arm-smmu.c 50.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
37
#include <linux/iopoll.h>
38 39
#include <linux/module.h>
#include <linux/of.h>
40
#include <linux/pci.h>
41 42 43 44 45 46
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

47
#include "io-pgtable.h"
48 49

/* Maximum number of stream IDs assigned to a single device */
50
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
51 52 53 54 55 56 57 58 59

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
60
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
61

62 63 64 65 66 67 68 69 70 71
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
104
#define ID0_ATOSNS			(1 << 26)
105 106 107
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
108 109
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
161 162 163
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
182
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
183 184 185 186 187 188

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
#define ARM_SMMU_CB_TTBR0_LO		0x20
#define ARM_SMMU_CB_TTBR0_HI		0x24
189 190
#define ARM_SMMU_CB_TTBR1_LO		0x28
#define ARM_SMMU_CB_TTBR1_HI		0x2c
191 192
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
193
#define ARM_SMMU_CB_S1_MAIR1		0x3c
194 195
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
196 197 198 199
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
200
#define ARM_SMMU_CB_S1_TLBIVA		0x600
201
#define ARM_SMMU_CB_S1_TLBIASID		0x610
202 203 204
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
205 206 207
#define ARM_SMMU_CB_ATS1PR_LO		0x800
#define ARM_SMMU_CB_ATS1PR_HI		0x804
#define ARM_SMMU_CB_ATSR		0x8f0
208 209 210 211 212 213 214 215 216 217 218

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

219 220 221 222
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

223 224 225 226 227 228 229 230 231 232 233 234 235
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
#define TTBCR2_SEP_MASK			0x7

#define TTBCR2_ADDR_32			0
#define TTBCR2_ADDR_36			1
#define TTBCR2_ADDR_40			2
#define TTBCR2_ADDR_42			3
#define TTBCR2_ADDR_44			4
#define TTBCR2_ADDR_48			5

236
#define TTBRn_HI_ASID_SHIFT            16
237 238 239 240 241 242 243 244 245 246 247 248

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

249 250 251
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
252
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
253 254 255

#define FSYNR0_WNR			(1 << 4)

256 257 258 259 260
static int force_stage;
module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");

261 262 263 264 265
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

266 267 268 269 270 271
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

272
struct arm_smmu_master_cfg {
273 274 275 276 277
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

278 279 280 281 282 283
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

284 285 286 287 288
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
289
	unsigned long			pgshift;
290 291 292 293 294 295

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
296
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
297
	u32				features;
298 299 300

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
301
	enum arm_smmu_arch_version	version;
302 303 304 305 306 307 308 309 310

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

311 312 313
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
314 315 316 317 318 319 320 321 322 323 324 325 326 327

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
328
#define INVALID_IRPTNDX			0xff
329

330 331 332
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

333 334 335 336 337 338
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

339
struct arm_smmu_domain {
340
	struct arm_smmu_device		*smmu;
341 342
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
343
	struct arm_smmu_cfg		cfg;
344
	enum arm_smmu_domain_stage	stage;
345
	struct mutex			init_mutex; /* Protects smmu pointer */
346
	struct iommu_domain		domain;
347 348
};

349 350
static struct iommu_ops arm_smmu_ops;

351 352 353
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

354 355 356 357 358
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

359
static struct arm_smmu_option_prop arm_smmu_options[] = {
360 361 362 363
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

364 365 366 367 368
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

369 370 371
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
372

373 374 375 376 377 378 379 380 381 382
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

383
static struct device_node *dev_get_dev_node(struct device *dev)
384 385 386
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
387

388 389
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
390
		return bus->bridge->parent->of_node;
391 392
	}

393
	return dev->of_node;
394 395
}

396 397 398 399 400 401 402
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
403

404 405 406 407 408 409 410 411 412 413 414 415 416
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

417
static struct arm_smmu_master_cfg *
418
find_smmu_master_cfg(struct device *dev)
419
{
420 421
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
422

423 424 425 426
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
427

428
	return cfg;
429 430
}

431 432 433 434 435 436 437 438
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
439 440
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

482 483
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
484

485 486
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
487

488 489 490 491 492 493 494 495 496
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
497 498 499
	return insert_smmu_master(smmu, master);
}

