied for bypass */
1757
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1758
	smmu->pa_size = size;
1759

1760 1761 1762
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1763 1764 1765 1766 1767 1768 1769 1770 1771
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1772
	if (smmu->version < ARM_SMMU_V2) {
1773
		smmu->va_size = smmu->ipa_size;
1774 1775
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1776 1777
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1778 1779
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
1780
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1781
		if (id & ID2_PTFS_16K)
1782
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1783
		if (id & ID2_PTFS_64K)
1784
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1785 1786
	}

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	/* Now we've corralled the various formats, what'll it do? */
	size = 0;
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
		size |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
		size |= SZ_4K | SZ_2M | SZ_1G;
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
		size |= SZ_16K | SZ_32M;
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
		size |= SZ_64K | SZ_512M;

1799 1800 1801
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1802 1803
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1804
			   smmu->va_size, smmu->ipa_size);
1805 1806 1807

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1808
			   smmu->ipa_size, smmu->pa_size);
1809

1810 1811 1812
	return 0;
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1823
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1824
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1825
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1826

1827
static const struct of_device_id arm_smmu_of_match[] = {
1828 1829 1830
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1831
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1832
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1833
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1834 1835 1836 1837
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1838 1839
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1840
	const struct of_device_id *of_id;
1841
	const struct arm_smmu_match_data *data;
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1856
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1857 1858 1859
	data = of_id->data;
	smmu->version = data->version;
	smmu->model = data->model;
1860

1861
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1862 1863 1864
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1880 1881 1882 1883
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1895

1896 1897 1898 1899 1900 1901 1902
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1903 1904 1905 1906
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1923 1924
	parse_driver_options(smmu);

1925
	if (smmu->version == ARM_SMMU_V2 &&
1926 1927 1928 1929
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1930
		err = -ENODEV;
1931
		goto out_put_masters;
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1951 1952

	arm_smmu_device_reset(smmu);
1953 1954 1955 1956 1957 1958 1959 1960
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1961 1962
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1990 1991
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1992 1993 1994
		of_node_put(master->of_node);
	}

1995
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1996 1997 1998 1999 2000 2001
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
2002
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
2017
	struct device_node *np;
2018 2019
	int ret;

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

2031 2032 2033 2034 2035
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
2036
	if (!iommu_present(&platform_bus_type))
2037 2038
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

2039
#ifdef CONFIG_ARM_AMBA
2040
	if (!iommu_present(&amba_bustype))
2041
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2042
#endif
2043

2044 2045 2046 2047 2048
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

2049 2050 2051 2052 2053 2054 2055 2056
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2057
subsys_initcall(arm_smmu_init);
2058 2059 2060 2061 2062
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");