arm-smmu.c 52.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- 4k and 64k pages, with contiguous pte hints.
27
 *	- Up to 42-bit addressing (dependent on VA_BITS)
28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
42
#include <linux/pci.h>
43 44 45 46 47 48 49 50 51
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

#include <asm/pgalloc.h>

/* Maximum number of stream IDs assigned to a single device */
52
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
53 54 55 56 57 58 59 60 61 62 63

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (smmu)->pagesize)

64 65 66 67 68 69 70 71 72 73
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

74
/* Page table bits */
75
#define ARM_SMMU_PTE_XN			(((pteval_t)3) << 53)
76 77 78 79 80
#define ARM_SMMU_PTE_CONT		(((pteval_t)1) << 52)
#define ARM_SMMU_PTE_AF			(((pteval_t)1) << 10)
#define ARM_SMMU_PTE_SH_NS		(((pteval_t)0) << 8)
#define ARM_SMMU_PTE_SH_OS		(((pteval_t)2) << 8)
#define ARM_SMMU_PTE_SH_IS		(((pteval_t)3) << 8)
81
#define ARM_SMMU_PTE_PAGE		(((pteval_t)3) << 0)
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

#if PAGE_SIZE == SZ_4K
#define ARM_SMMU_PTE_CONT_ENTRIES	16
#elif PAGE_SIZE == SZ_64K
#define ARM_SMMU_PTE_CONT_ENTRIES	32
#else
#define ARM_SMMU_PTE_CONT_ENTRIES	1
#endif

#define ARM_SMMU_PTE_CONT_SIZE		(PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
#define ARM_SMMU_PTE_CONT_MASK		(~(ARM_SMMU_PTE_CONT_SIZE - 1))

/* Stage-1 PTE */
#define ARM_SMMU_PTE_AP_UNPRIV		(((pteval_t)1) << 6)
#define ARM_SMMU_PTE_AP_RDONLY		(((pteval_t)2) << 6)
#define ARM_SMMU_PTE_ATTRINDX_SHIFT	2
98
#define ARM_SMMU_PTE_nG			(((pteval_t)1) << 11)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

/* Stage-2 PTE */
#define ARM_SMMU_PTE_HAP_FAULT		(((pteval_t)0) << 6)
#define ARM_SMMU_PTE_HAP_READ		(((pteval_t)1) << 6)
#define ARM_SMMU_PTE_HAP_WRITE		(((pteval_t)2) << 6)
#define ARM_SMMU_PTE_MEMATTR_OIWB	(((pteval_t)0xf) << 2)
#define ARM_SMMU_PTE_MEMATTR_NC		(((pteval_t)0x5) << 2)
#define ARM_SMMU_PTE_MEMATTR_DEV	(((pteval_t)0x1) << 2)

/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58
#define ARM_SMMU_GR0_PIDR0		0xfe0
#define ARM_SMMU_GR0_PIDR1		0xfe4
#define ARM_SMMU_GR0_PIDR2		0xfe8

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
#define ID0_PTFS_SHIFT			24
#define ID0_PTFS_MASK			0x2
#define ID0_PTFS_V8_ONLY		0x2
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
149 150
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

#define PIDR2_ARCH_SHIFT		4
#define PIDR2_ARCH_MASK			0xf

/* Global TLB invalidation */
#define ARM_SMMU_GR0_STLBIALL		0x60
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
206 207 208
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
#define ARM_SMMU_CB(smmu, n)		((n) * (smmu)->pagesize)

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
#define ARM_SMMU_CB_TTBR0_LO		0x20
#define ARM_SMMU_CB_TTBR0_HI		0x24
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
240
#define ARM_SMMU_CB_S1_TLBIASID		0x610
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR_EAE			(1 << 31)

#define TTBCR_PASIZE_SHIFT		16
#define TTBCR_PASIZE_MASK		0x7

#define TTBCR_TG0_4K			(0 << 14)
#define TTBCR_TG0_64K			(1 << 14)

#define TTBCR_SH0_SHIFT			12
#define TTBCR_SH0_MASK			0x3
#define TTBCR_SH_NS			0
#define TTBCR_SH_OS			2
#define TTBCR_SH_IS			3

#define TTBCR_ORGN0_SHIFT		10
#define TTBCR_IRGN0_SHIFT		8
#define TTBCR_RGN_MASK			0x3
#define TTBCR_RGN_NC			0
#define TTBCR_RGN_WBWA			1
#define TTBCR_RGN_WT			2
#define TTBCR_RGN_WB			3