500
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
501
{
502
	struct arm_smmu_device *smmu;
503
	struct arm_smmu_master *master = NULL;
504
	struct device_node *dev_node = dev_get_dev_node(dev);
505 506

	spin_lock(&arm_smmu_devices_lock);
507
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
508 509 510 511
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
512
	spin_unlock(&arm_smmu_devices_lock);
513

514
	return master ? smmu : NULL;
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
536
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

554 555 556 557 558 559 560
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
561
{
562
	struct arm_smmu_domain *smmu_domain = cookie;
563 564
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
565
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
566
	void __iomem *base;
567 568 569

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
570 571
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
572 573
	} else {
		base = ARM_SMMU_GR0(smmu);
574 575
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
576 577
	}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
					  bool leaf, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
			iova |= ARM_SMMU_CB_ASID(cfg);
			writel_relaxed(iova, reg);
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
			iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
			writeq_relaxed(iova, reg);
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
		writeq_relaxed(iova >> 12, reg);
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
		writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
	}
}

static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	unsigned long offset = (unsigned long)addr & ~PAGE_MASK;


	/* Ensure new page tables are visible to the hardware walker */
	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
		dsb(ishst);
	} else {
		/*
		 * If the SMMU can't walk tables in the CPU caches, treat them
		 * like non-coherent DMA since we need to flush the new entries
		 * all the way out to memory. There's no possibility of
		 * recursion here as the SMMU table walker will not be wired
		 * through another SMMU.
		 */
		dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
			     DMA_TO_DEVICE);
	}
639 640
}

641 642 643 644 645 646 647
static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
	.flush_pgtable	= arm_smmu_flush_pgtable,
};

648 649 650 651 652 653
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
654
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
655 656
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
657 658
	void __iomem *cb_base;

659
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
660 661 662 663 664 665 666
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
667
				    "Unexpected context fault (fsr 0x%x)\n",
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
684 685
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
686
		    iova, fsynr, cfg->cbndx);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
705
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
706 707 708 709 710 711

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

712 713 714
	if (!gfsr)
		return IRQ_NONE;

715 716 717 718 719 720 721
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
722
	return IRQ_HANDLED;
723 724
}

725 726
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
727 728 729
{
	u32 reg;
	bool stage1;
730 731
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
732 733 734 735
	void __iomem *cb_base, *gr0_base, *gr1_base;

	gr0_base = ARM_SMMU_GR0(smmu);
	gr1_base = ARM_SMMU_GR1(smmu);
736 737
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752
	if (smmu->version > ARM_SMMU_V1) {
		/*
		 * CBA2R.
		 * *Must* be initialised before CBAR thanks to VMID16
		 * architectural oversight affected some implementations.
		 */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

753
	/* CBAR */
754
	reg = cfg->cbar;
755
	if (smmu->version == ARM_SMMU_V1)
756
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
757

758 759 760 761 762 763 764 765
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	} else {
766
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
767
	}
768
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
769

770 771 772 773 774
	/* TTBRs */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32;
775
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
776
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
777

778 779 780 781 782 783 784 785 786 787 788
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO);
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32;
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI);
	} else {
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
	}
789

790 791 792 793 794 795 796
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
			switch (smmu->va_size) {
797
			case 32:
798
				reg |= (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
799 800
				break;
			case 36:
801
				reg |= (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
802 803
				break;
			case 40:
804
				reg |= (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
805 806
				break;
			case 42:
807
				reg |= (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
808 809
				break;
			case 44:
810
				reg |= (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
811 812
				break;
			case 48:
813
				reg |= (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
814 815
				break;
			}
816
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
817 818
		}
	} else {
819 820
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
821 822
	}

823
	/* MAIRs (stage-1 only) */
824
	if (stage1) {
825
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
826
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
827 828
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
829 830 831 832 833 834 835 836 837
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
838
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
839 840 841
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
842
					struct arm_smmu_device *smmu)
843
{
844
	int irq, start, ret = 0;
845 846 847 848
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
849
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
850
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
851

852
	mutex_lock(&smmu_domain->init_mutex);
853 854 855
	if (smmu_domain->smmu)
		goto out_unlock;

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
883 884 885 886 887 888
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
889 890
		break;
	case ARM_SMMU_DOMAIN_NESTED:
891 892 893 894
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
895
	case ARM_SMMU_DOMAIN_S2:
896 897
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
898 899 900 901 902 903
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
904 905 906 907
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
908 909 910 911 912
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
913
		goto out_unlock;
914

