arm-smmu.c 50.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
32
#include <linux/dma-iommu.h>
33 34 35 36 37
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
38
#include <linux/iopoll.h>
39 40
#include <linux/module.h>
#include <linux/of.h>
41
#include <linux/of_address.h>
42
#include <linux/pci.h>
43 44 45 46 47 48
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

49
#include "io-pgtable.h"
50 51

/* Maximum number of stream IDs assigned to a single device */
52
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
53 54 55 56 57 58 59 60 61

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
62
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
63

64 65 66 67 68 69 70 71 72 73
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_64BIT
#define smmu_writeq	writeq_relaxed
#else
#define smmu_writeq(reg64, addr)				\
	do {							\
		u64 __val = (reg64);				\
		void __iomem *__addr = (addr);			\
		writel_relaxed(__val >> 32, __addr + 4);	\
		writel_relaxed(__val, __addr);			\
	} while (0)
#endif

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
118
#define ID0_ATOSNS			(1 << 26)
119 120 121
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
122 123
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

171 172 173
#define S2CR_PRIVCFG_SHIFT		24
#define S2CR_PRIVCFG_UNPRIV		(2 << S2CR_PRIVCFG_SHIFT)

174 175 176 177
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
178 179 180
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
199
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
200 201 202 203

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
204 205
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
206 207
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
208
#define ARM_SMMU_CB_S1_MAIR1		0x3c
209 210
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
211 212 213 214
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
215
#define ARM_SMMU_CB_S1_TLBIVA		0x600
216
#define ARM_SMMU_CB_S1_TLBIASID		0x610
217 218 219
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
220
#define ARM_SMMU_CB_ATS1PR		0x800
221
#define ARM_SMMU_CB_ATSR		0x8f0
222 223 224 225 226 227 228 229 230 231 232

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

233 234 235 236
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

237 238 239 240
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
241
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
242

243
#define TTBRn_ASID_SHIFT		48
244 245 246 247 248 249 250 251 252 253 254 255

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

256 257 258
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
259
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
260 261 262

#define FSYNR0_WNR			(1 << 4)

263
static int force_stage;
264
module_param(force_stage, int, S_IRUGO);
265 266
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
267 268 269 270
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
271

272 273 274 275 276
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

277 278 279 280 281 282
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

283
struct arm_smmu_master_cfg {
284 285 286 287 288
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

289 290 291 292 293 294
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

295 296 297 298 299
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
300
	unsigned long			pgshift;
301 302 303 304 305 306

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
307
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
308
	u32				features;
309 310 311

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
312
	enum arm_smmu_arch_version	version;
313 314 315 316 317 318 319 320 321

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

322 323 324
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
325 326 327 328 329 330 331 332 333 334 335 336 337 338

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
339
#define INVALID_IRPTNDX			0xff
340

341 342 343
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

344 345 346 347 348 349
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

350
struct arm_smmu_domain {
351
	struct arm_smmu_device		*smmu;
352 353
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
354
	struct arm_smmu_cfg		cfg;
355
	enum arm_smmu_domain_stage	stage;
356
	struct mutex			init_mutex; /* Protects smmu pointer */
357
	struct iommu_domain		domain;
358 359
};

360 361
static struct iommu_ops arm_smmu_ops;

362 363 364
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

365 366 367 368 369
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

370
static struct arm_smmu_option_prop arm_smmu_options[] = {
371 372 373 374
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

375 376 377 378 379
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

380 381 382
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
383

384 385 386 387 388 389 390 391 392 393
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

394
static struct device_node *dev_get_dev_node(struct device *dev)
395 396 397
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
398

399 400
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
401
		return bus->bridge->parent->of_node;
402 403
	}

404
	return dev->of_node;
405 406
}

407 408 409 410 411 412 413
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
414

415 416 417 418 419 420 421 422 423 424 425 426 427
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

428
static struct arm_smmu_master_cfg *
429
find_smmu_master_cfg(struct device *dev)
430
{
431 432
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
433