#define TTBCR_SL0_SHIFT			6
#define TTBCR_SL0_MASK			0x3
#define TTBCR_SL0_LVL_2			0
#define TTBCR_SL0_LVL_1			1

#define TTBCR_T1SZ_SHIFT		16
#define TTBCR_T0SZ_SHIFT		0
#define TTBCR_SZ_MASK			0xf

#define TTBCR2_SEP_SHIFT		15
#define TTBCR2_SEP_MASK			0x7

#define TTBCR2_PASIZE_SHIFT		0
#define TTBCR2_PASIZE_MASK		0x7

/* Common definitions for PASize and SEP fields */
#define TTBCR2_ADDR_32			0
#define TTBCR2_ADDR_36			1
#define TTBCR2_ADDR_40			2
#define TTBCR2_ADDR_42			3
#define TTBCR2_ADDR_44			4
#define TTBCR2_ADDR_48			5

300 301
#define TTBRn_HI_ASID_SHIFT		16

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
#define MAIR_ATTR_SHIFT(n)		((n) << 3)
#define MAIR_ATTR_MASK			0xff
#define MAIR_ATTR_DEVICE		0x04
#define MAIR_ATTR_NC			0x44
#define MAIR_ATTR_WBRWA			0xff
#define MAIR_ATTR_IDX_NC		0
#define MAIR_ATTR_IDX_CACHE		1
#define MAIR_ATTR_IDX_DEV		2

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

322 323 324
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
325
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
326 327 328 329 330 331 332 333 334

#define FSYNR0_WNR			(1 << 4)

struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

335
struct arm_smmu_master_cfg {
336 337 338 339 340
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

341 342 343 344 345 346
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

347 348 349 350 351 352 353 354 355 356 357 358 359
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
	unsigned long			pagesize;

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
	u32				features;
360 361 362

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	int				version;

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

	unsigned long			input_size;
	unsigned long			s1_output_size;
	unsigned long			s2_output_size;

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
	pgd_t				*pgd;
};
391
#define INVALID_IRPTNDX			0xff
392

393 394 395
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

396
struct arm_smmu_domain {
397 398
	struct arm_smmu_device		*smmu;
	struct arm_smmu_cfg		cfg;
399
	spinlock_t			lock;
400 401 402 403 404
};

static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

405 406 407 408 409
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

410
static struct arm_smmu_option_prop arm_smmu_options[] = {
411 412 413 414 415 416 417
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
418

419 420 421 422 423 424 425 426 427 428
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

429 430 431 432
static struct device *dev_get_master_dev(struct device *dev)
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
433

434 435 436 437 438 439 440 441
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
		return bus->bridge->parent;
	}

	return dev;
}

442 443 444 445 446 447 448
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
449

450 451 452 453 454 455 456 457 458 459 460 461 462
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

463 464 465 466 467 468 469 470 471 472 473 474
static struct arm_smmu_master_cfg *
find_smmu_master_cfg(struct arm_smmu_device *smmu, struct device *dev)
{
	struct arm_smmu_master *master;

	if (dev_is_pci(dev))
		return dev->archdata.iommu;

	master = find_smmu_master(smmu, dev->of_node);
	return master ? &master->cfg : NULL;
}

475 476 477 478 479 480 481 482
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
483 484
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

526 527
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
528

529 530
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
531

532 533 534 535 536 537 538 539 540
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
541 542 543
	return insert_smmu_master(smmu, master);
}

544
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
545
{
546
	struct arm_smmu_device *smmu;
547 548
	struct arm_smmu_master *master = NULL;
	struct device_node *dev_node = dev_get_master_dev(dev)->of_node;
549 550

	spin_lock(&arm_smmu_devices_lock);
551
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
552 553 554 555
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
556
	spin_unlock(&arm_smmu_devices_lock);
557

558
	return master ? smmu : NULL;
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

598
static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
599
{
600 601
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
602 603 604 605 606
	void __iomem *base = ARM_SMMU_GR0(smmu);
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
607 608
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
609 610
	} else {
		base = ARM_SMMU_GR0(smmu);
611 612
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
613 614 615 616 617
	}

	arm_smmu_tlb_sync(smmu);
}

618 619 620 621 622 623 624
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
	struct arm_smmu_domain *smmu_domain = domain->priv;
625 626
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
627 628
	void __iomem *cb_base;

629
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
630 631 632 633 634 635 636
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
637
				    "Unexpected context fault (fsr 0x%x)\n",
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
654 655
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
656
		    iova, fsynr, cfg->cbndx);
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
675
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
676 677 678 679 680 681