915
	cfg->cbndx = ret;
916
	if (smmu->version == ARM_SMMU_V1) {
917 918
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
919
	} else {
920
		cfg->irptndx = cfg->cbndx;
921 922
	}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
939

940 941 942 943 944 945 946
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
947
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
948 949 950 951
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
952 953
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
954 955
	}

956 957 958 959
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
960
	return 0;
961

962 963
out_clear_smmu:
	smmu_domain->smmu = NULL;
964
out_unlock:
965
	mutex_unlock(&smmu_domain->init_mutex);
966 967 968 969 970
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
971
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
972 973
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
974
	void __iomem *cb_base;
975 976 977 978 979
	int irq;

	if (!smmu)
		return;

980 981 982 983
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
984
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
985 986
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

987 988
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
989 990 991
		free_irq(irq, domain);
	}

992 993 994
	if (smmu_domain->pgtbl_ops)
		free_io_pgtable_ops(smmu_domain->pgtbl_ops);

995
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
996 997
}

998
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
999 1000 1001
{
	struct arm_smmu_domain *smmu_domain;

1002 1003
	if (type != IOMMU_DOMAIN_UNMANAGED)
		return NULL;
1004 1005 1006 1007 1008 1009 1010
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1011
		return NULL;
1012

1013 1014
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1015 1016

	return &smmu_domain->domain;
1017 1018
}

1019
static void arm_smmu_domain_free(struct iommu_domain *domain)
1020
{
1021
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1022 1023 1024 1025 1026

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1027 1028 1029 1030 1031
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1032
					  struct arm_smmu_master_cfg *cfg)
1033 1034 1035 1036 1037 1038 1039 1040
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1041
	if (cfg->smrs)
1042 1043
		return -EEXIST;

1044
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1045
	if (!smrs) {
1046 1047
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1048 1049 1050
		return -ENOMEM;
	}

1051
	/* Allocate the SMRs on the SMMU */
1052
	for (i = 0; i < cfg->num_streamids; ++i) {
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1063
			.id	= cfg->streamids[i],
1064 1065 1066 1067
		};
	}

	/* It worked! Now, poke the actual hardware */
1068
	for (i = 0; i < cfg->num_streamids; ++i) {
1069 1070 1071 1072 1073
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1074
	cfg->smrs = smrs;
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1085
				      struct arm_smmu_master_cfg *cfg)
1086 1087 1088
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1089
	struct arm_smmu_smr *smrs = cfg->smrs;
1090

1091 1092 1093
	if (!smrs)
		return;

1094
	/* Invalidate the SMRs before freeing back to the allocator */
1095
	for (i = 0; i < cfg->num_streamids; ++i) {
1096
		u8 idx = smrs[i].idx;
1097

1098 1099 1100 1101
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1102
	cfg->smrs = NULL;
1103 1104 1105 1106
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1107
				      struct arm_smmu_master_cfg *cfg)
1108 1109
{
	int i, ret;
1110
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1111 1112
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1113
	/* Devices in an IOMMU group may already be configured */
1114
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1115
	if (ret)
1116
		return ret == -EEXIST ? 0 : ret;
1117

1118
	for (i = 0; i < cfg->num_streamids; ++i) {
1119
		u32 idx, s2cr;
1120

1121
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1122
		s2cr = S2CR_TYPE_TRANS |
1123
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1124 1125 1126 1127 1128 1129 1130
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1131
					  struct arm_smmu_master_cfg *cfg)
1132
{
1133
	int i;
1134
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1135
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1136

1137 1138 1139
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1140 1141 1142 1143 1144

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1145 1146 1147 1148 1149 1150 1151
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];

		writel_relaxed(S2CR_TYPE_BYPASS,
			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

1152
	arm_smmu_master_free_smrs(smmu, cfg);
1153 1154 1155 1156
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1157
	int ret;
1158
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1159
	struct arm_smmu_device *smmu;
1160
	struct arm_smmu_master_cfg *cfg;
1161

1162
	smmu = find_smmu_for_device(dev);
1163
	if (!smmu) {
1164 1165 1166 1167
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1168 1169 1170 1171 1172
	if (dev->archdata.iommu) {
		dev_err(dev, "already attached to IOMMU domain\n");
		return -EEXIST;
	}