434 435 436 437
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
438

439
	return cfg;
440 441
}

442 443 444 445 446 447 448 449
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
450 451
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

493 494
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
495

496 497
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
498

499 500 501 502 503 504 505 506 507
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
508 509 510
	return insert_smmu_master(smmu, master);
}

511
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
512
{
513
	struct arm_smmu_device *smmu;
514
	struct arm_smmu_master *master = NULL;
515
	struct device_node *dev_node = dev_get_dev_node(dev);
516 517

	spin_lock(&arm_smmu_devices_lock);
518
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
519 520 521 522
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
523
	spin_unlock(&arm_smmu_devices_lock);
524

525
	return master ? smmu : NULL;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
547
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

565 566 567 568 569 570 571
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
572
{
573
	struct arm_smmu_domain *smmu_domain = cookie;
574 575
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
576
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
577
	void __iomem *base;
578 579 580

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
581 582
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
583 584
	} else {
		base = ARM_SMMU_GR0(smmu);
585 586
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
587 588
	}

589 590 591 592
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
593
					  size_t granule, bool leaf, void *cookie)
594 595 596 597 598 599 600 601 602 603 604 605 606 607
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
			iova |= ARM_SMMU_CB_ASID(cfg);
608 609 610 611
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
612 613 614 615
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
			iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
616 617 618 619
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
620 621 622 623 624 625 626
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
627 628 629 630 631
		iova >>= 12;
		do {
			writeq_relaxed(iova, reg);
			iova += granule >> 12;
		} while (size -= granule);
632 633 634 635 636 637 638 639 640 641 642 643 644
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
		writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

645 646 647 648 649 650
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
651
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
652 653
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
654 655
	void __iomem *cb_base;

656
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
657 658 659 660 661 662 663
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
664
				    "Unexpected context fault (fsr 0x%x)\n",
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
681 682
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
683
		    iova, fsynr, cfg->cbndx);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
702
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
703 704 705 706 707 708

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

709 710 711
	if (!gfsr)
		return IRQ_NONE;

712 713 714 715 716 717 718
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
719
	return IRQ_HANDLED;
720 721
}

722 723
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
724 725
{
	u32 reg;
726
	u64 reg64;
727
	bool stage1;
728 729
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
730
	void __iomem *cb_base, *gr1_base;
731 732

	gr1_base = ARM_SMMU_GR1(smmu);
733 734
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
735

736 737 738 739 740 741 742 743 744 745 746 747 748 749
	if (smmu->version > ARM_SMMU_V1) {
		/*
		 * CBA2R.
		 * *Must* be initialised before CBAR thanks to VMID16
		 * architectural oversight affected some implementations.
		 */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

750
	/* CBAR */
751
	reg = cfg->cbar;
752
	if (smmu->version == ARM_SMMU_V1)
753
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
754

755 756 757 758 759 760 761 762
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	} else {
763
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
764
	}
765
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
766

767 768
	/* TTBRs */
	if (stage1) {
769 770 771 772 773 774 775 776
		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];

		reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);

		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
		reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
777
	} else {
778 779
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
780
	}
781

782 783 784 785 786 787
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
788
			reg |= TTBCR2_SEP_UPSTREAM;
789
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
790 791
		}
	} else {
792 793
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
794 795
	}

796
	/* MAIRs (stage-1 only) */
797
	if (stage1) {
798
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
799
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
800 801
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
802 803 804 805 806 807 808 809 810
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
811
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
812 813 814
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
815
					struct arm_smmu_device *smmu)
816
{
817
	int irq, start, ret = 0;
818 819 820 821
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
822
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
823
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
824

825
	mutex_lock(&smmu_domain->init_mutex);
826 827 828
	if (smmu_domain->smmu)
		goto out_unlock;

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
856 857 858 859 860 861
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
862 863
		break;
	case ARM_SMMU_DOMAIN_NESTED:
864 865 866 867
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
868
	case ARM_SMMU_DOMAIN_S2:
869 870
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
871 872 873 874 875 876
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
877 878 879 880
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
881 882 883 884 885
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
886
		goto out_unlock;
887