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

682 683 684
	if (!gfsr)
		return IRQ_NONE;

685 686 687 688 689 690 691
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
692
	return IRQ_HANDLED;
693 694
}

695 696 697 698 699 700 701 702
static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
				   size_t size)
{
	unsigned long offset = (unsigned long)addr & ~PAGE_MASK;


	/* Ensure new page tables are visible to the hardware walker */
	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
703
		dsb(ishst);
704 705 706 707 708 709 710 711 712 713 714 715 716
	} else {
		/*
		 * If the SMMU can't walk tables in the CPU caches, treat them
		 * like non-coherent DMA since we need to flush the new entries
		 * all the way out to memory. There's no possibility of
		 * recursion here as the SMMU table walker will not be wired
		 * through another SMMU.
		 */
		dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
				DMA_TO_DEVICE);
	}
}

717 718 719 720
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
{
	u32 reg;
	bool stage1;
721 722
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
723 724 725 726
	void __iomem *cb_base, *gr0_base, *gr1_base;

	gr0_base = ARM_SMMU_GR0(smmu);
	gr1_base = ARM_SMMU_GR1(smmu);
727 728
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
729 730

	/* CBAR */
731
	reg = cfg->cbar;
732
	if (smmu->version == 1)
733
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
734

735 736 737 738 739 740 741 742
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	} else {
743
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
744
	}
745
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
746 747 748 749 750 751 752 753 754

	if (smmu->version > 1) {
		/* CBA2R */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg,
755
			       gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
756 757 758 759 760 761 762 763 764 765

		/* TTBCR2 */
		switch (smmu->input_size) {
		case 32:
			reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
			break;
		case 36:
			reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
			break;
		case 39:
766
		case 40:
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
			reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
			break;
		case 42:
			reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
			break;
		case 44:
			reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
			break;
		case 48:
			reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
			break;
		}

		switch (smmu->s1_output_size) {
		case 32:
			reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
			break;
		case 36:
			reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
			break;
		case 39:
788
		case 40:
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
			reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
			break;
		case 42:
			reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
			break;
		case 44:
			reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
			break;
		case 48:
			reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
			break;
		}

		if (stage1)
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
	}

	/* TTBR0 */
807
	arm_smmu_flush_pgtable(smmu, cfg->pgd,
808
			       PTRS_PER_PGD * sizeof(pgd_t));
809
	reg = __pa(cfg->pgd);
810
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
811
	reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
812
	if (stage1)
813
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
814 815 816 817 818 819 820 821 822 823 824 825 826
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);

	/*
	 * TTBCR
	 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
	 */
	if (smmu->version > 1) {
		if (PAGE_SIZE == SZ_4K)
			reg = TTBCR_TG0_4K;
		else
			reg = TTBCR_TG0_64K;

		if (!stage1) {
827 828
			reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
			switch (smmu->s2_output_size) {
			case 32:
				reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
				break;
			case 36:
				reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
				break;
			case 40:
				reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
				break;
			case 42:
				reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
				break;
			case 44:
				reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
				break;
			case 48:
				reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
				break;
			}
		} else {
850
			reg |= (64 - smmu->input_size) << TTBCR_T0SZ_SHIFT;
851 852 853 854 855 856 857 858
		}
	} else {
		reg = 0;
	}

	reg |= TTBCR_EAE |
	      (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
	      (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
859 860 861 862 863
	      (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);

	if (!stage1)
		reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);

	/* MAIR0 (stage-1 only) */
	if (stage1) {
		reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
		      (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
		      (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
881
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
882 883 884
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
885
					struct arm_smmu_device *smmu)
886
{
887 888
	int irq, start, ret = 0;
	unsigned long flags;
889
	struct arm_smmu_domain *smmu_domain = domain->priv;
890
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
891

892 893 894 895
	spin_lock_irqsave(&smmu_domain->lock, flags);
	if (smmu_domain->smmu)
		goto out_unlock;

896 897 898 899 900
	if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
901
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
902
		start = smmu->num_s2_context_banks;
903
	} else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
904
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
905
		start = smmu->num_s2_context_banks;
906 907 908
	} else {
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
909 910 911 912 913
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
914
		goto out_unlock;
915

916
	cfg->cbndx = ret;
917
	if (smmu->version == 1) {
918 919
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
920
	} else {
921
		cfg->irptndx = cfg->cbndx;
922 923
	}

924 925 926 927
	ACCESS_ONCE(smmu_domain->smmu) = smmu;
	arm_smmu_init_context_bank(smmu_domain);
	spin_unlock_irqrestore(&smmu_domain->lock, flags);