1173 1174 1175 1176 1177
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1178
	/*
1179 1180
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1181
	 */
1182
	if (smmu_domain->smmu != smmu) {
1183 1184
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1185 1186
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1187 1188 1189
	}

	/* Looks ok, so add the device to the domain */
1190
	cfg = find_smmu_master_cfg(dev);
1191
	if (!cfg)
1192 1193
		return -ENODEV;

1194 1195 1196
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1197 1198 1199 1200 1201
	return ret;
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
1202
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1203
	struct arm_smmu_master_cfg *cfg;
1204

1205
	cfg = find_smmu_master_cfg(dev);
1206 1207 1208 1209 1210
	if (!cfg)
		return;

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
1211 1212 1213
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1214
			phys_addr_t paddr, size_t size, int prot)
1215
{
1216 1217
	int ret;
	unsigned long flags;
1218
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1219
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1220

1221
	if (!ops)
1222 1223
		return -ENODEV;

1224 1225 1226 1227
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1228 1229 1230 1231 1232
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1233 1234
	size_t ret;
	unsigned long flags;
1235
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1236
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1237

1238 1239 1240 1241 1242 1243 1244
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1245 1246
}

1247 1248 1249
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1250
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

	if (smmu->version == 1) {
		u32 reg = iova & ~0xfff;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
	} else {
		u32 reg = iova & ~0xfff;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
1267
		reg = ((u64)iova & ~0xfff) >> 32;
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_HI);
	}

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
			"iova to phys timed out on 0x%pad. Falling back to software table walk.\n",
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1291
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1292
					dma_addr_t iova)
1293
{
1294 1295
	phys_addr_t ret;
	unsigned long flags;
1296
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1297
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1298

1299
	if (!ops)
1300
		return 0;
1301

1302
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1303 1304
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1305
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1306
	} else {
1307
		ret = ops->iova_to_phys(ops, iova);
1308 1309
	}

1310
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1311

1312
	return ret;
1313 1314
}

1315
static bool arm_smmu_capable(enum iommu_cap cap)
1316
{
1317 1318
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1319 1320 1321 1322 1323
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1324
	case IOMMU_CAP_INTR_REMAP:
1325
		return true; /* MSIs are just memory writes */
1326 1327
	case IOMMU_CAP_NOEXEC:
		return true;
1328
	default:
1329
		return false;
1330
	}
1331 1332
}

1333 1334 1335 1336
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1337 1338
}

1339 1340 1341 1342 1343
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1344
static int arm_smmu_add_pci_device(struct pci_dev *pdev)
1345
{
1346 1347
	int i, ret;
	u16 sid;
1348
	struct iommu_group *group;
1349
	struct arm_smmu_master_cfg *cfg;
1350

1351 1352
	group = iommu_group_get_for_dev(&pdev->dev);
	if (IS_ERR(group))
1353
		return PTR_ERR(group);
1354

1355 1356
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1357 1358 1359 1360 1361 1362
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
		if (!cfg) {
			ret = -ENOMEM;
			goto out_put_group;
		}

1363 1364 1365
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1366

1367 1368 1369
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS) {
		ret = -ENOSPC;
		goto out_put_group;
1370 1371
	}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1384

1385
	return 0;
1386 1387
out_put_group:
	iommu_group_put(group);
1388
	return ret;
1389 1390
}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
static int arm_smmu_add_platform_device(struct device *dev)
{
	struct iommu_group *group;
	struct arm_smmu_master *master;
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	/* No automatic group creation for platform devices */
	group = iommu_group_alloc();
	if (IS_ERR(group))
		return PTR_ERR(group);

	iommu_group_set_iommudata(group, &master->cfg, NULL);
	return iommu_group_add_device(group, dev);
}

static int arm_smmu_add_device(struct device *dev)
{
	if (dev_is_pci(dev))
		return arm_smmu_add_pci_device(to_pci_dev(dev));

	return arm_smmu_add_platform_device(dev);
}

1421 1422
static void arm_smmu_remove_device(struct device *dev)
{
1423
	iommu_group_remove_device(dev);
1424 1425
}

1426 1427 1428
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1429
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1443
	int ret = 0;
1444
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1445

1446 1447
	mutex_lock(&smmu_domain->init_mutex);

1448 1449
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1450 1451 1452 1453 1454
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1455 1456 1457 1458 1459
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1460
		break;
1461
	default:
1462
		ret = -ENODEV;
1463
	}
1464 1465 1466 1467