888
	cfg->cbndx = ret;
889
	if (smmu->version == ARM_SMMU_V1) {
890 891
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
892
	} else {
893
		cfg->irptndx = cfg->cbndx;
894 895
	}

896 897 898 899 900
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
901
		.iommu_dev	= smmu->dev,
902 903 904 905 906 907 908 909 910 911 912
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
913

914 915 916 917 918 919 920
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
921
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
922 923 924 925
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
926 927
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
928 929
	}

930 931 932 933
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
934
	return 0;
935

936 937
out_clear_smmu:
	smmu_domain->smmu = NULL;
938
out_unlock:
939
	mutex_unlock(&smmu_domain->init_mutex);
940 941 942 943 944
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
945
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
946 947
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
948
	void __iomem *cb_base;
949 950 951 952 953
	int irq;

	if (!smmu)
		return;

954 955 956 957
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
958
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
959 960
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

961 962
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
963 964 965
		free_irq(irq, domain);
	}

966
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
967
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
968 969
}

970
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
971 972 973
{
	struct arm_smmu_domain *smmu_domain;

974
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
975
		return NULL;
976 977 978 979 980 981 982
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
983
		return NULL;
984

985 986 987 988 989 990
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

991 992
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
993 994

	return &smmu_domain->domain;
995 996
}

997
static void arm_smmu_domain_free(struct iommu_domain *domain)
998
{
999
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1000 1001 1002 1003 1004

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1005
	iommu_put_dma_cookie(domain);
1006 1007 1008 1009 1010
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1011
					  struct arm_smmu_master_cfg *cfg)
1012 1013 1014 1015 1016 1017 1018 1019
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1020
	if (cfg->smrs)
1021 1022
		return -EEXIST;

1023
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1024
	if (!smrs) {
1025 1026
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1027 1028 1029
		return -ENOMEM;
	}

1030
	/* Allocate the SMRs on the SMMU */
1031
	for (i = 0; i < cfg->num_streamids; ++i) {
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1042
			.id	= cfg->streamids[i],
1043 1044 1045 1046
		};
	}

	/* It worked! Now, poke the actual hardware */
1047
	for (i = 0; i < cfg->num_streamids; ++i) {
1048 1049 1050 1051 1052
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1053
	cfg->smrs = smrs;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1064
				      struct arm_smmu_master_cfg *cfg)
1065 1066 1067
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1068
	struct arm_smmu_smr *smrs = cfg->smrs;
1069

1070 1071 1072
	if (!smrs)
		return;

1073
	/* Invalidate the SMRs before freeing back to the allocator */
1074
	for (i = 0; i < cfg->num_streamids; ++i) {
1075
		u8 idx = smrs[i].idx;
1076

1077 1078 1079 1080
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1081
	cfg->smrs = NULL;
1082 1083 1084 1085
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1086
				      struct arm_smmu_master_cfg *cfg)
1087 1088
{
	int i, ret;
1089
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1090 1091
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1092
	/* Devices in an IOMMU group may already be configured */
1093
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1094
	if (ret)
1095
		return ret == -EEXIST ? 0 : ret;
1096

1097
	for (i = 0; i < cfg->num_streamids; ++i) {
1098
		u32 idx, s2cr;
1099

1100
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1101
		s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1102
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1103 1104 1105 1106 1107 1108 1109
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1110
					  struct arm_smmu_master_cfg *cfg)
1111
{
1112
	int i;
1113
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1114
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1115

1116 1117 1118
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1119 1120 1121 1122 1123

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1124 1125
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1126
		u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1127

1128
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1129 1130
	}

1131
	arm_smmu_master_free_smrs(smmu, cfg);
1132 1133 1134 1135
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1136
	int ret;
1137
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1138
	struct arm_smmu_device *smmu;
1139
	struct arm_smmu_master_cfg *cfg;
1140