928
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
929 930 931 932
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
933 934
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
935 936
	}

937
	return 0;
938

939 940
out_unlock:
	spin_unlock_irqrestore(&smmu_domain->lock, flags);
941 942 943 944 945 946
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
947 948
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
949
	void __iomem *cb_base;
950 951 952 953 954
	int irq;

	if (!smmu)
		return;

955
	/* Disable the context bank and nuke the TLB before freeing it. */
956
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
957
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
958
	arm_smmu_tlb_inv_context(smmu_domain);
959

960 961
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
962 963 964
		free_irq(irq, domain);
	}

965
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
}

static int arm_smmu_domain_init(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain;
	pgd_t *pgd;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return -ENOMEM;

982
	pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL);
983 984
	if (!pgd)
		goto out_free_domain;
985
	smmu_domain->cfg.pgd = pgd;
986

987
	spin_lock_init(&smmu_domain->lock);
988 989 990 991 992 993 994 995 996 997 998
	domain->priv = smmu_domain;
	return 0;

out_free_domain:
	kfree(smmu_domain);
	return -ENOMEM;
}

static void arm_smmu_free_ptes(pmd_t *pmd)
{
	pgtable_t table = pmd_pgtable(*pmd);
999

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	__free_page(table);
}

static void arm_smmu_free_pmds(pud_t *pud)
{
	int i;
	pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);

	pmd = pmd_base;
	for (i = 0; i < PTRS_PER_PMD; ++i) {
		if (pmd_none(*pmd))
			continue;

		arm_smmu_free_ptes(pmd);
		pmd++;
	}

	pmd_free(NULL, pmd_base);
}

static void arm_smmu_free_puds(pgd_t *pgd)
{
	int i;
	pud_t *pud, *pud_base = pud_offset(pgd, 0);

	pud = pud_base;
	for (i = 0; i < PTRS_PER_PUD; ++i) {
		if (pud_none(*pud))
			continue;

		arm_smmu_free_pmds(pud);
		pud++;
	}

	pud_free(NULL, pud_base);
}

static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
{
	int i;
1040 1041
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	pgd_t *pgd, *pgd_base = cfg->pgd;
1042 1043 1044

	/*
	 * Recursively free the page tables for this domain. We don't
1045 1046
	 * care about speculative TLB filling because the tables should
	 * not be active in any context bank at this point (SCTLR.M is 0).
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	 */
	pgd = pgd_base;
	for (i = 0; i < PTRS_PER_PGD; ++i) {
		if (pgd_none(*pgd))
			continue;
		arm_smmu_free_puds(pgd);
		pgd++;
	}

	kfree(pgd_base);
}

static void arm_smmu_domain_destroy(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1062 1063 1064 1065 1066

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1067 1068 1069 1070 1071 1072
	arm_smmu_destroy_domain_context(domain);
	arm_smmu_free_pgtables(smmu_domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1073
					  struct arm_smmu_master_cfg *cfg)
1074 1075 1076 1077 1078 1079 1080 1081
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1082
	if (cfg->smrs)
1083 1084
		return -EEXIST;

1085
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1086
	if (!smrs) {
1087 1088
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1089 1090 1091
		return -ENOMEM;
	}

1092
	/* Allocate the SMRs on the SMMU */
1093
	for (i = 0; i < cfg->num_streamids; ++i) {
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1104
			.id	= cfg->streamids[i],
1105 1106 1107 1108
		};
	}

	/* It worked! Now, poke the actual hardware */
1109
	for (i = 0; i < cfg->num_streamids; ++i) {
1110 1111 1112 1113 1114
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1115
	cfg->smrs = smrs;
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1126
				      struct arm_smmu_master_cfg *cfg)
1127 1128 1129
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1130
	struct arm_smmu_smr *smrs = cfg->smrs;
1131

1132 1133 1134
	if (!smrs)
		return;

1135
	/* Invalidate the SMRs before freeing back to the allocator */
1136
	for (i = 0; i < cfg->num_streamids; ++i) {
1137
		u8 idx = smrs[i].idx;
1138

1139 1140 1141 1142
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1143
	cfg->smrs = NULL;
1144 1145 1146 1147
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1148
				      struct arm_smmu_master_cfg *cfg)
1149 1150
{
	int i, ret;
1151
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1152 1153
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1154
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1155 1156 1157
	if (ret)
		return ret;