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1468 1469
}

1470
static struct iommu_ops arm_smmu_ops = {
1471
	.capable		= arm_smmu_capable,
1472 1473
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1474 1475 1476 1477
	.attach_dev		= arm_smmu_attach_dev,
	.detach_dev		= arm_smmu_detach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1478
	.map_sg			= default_iommu_map_sg,
1479 1480 1481 1482 1483
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1484
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1485 1486 1487 1488 1489
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1490
	void __iomem *cb_base;
1491
	int i = 0;
1492 1493
	u32 reg;

1494 1495 1496
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1497 1498 1499

	/* Mark all SMRn as invalid and all S2CRn as bypass */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1500
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1501 1502
		writel_relaxed(S2CR_TYPE_BYPASS,
			gr0_base + ARM_SMMU_GR0_S2CR(i));
1503 1504
	}

1505 1506 1507 1508 1509 1510
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1511

1512 1513 1514 1515
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1516
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1517

1518
	/* Enable fault reporting */
1519
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1520 1521

	/* Disable TLB broadcasting. */
1522
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1523 1524

	/* Enable client access, but bypass when no mapping is found */
1525
	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1526 1527

	/* Disable forced broadcasting */
1528
	reg &= ~sCR0_FB;
1529 1530

	/* Don't upgrade barriers */
1531
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1532 1533

	/* Push the button */
1534
	__arm_smmu_tlb_sync(smmu);
1535
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1568 1569 1570 1571 1572 1573 1574

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1591
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1592 1593 1594 1595
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1596
	if ((id & ID0_S1TS) && ((smmu->version == 1) || (id & ID0_ATOSNS))) {
1597 1598 1599 1600
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	if (id & ID0_CTTW) {
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
		dev_notice(smmu->dev, "\tcoherent table walk\n");
	}

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1635 1636 1637
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1638 1639 1640 1641
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1642
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1643

1644
	/* Check for size mismatch of SMMU address space from mapped region */
1645
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1646
	size *= 2 << smmu->pgshift;
1647
	if (smmu->size != size)
1648 1649 1650
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1651

1652
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1664
	smmu->ipa_size = size;
1665

1666
	/* The output mask is also applied for bypass */
1667
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1668
	smmu->pa_size = size;
1669

1670 1671 1672 1673 1674 1675 1676 1677 1678
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1679
	if (smmu->version == ARM_SMMU_V1) {
1680 1681
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1682 1683
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1684 1685 1686
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1687
#endif
1688 1689 1690 1691 1692 1693 1694
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1695 1696
	}

1697 1698 1699
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1700 1701
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1702
			   smmu->va_size, smmu->ipa_size);
1703 1704 1705

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1706
			   smmu->ipa_size, smmu->pa_size);
1707

1708 1709 1710
	return 0;
}

1711
static const struct of_device_id arm_smmu_of_match[] = {
1712 1713 1714
	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
R
Robin Murphy 已提交
1715
	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1716 1717 1718 1719 1720
	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1721 1722
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1723
	const struct of_device_id *of_id;
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1738 1739 1740
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
	smmu->version = (enum arm_smmu_arch_version)of_id->data;

1741
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1742 1743 1744
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1760 1761 1762 1763
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1775

1776 1777 1778 1779 1780 1781 1782
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1783 1784 1785 1786
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1803 1804
	parse_driver_options(smmu);

1805
	if (smmu->version > ARM_SMMU_V1 &&
1806 1807 1808 1809
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1810
		err = -ENODEV;
1811
		goto out_put_masters;
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1831 1832

	arm_smmu_device_reset(smmu);
1833 1834 1835 1836 1837 1838 1839 1840
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1841 1842
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1870 1871
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1872 1873 1874
		of_node_put(master->of_node);
	}

1875
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1876 1877 1878 1879 1880 1881
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1882
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1897
	struct device_node *np;
1898 1899
	int ret;

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1911 1912 1913 1914 1915
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1916
	if (!iommu_present(&platform_bus_type))
1917 1918
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1919
#ifdef CONFIG_ARM_AMBA
1920
	if (!iommu_present(&amba_bustype))
1921
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1922
#endif
1923

1924 1925 1926 1927 1928
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1929 1930 1931 1932 1933 1934 1935 1936
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1937
subsys_initcall(arm_smmu_init);
1938 1939 1940 1941 1942
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");