1141
	smmu = find_smmu_for_device(dev);
1142
	if (!smmu) {
1143 1144 1145 1146
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1147 1148 1149 1150 1151
	if (dev->archdata.iommu) {
		dev_err(dev, "already attached to IOMMU domain\n");
		return -EEXIST;
	}

1152 1153 1154 1155 1156
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1157
	/*
1158 1159
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1160
	 */
1161
	if (smmu_domain->smmu != smmu) {
1162 1163
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1164 1165
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1166 1167 1168
	}

	/* Looks ok, so add the device to the domain */
1169
	cfg = find_smmu_master_cfg(dev);
1170
	if (!cfg)
1171 1172
		return -ENODEV;

1173 1174 1175
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1176 1177 1178 1179 1180
	return ret;
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
1181
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1182
	struct arm_smmu_master_cfg *cfg;
1183

1184
	cfg = find_smmu_master_cfg(dev);
1185 1186 1187 1188 1189
	if (!cfg)
		return;

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
1190 1191 1192
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1193
			phys_addr_t paddr, size_t size, int prot)
1194
{
1195 1196
	int ret;
	unsigned long flags;
1197
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1198
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1199

1200
	if (!ops)
1201 1202
		return -ENODEV;

1203 1204 1205 1206
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1207 1208 1209 1210 1211
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1212 1213
	size_t ret;
	unsigned long flags;
1214
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1215
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1216

1217 1218 1219 1220 1221 1222 1223
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1224 1225
}

1226 1227 1228
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1229
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1230 1231 1232 1233 1234 1235 1236
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1237
	unsigned long va;
1238 1239 1240

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1241 1242 1243
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1244
		smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1245 1246
	else
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1247 1248 1249 1250

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1251
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1268
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1269
					dma_addr_t iova)
1270
{
1271 1272
	phys_addr_t ret;
	unsigned long flags;
1273
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1274
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1275

1276
	if (!ops)
1277
		return 0;
1278

1279
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1280 1281
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1282
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1283
	} else {
1284
		ret = ops->iova_to_phys(ops, iova);
1285 1286
	}

1287
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1288

1289
	return ret;
1290 1291
}

1292
static bool arm_smmu_capable(enum iommu_cap cap)
1293
{
1294 1295
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1296 1297 1298 1299 1300
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1301
	case IOMMU_CAP_INTR_REMAP:
1302
		return true; /* MSIs are just memory writes */
1303 1304
	case IOMMU_CAP_NOEXEC:
		return true;
1305
	default:
1306
		return false;
1307
	}
1308 1309
}

1310 1311 1312 1313
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1314 1315
}

1316 1317 1318 1319 1320
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1321 1322
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1323
{
1324
	struct arm_smmu_master_cfg *cfg;
1325 1326
	u16 sid;
	int i;
1327

1328 1329
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1330
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1331 1332
		if (!cfg)
			return -ENOMEM;
1333

1334 1335 1336
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1337

1338 1339
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1340

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1353

1354
	return 0;
1355 1356
}

1357 1358
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1359 1360
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1361
	struct arm_smmu_master *master;
1362 1363 1364 1365 1366 1367 1368 1369 1370

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1371 1372

	return 0;
1373 1374 1375 1376
}

static int arm_smmu_add_device(struct device *dev)
{
1377
	struct iommu_group *group;
1378

1379 1380 1381
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1382

1383
	iommu_group_put(group);
1384
	return 0;
1385 1386
}

1387 1388
static void arm_smmu_remove_device(struct device *dev)
{
1389
	iommu_group_remove_device(dev);
1390 1391
}

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1418 1419 1420
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1421
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1435
	int ret = 0;
1436
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1437

1438 1439
	mutex_lock(&smmu_domain->init_mutex);

1440 1441
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1442 1443 1444 1445 1446
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1447 1448 1449 1450 1451
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1452
		break;
1453
	default:
1454
		ret = -ENODEV;
1455
	}
1456 1457 1458 1459