1158
	for (i = 0; i < cfg->num_streamids; ++i) {
1159
		u32 idx, s2cr;
1160

1161
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1162
		s2cr = S2CR_TYPE_TRANS |
1163
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1164 1165 1166 1167 1168 1169 1170
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1171
					  struct arm_smmu_master_cfg *cfg)
1172
{
1173
	int i;
1174
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1175
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1176 1177 1178 1179 1180

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1181 1182 1183 1184 1185 1186 1187
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];

		writel_relaxed(S2CR_TYPE_BYPASS,
			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

1188
	arm_smmu_master_free_smrs(smmu, cfg);
1189 1190 1191 1192
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1193
	int ret;
1194
	struct arm_smmu_domain *smmu_domain = domain->priv;
1195
	struct arm_smmu_device *smmu, *dom_smmu;
1196
	struct arm_smmu_master_cfg *cfg;
1197

1198 1199
	smmu = dev_get_master_dev(dev)->archdata.iommu;
	if (!smmu) {
1200 1201 1202 1203 1204
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

	/*
1205 1206
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1207
	 */
1208 1209
	dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
	if (!dom_smmu) {
1210
		/* Now that we have a master, we can finalise the domain */
1211
		ret = arm_smmu_init_domain_context(domain, smmu);
1212
		if (IS_ERR_VALUE(ret))
1213 1214 1215 1216 1217 1218
			return ret;

		dom_smmu = smmu_domain->smmu;
	}

	if (dom_smmu != smmu) {
1219 1220
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1221 1222
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1223 1224 1225
	}

	/* Looks ok, so add the device to the domain */
1226
	cfg = find_smmu_master_cfg(smmu_domain->smmu, dev);
1227
	if (!cfg)
1228 1229
		return -ENODEV;

1230
	return arm_smmu_domain_add_master(smmu_domain, cfg);
1231 1232 1233 1234 1235
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1236
	struct arm_smmu_master_cfg *cfg;
1237

1238
	cfg = find_smmu_master_cfg(smmu_domain->smmu, dev);
1239 1240
	if (cfg)
		arm_smmu_domain_remove_master(smmu_domain, cfg);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
}

static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
					     unsigned long end)
{
	return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
		(addr + ARM_SMMU_PTE_CONT_SIZE <= end);
}

static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
				   unsigned long addr, unsigned long end,
1252
				   unsigned long pfn, int prot, int stage)
1253 1254
{
	pte_t *pte, *start;
1255
	pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF | ARM_SMMU_PTE_XN;
1256 1257 1258

	if (pmd_none(*pmd)) {
		/* Allocate a new set of tables */
1259
		pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
1260

1261 1262 1263
		if (!table)
			return -ENOMEM;

1264
		arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
1265 1266 1267 1268 1269
		pmd_populate(NULL, pmd, table);
		arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
	}

	if (stage == 1) {
1270
		pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1271
		if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
1272 1273
			pteval |= ARM_SMMU_PTE_AP_RDONLY;

1274
		if (prot & IOMMU_CACHE)
1275 1276 1277 1278
			pteval |= (MAIR_ATTR_IDX_CACHE <<
				   ARM_SMMU_PTE_ATTRINDX_SHIFT);
	} else {
		pteval |= ARM_SMMU_PTE_HAP_FAULT;
1279
		if (prot & IOMMU_READ)
1280
			pteval |= ARM_SMMU_PTE_HAP_READ;
1281
		if (prot & IOMMU_WRITE)
1282
			pteval |= ARM_SMMU_PTE_HAP_WRITE;
1283
		if (prot & IOMMU_CACHE)
1284 1285 1286 1287 1288 1289
			pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
		else
			pteval |= ARM_SMMU_PTE_MEMATTR_NC;
	}

	/* If no access, create a faulting entry to avoid TLB fills */
1290
	if (prot & IOMMU_EXEC)
1291
		pteval &= ~ARM_SMMU_PTE_XN;
1292
	else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		pteval &= ~ARM_SMMU_PTE_PAGE;

	pteval |= ARM_SMMU_PTE_SH_IS;
	start = pmd_page_vaddr(*pmd) + pte_index(addr);
	pte = start;

	/*
	 * Install the page table entries. This is fairly complicated
	 * since we attempt to make use of the contiguous hint in the
	 * ptes where possible. The contiguous hint indicates a series
	 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
	 * contiguous region with the following constraints:
	 *
	 *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
	 *   - Each pte in the region has the contiguous hint bit set
	 *
	 * This complicates unmapping (also handled by this code, when
	 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
	 * possible, yet highly unlikely, that a client may unmap only
	 * part of a contiguous range. This requires clearing of the
	 * contiguous hint bits in the range before installing the new
	 * faulting entries.
	 *
	 * Note that re-mapping an address range without first unmapping
	 * it is not supported, so TLB invalidation is not required here
	 * and is instead performed at unmap and domain-init time.
	 */
	do {
		int i = 1;
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		pteval &= ~ARM_SMMU_PTE_CONT;

		if (arm_smmu_pte_is_contiguous_range(addr, end)) {
			i = ARM_SMMU_PTE_CONT_ENTRIES;
			pteval |= ARM_SMMU_PTE_CONT;
		} else if (pte_val(*pte) &
			   (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
			int j;
			pte_t *cont_start;
			unsigned long idx = pte_index(addr);

			idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
			cont_start = pmd_page_vaddr(*pmd) + idx;
			for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1337 1338
				pte_val(*(cont_start + j)) &=
					~ARM_SMMU_PTE_CONT;
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

			arm_smmu_flush_pgtable(smmu, cont_start,
					       sizeof(*pte) *
					       ARM_SMMU_PTE_CONT_ENTRIES);
		}

		do {
			*pte = pfn_pte(pfn, __pgprot(pteval));
		} while (pte++, pfn++, addr += PAGE_SIZE, --i);
	} while (addr != end);

	arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
	return 0;
}

static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
				   unsigned long addr, unsigned long end,
1356
				   phys_addr_t phys, int prot, int stage)
1357 1358 1359 1360 1361 1362 1363
{
	int ret;
	pmd_t *pmd;
	unsigned long next, pfn = __phys_to_pfn(phys);

#ifndef __PAGETABLE_PMD_FOLDED
	if (pud_none(*pud)) {
1364
		pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
1365 1366
		if (!pmd)
			return -ENOMEM;
1367

1368
		arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
1369 1370 1371 1372
		pud_populate(NULL, pud, pmd);
		arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));

		pmd += pmd_index(addr);
1373 1374 1375 1376 1377 1378
	} else
#endif
		pmd = pmd_offset(pud, addr);

	do {
		next = pmd_addr_end(addr, end);
1379
		ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
1380
					      prot, stage);
1381 1382 1383 1384 1385 1386 1387 1388
		phys += next - addr;
	} while (pmd++, addr = next, addr < end);

	return ret;
}

static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
1389
				   phys_addr_t phys, int prot, int stage)
1390 1391 1392 1393 1394 1395 1396
{
	int ret = 0;
	pud_t *pud;
	unsigned long next;

#ifndef __PAGETABLE_PUD_FOLDED
	if (pgd_none(*pgd)) {
1397
		pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
1398 1399
		if (!pud)
			return -ENOMEM;
1400

1401
		arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
1402 1403 1404 1405
		pgd_populate(NULL, pgd, pud);
		arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));

		pud += pud_index(addr);
1406 1407 1408 1409 1410 1411 1412
	} else
#endif
		pud = pud_offset(pgd, addr);

	do {
		next = pud_addr_end(addr, end);
		ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1413
					      prot, stage);
1414 1415 1416 1417 1418 1419 1420 1421
		phys += next - addr;
	} while (pud++, addr = next, addr < end);

	return ret;
}

static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
				   unsigned long iova, phys_addr_t paddr,
1422
				   size_t size, int prot)
1423 1424 1425 1426
{
	int ret, stage;
	unsigned long end;
	phys_addr_t input_mask, output_mask;
1427 1428 1429
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	pgd_t *pgd = cfg->pgd;
1430
	unsigned long flags;
1431

1432
	if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
		stage = 2;
		output_mask = (1ULL << smmu->s2_output_size) - 1;
	} else {
		stage = 1;
		output_mask = (1ULL << smmu->s1_output_size) - 1;
	}

	if (!pgd)
		return -EINVAL;

	if (size & ~PAGE_MASK)
		return -EINVAL;

	input_mask = (1ULL << smmu->input_size) - 1;
	if ((phys_addr_t)iova & ~input_mask)
		return -ERANGE;

	if (paddr & ~output_mask)
		return -ERANGE;

1453
	spin_lock_irqsave(&smmu_domain->lock, flags);
1454 1455 1456 1457 1458 1459
	pgd += pgd_index(iova);
	end = iova + size;
	do {
		unsigned long next = pgd_addr_end(iova, end);

		ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1460
					      prot, stage);
1461 1462 1463 1464 1465 1466 1467 1468
		if (ret)
			goto out_unlock;

		paddr += next - iova;
		iova = next;
	} while (pgd++, iova != end);

out_unlock:
1469
	spin_unlock_irqrestore(&smmu_domain->lock, flags);
1470 1471 1472 1473 1474