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1460 1461
}

1462
static struct iommu_ops arm_smmu_ops = {
1463
	.capable		= arm_smmu_capable,
1464 1465
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1466 1467 1468 1469
	.attach_dev		= arm_smmu_attach_dev,
	.detach_dev		= arm_smmu_detach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1470
	.map_sg			= default_iommu_map_sg,
1471 1472 1473
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1474
	.device_group		= arm_smmu_device_group,
1475 1476
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1477
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1478 1479 1480 1481 1482
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1483
	void __iomem *cb_base;
1484
	int i = 0;
1485 1486
	u32 reg;

1487 1488 1489
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1490

1491 1492
	/* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
	reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1493
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1494
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1495
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1496 1497
	}

1498 1499 1500 1501 1502 1503
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1504

1505 1506 1507 1508
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1509
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1510

1511
	/* Enable fault reporting */
1512
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1513 1514

	/* Disable TLB broadcasting. */
1515
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1516

1517 1518 1519 1520 1521 1522
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1523 1524

	/* Disable forced broadcasting */
1525
	reg &= ~sCR0_FB;
1526 1527

	/* Don't upgrade barriers */
1528
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1529 1530

	/* Push the button */
1531
	__arm_smmu_tlb_sync(smmu);
1532
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1559
	bool cttw_dt, cttw_reg;
1560 1561 1562 1563 1564 1565

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1566 1567 1568 1569 1570 1571 1572

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1589
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1590 1591 1592 1593
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1594
	if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1595 1596 1597 1598
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1599 1600 1601 1602 1603 1604 1605 1606 1607
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1608
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1609 1610 1611 1612 1613 1614
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1645 1646 1647
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1648 1649 1650 1651
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1652
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1653

1654
	/* Check for size mismatch of SMMU address space from mapped region */
1655
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1656
	size *= 2 << smmu->pgshift;
1657
	if (smmu->size != size)
1658 1659 1660
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1661

1662
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1674
	smmu->ipa_size = size;
1675

1676
	/* The output mask is also applied for bypass */
1677
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1678
	smmu->pa_size = size;
1679

1680 1681 1682 1683 1684 1685 1686 1687 1688
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1689
	if (smmu->version == ARM_SMMU_V1) {
1690 1691
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1692 1693
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1694 1695 1696
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1697
#endif
1698 1699 1700 1701 1702 1703 1704
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1705 1706
	}

1707 1708 1709
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1710 1711
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1712
			   smmu->va_size, smmu->ipa_size);
1713 1714 1715

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1716
			   smmu->ipa_size, smmu->pa_size);
1717

1718 1719 1720
	return 0;
}

1721
static const struct of_device_id arm_smmu_of_match[] = {
1722 1723 1724
	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
R
Robin Murphy 已提交
1725
	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1726 1727 1728 1729 1730
	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1731 1732
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1733
	const struct of_device_id *of_id;
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1748 1749 1750
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
	smmu->version = (enum arm_smmu_arch_version)of_id->data;

1751
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1752 1753 1754
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1770 1771 1772 1773
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1785

1786 1787 1788 1789 1790 1791 1792
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1793 1794 1795 1796
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1813 1814
	parse_driver_options(smmu);

1815
	if (smmu->version > ARM_SMMU_V1 &&
1816 1817 1818 1819
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1820
		err = -ENODEV;
1821
		goto out_put_masters;
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1841 1842

	arm_smmu_device_reset(smmu);
1843 1844 1845 1846 1847 1848 1849 1850
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1851 1852
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1880 1881
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1882 1883 1884
		of_node_put(master->of_node);
	}

1885
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1886 1887 1888 1889 1890 1891
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1892
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1907
	struct device_node *np;
1908 1909
	int ret;

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1921 1922 1923 1924 1925
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1926
	if (!iommu_present(&platform_bus_type))
1927 1928
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1929
#ifdef CONFIG_ARM_AMBA
1930
	if (!iommu_present(&amba_bustype))
1931
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1932
#endif
1933

1934 1935 1936 1937 1938
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1939 1940 1941 1942 1943 1944 1945 1946
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1947
subsys_initcall(arm_smmu_init);
1948 1949 1950 1951 1952
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");