	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1475
			phys_addr_t paddr, size_t size, int prot)
1476 1477 1478
{
	struct arm_smmu_domain *smmu_domain = domain->priv;

1479
	if (!smmu_domain)
1480 1481
		return -ENODEV;

1482
	return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
1483 1484 1485 1486 1487 1488 1489 1490 1491
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
	int ret;
	struct arm_smmu_domain *smmu_domain = domain->priv;

	ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1492
	arm_smmu_tlb_inv_context(smmu_domain);
1493
	return ret ? 0 : size;
1494 1495 1496 1497 1498
}

static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
					 dma_addr_t iova)
{
1499 1500 1501 1502
	pgd_t *pgdp, pgd;
	pud_t pud;
	pmd_t pmd;
	pte_t pte;
1503
	struct arm_smmu_domain *smmu_domain = domain->priv;
1504
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1505

1506
	pgdp = cfg->pgd;
1507 1508
	if (!pgdp)
		return 0;
1509

1510 1511 1512
	pgd = *(pgdp + pgd_index(iova));
	if (pgd_none(pgd))
		return 0;
1513

1514 1515 1516
	pud = *pud_offset(&pgd, iova);
	if (pud_none(pud))
		return 0;
1517

1518 1519 1520
	pmd = *pmd_offset(&pud, iova);
	if (pmd_none(pmd))
		return 0;
1521

1522
	pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1523
	if (pte_none(pte))
1524
		return 0;
1525

1526
	return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1527 1528 1529 1530 1531 1532
}

static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
				   unsigned long cap)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1533 1534
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	u32 features = smmu ? smmu->features : 0;
1535 1536 1537 1538 1539 1540 1541 1542 1543

	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return features & ARM_SMMU_FEAT_COHERENT_WALK;
	case IOMMU_CAP_INTR_REMAP:
		return 1; /* MSIs are just memory writes */
	default:
		return 0;
	}
1544 1545
}

1546 1547 1548 1549
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1550 1551 1552 1553
}

static int arm_smmu_add_device(struct device *dev)
{
1554
	struct arm_smmu_device *smmu;
1555 1556 1557 1558 1559 1560 1561
	struct iommu_group *group;
	int ret;

	if (dev->archdata.iommu) {
		dev_warn(dev, "IOMMU driver already assigned to device\n");
		return -EINVAL;
	}
1562

1563
	smmu = find_smmu_for_device(dev);
1564
	if (!smmu)
1565 1566
		return -ENODEV;

1567 1568 1569 1570 1571 1572
	group = iommu_group_alloc();
	if (IS_ERR(group)) {
		dev_err(dev, "Failed to allocate IOMMU group\n");
		return PTR_ERR(group);
	}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	if (dev_is_pci(dev)) {
		struct arm_smmu_master_cfg *cfg;
		struct pci_dev *pdev = to_pci_dev(dev);

		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
		if (!cfg) {
			ret = -ENOMEM;
			goto out_put_group;
		}

		cfg->num_streamids = 1;
		/*
		 * Assume Stream ID == Requester ID for now.
		 * We need a way to describe the ID mappings in FDT.
		 */
		pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
				       &cfg->streamids[0]);
		dev->archdata.iommu = cfg;
	} else {
		dev->archdata.iommu = smmu;
	}

1595 1596
	ret = iommu_group_add_device(group, dev);

1597 1598
out_put_group:
	iommu_group_put(group);
1599
	return ret;
1600 1601 1602 1603
}

static void arm_smmu_remove_device(struct device *dev)
{
1604 1605 1606
	if (dev_is_pci(dev))
		kfree(dev->archdata.iommu);

1607
	dev->archdata.iommu = NULL;
1608
	iommu_group_remove_device(dev);
1609 1610
}

1611
static const struct iommu_ops arm_smmu_ops = {
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	.domain_init	= arm_smmu_domain_init,
	.domain_destroy	= arm_smmu_domain_destroy,
	.attach_dev	= arm_smmu_attach_dev,
	.detach_dev	= arm_smmu_detach_dev,
	.map		= arm_smmu_map,
	.unmap		= arm_smmu_unmap,
	.iova_to_phys	= arm_smmu_iova_to_phys,
	.domain_has_cap	= arm_smmu_domain_has_cap,
	.add_device	= arm_smmu_add_device,
	.remove_device	= arm_smmu_remove_device,
	.pgsize_bitmap	= (SECTION_SIZE |
			   ARM_SMMU_PTE_CONT_SIZE |
			   PAGE_SIZE),
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1630
	void __iomem *cb_base;
1631
	int i = 0;
1632 1633
	u32 reg;

1634 1635 1636
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1637 1638 1639

	/* Mark all SMRn as invalid and all S2CRn as bypass */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1640
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1641 1642
		writel_relaxed(S2CR_TYPE_BYPASS,
			gr0_base + ARM_SMMU_GR0_S2CR(i));
1643 1644
	}

1645 1646 1647 1648 1649 1650
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1651

1652 1653 1654 1655 1656
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1657
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1658

1659
	/* Enable fault reporting */
1660
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1661 1662

	/* Disable TLB broadcasting. */
1663
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1664 1665

	/* Enable client access, but bypass when no mapping is found */
1666
	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1667 1668

	/* Disable forced broadcasting */
1669
	reg &= ~sCR0_FB;
1670 1671

	/* Don't upgrade barriers */
1672
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1673 1674 1675

	/* Push the button */
	arm_smmu_tlb_sync(smmu);
1676
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;

	dev_notice(smmu->dev, "probing hardware configuration...\n");

	/* Primecell ID */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
	smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
#ifndef CONFIG_64BIT
	if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
		dev_err(smmu->dev, "\tno v7 descriptor support!\n");
		return -ENODEV;
	}
#endif
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 |
		 ARM_SMMU_FEAT_TRANS_NESTED))) {
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

	if (id & ID0_CTTW) {
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
		dev_notice(smmu->dev, "\tcoherent table walk\n");
	}

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1775 1776 1777
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1778 1779 1780 1781 1782 1783
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
	smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;

1784
	/* Check for size mismatch of SMMU address space from mapped region */
1785 1786
	size = 1 <<
		(((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1787
	size *= (smmu->pagesize << 1);
1788
	if (smmu->size != size)
1789 1790 1791
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810

	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
				      ID1_NUMS2CB_MASK;
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);

	/*
	 * Stage-1 output limited by stage-2 input size due to pgd
	 * allocation (PTRS_PER_PGD).
	 */
1811
	if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
1812
#ifdef CONFIG_64BIT
1813
		smmu->s1_output_size = min_t(unsigned long, VA_BITS, size);
1814
#else
1815
		smmu->s1_output_size = min(32UL, size);
1816
#endif
1817 1818 1819 1820
	} else {
		smmu->s1_output_size = min_t(unsigned long, PHYS_MASK_SHIFT,
					     size);
	}
1821 1822 1823

	/* The stage-2 output mask is also applied for bypass */
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1824
	smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1825 1826 1827 1828 1829 1830

	if (smmu->version == 1) {
		smmu->input_size = 32;
	} else {
#ifdef CONFIG_64BIT
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1831
		size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
#else
		size = 32;
#endif
		smmu->input_size = size;

		if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
		    (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
		    (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
			dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
				PAGE_SIZE);
			return -ENODEV;
		}
	}

	dev_notice(smmu->dev,
		   "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1848 1849
		   smmu->input_size, smmu->s1_output_size,
		   smmu->s2_output_size);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	return 0;
}

static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1870 1871 1872
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1888 1889 1890 1891
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1903

1904 1905 1906 1907 1908 1909 1910
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1911 1912 1913 1914
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1931 1932
	parse_driver_options(smmu);

1933 1934 1935 1936 1937
	if (smmu->version > 1 &&
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1938
		err = -ENODEV;
1939
		goto out_put_masters;
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1959 1960

	arm_smmu_device_reset(smmu);
1961 1962 1963 1964 1965 1966 1967 1968
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1969 1970
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1998 1999
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
2000 2001 2002
		of_node_put(master->of_node);
	}

2003
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2004 2005 2006 2007 2008 2009
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
2010
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	return 0;
}

#ifdef CONFIG_OF
static struct of_device_id arm_smmu_of_match[] = {
	{ .compatible = "arm,smmu-v1", },
	{ .compatible = "arm,smmu-v2", },
	{ .compatible = "arm,mmu-400", },
	{ .compatible = "arm,mmu-500", },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
#endif

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.owner		= THIS_MODULE,
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
	int ret;

	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
2044
	if (!iommu_present(&platform_bus_type))
2045 2046
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

2047
#ifdef CONFIG_ARM_AMBA
2048
	if (!iommu_present(&amba_bustype))
2049
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2050
#endif
2051

2052 2053 2054 2055 2056
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

2057 2058 2059 2060 2061 2062 2063 2064
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2065
subsys_initcall(arm_smmu_init);
2066 2067 2068 2069 2070
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");