arm-smmu.c 51.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
32
#include <linux/dma-iommu.h>
33 34 35 36 37
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
38
#include <linux/iopoll.h>
39 40
#include <linux/module.h>
#include <linux/of.h>
41
#include <linux/of_address.h>
42
#include <linux/pci.h>
43 44 45 46 47 48
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

49
#include "io-pgtable.h"
50 51

/* Maximum number of stream IDs assigned to a single device */
52
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
53 54 55 56 57 58 59 60 61

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
62
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
63

64 65 66 67 68 69 70 71 72 73
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_64BIT
#define smmu_writeq	writeq_relaxed
#else
#define smmu_writeq(reg64, addr)				\
	do {							\
		u64 __val = (reg64);				\
		void __iomem *__addr = (addr);			\
		writel_relaxed(__val >> 32, __addr + 4);	\
		writel_relaxed(__val, __addr);			\
	} while (0)
#endif

86 87 88 89 90 91 92 93 94 95 96
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
97
#define sCR0_VMID16EN			(1 << 31)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
119
#define ID0_ATOSNS			(1 << 26)
120 121 122
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
123 124
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
145
#define ID2_VMID16			(1 << 15)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

173 174 175
#define S2CR_PRIVCFG_SHIFT		24
#define S2CR_PRIVCFG_UNPRIV		(2 << S2CR_PRIVCFG_SHIFT)

176 177 178 179
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
180 181 182
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
198 199
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
200 201 202

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
203
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
204 205 206 207

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
208 209
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
210 211
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
212
#define ARM_SMMU_CB_S1_MAIR1		0x3c
213 214
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
215 216 217 218
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
219
#define ARM_SMMU_CB_S1_TLBIVA		0x600
220
#define ARM_SMMU_CB_S1_TLBIASID		0x610
221 222 223
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
224
#define ARM_SMMU_CB_ATS1PR		0x800
225
#define ARM_SMMU_CB_ATSR		0x8f0
226 227 228 229 230 231 232 233 234 235 236

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

237 238 239 240
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

241 242 243 244
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
245
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
246

247
#define TTBRn_ASID_SHIFT		48
248 249 250 251 252 253 254 255 256 257 258 259

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

260 261 262
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
263
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
264 265 266

#define FSYNR0_WNR			(1 << 4)

267
static int force_stage;
268
module_param(force_stage, int, S_IRUGO);
269 270
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
271 272 273 274
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
275

276 277 278 279 280
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

281 282 283 284 285 286
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

287
struct arm_smmu_master_cfg {
288 289 290 291 292
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

293 294 295 296 297 298
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

299 300 301 302 303
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
304
	unsigned long			pgshift;
305 306 307 308 309 310

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
311
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
312
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
313
	u32				features;
314 315 316

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
317
	enum arm_smmu_arch_version	version;
318 319 320 321 322 323 324 325 326

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

327 328 329
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
330 331 332 333 334 335 336

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
337 338

	u32				cavium_id_base; /* Specific to Cavium */
339 340 341 342 343 344 345
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
346
#define INVALID_IRPTNDX			0xff
347

348 349
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
350

351 352 353 354 355 356
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

357
struct arm_smmu_domain {
358
	struct arm_smmu_device		*smmu;
359 360
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
361
	struct arm_smmu_cfg		cfg;
362
	enum arm_smmu_domain_stage	stage;
363
	struct mutex			init_mutex; /* Protects smmu pointer */
364
	struct iommu_domain		domain;
365 366
};

367 368
static struct iommu_ops arm_smmu_ops;

369 370 371
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

372 373 374 375 376
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

377 378
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

379
static struct arm_smmu_option_prop arm_smmu_options[] = {
380 381 382 383
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

384 385 386 387 388
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

389 390 391
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
392

393 394 395 396 397 398 399 400 401 402
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

403
static struct device_node *dev_get_dev_node(struct device *dev)
404 405 406
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
407

408 409
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
410
		return bus->bridge->parent->of_node;
411 412
	}

413
	return dev->of_node;
414 415
}

416 417 418 419 420 421 422
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
423

424 425 426 427 428 429 430 431 432 433 434 435 436
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

437
static struct arm_smmu_master_cfg *
438
find_smmu_master_cfg(struct device *dev)
439
{
440 441
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
442

443 444 445 446
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
447

448
	return cfg;
449 450
}

451 452 453 454 455 456 457 458
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
459 460
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

502 503
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
504

505 506
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
507

508 509 510 511 512 513 514 515 516
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
517 518 519
	return insert_smmu_master(smmu, master);
}

520
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
521
{
522
	struct arm_smmu_device *smmu;
523
	struct arm_smmu_master *master = NULL;
524
	struct device_node *dev_node = dev_get_dev_node(dev);
525 526

	spin_lock(&arm_smmu_devices_lock);
527
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
528 529 530 531
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
532
	spin_unlock(&arm_smmu_devices_lock);
533

534
	return master ? smmu : NULL;
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
556
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

574 575 576 577 578 579 580
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
581
{
582
	struct arm_smmu_domain *smmu_domain = cookie;
583 584
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
585
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
586
	void __iomem *base;
587 588 589

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
590
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
591
			       base + ARM_SMMU_CB_S1_TLBIASID);
592 593
	} else {
		base = ARM_SMMU_GR0(smmu);
594
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
595
			       base + ARM_SMMU_GR0_TLBIVMID);
596 597
	}

598 599 600 601
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
602
					  size_t granule, bool leaf, void *cookie)
603 604 605 606 607 608 609 610 611 612 613 614 615
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
616
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
617 618 619 620
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
621 622 623
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
624
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
625 626 627 628
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
629 630 631 632 633 634 635
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
636 637 638 639 640
		iova >>= 12;
		do {
			writeq_relaxed(iova, reg);
			iova += granule >> 12;
		} while (size -= granule);
641 642 643
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
644
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
645 646 647 648 649 650 651 652 653
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

654 655 656 657 658 659
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
660
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
661 662
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
663 664
	void __iomem *cb_base;

665
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
666 667 668 669 670 671 672
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
673
				    "Unexpected context fault (fsr 0x%x)\n",
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
690 691
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
692
		    iova, fsynr, cfg->cbndx);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
711
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
712 713 714 715 716 717

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

718 719 720
	if (!gfsr)
		return IRQ_NONE;

721 722 723 724 725 726 727
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
728
	return IRQ_HANDLED;
729 730
}

731 732
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
733 734
{
	u32 reg;
735
	u64 reg64;
736
	bool stage1;
737 738
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
739
	void __iomem *cb_base, *gr1_base;
740 741

	gr1_base = ARM_SMMU_GR1(smmu);
742 743
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
744

745 746 747 748 749 750
	if (smmu->version > ARM_SMMU_V1) {
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
751 752
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
753
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
754

755 756 757
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

758
	/* CBAR */
759
	reg = cfg->cbar;
760
	if (smmu->version == ARM_SMMU_V1)
761
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
762

763 764 765 766 767 768 769
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
770 771
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
772
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
773
	}
774
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
775

776 777
	/* TTBRs */
	if (stage1) {
778 779
		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];

780
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
781 782 783
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);

		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
784
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
785
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
786
	} else {
787 788
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
789
	}
790

791 792 793 794 795 796
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
797
			reg |= TTBCR2_SEP_UPSTREAM;
798
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
799 800
		}
	} else {
801 802
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
803 804
	}

805
	/* MAIRs (stage-1 only) */
806
	if (stage1) {
807
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
808
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
809 810
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
811 812 813 814 815 816 817 818 819
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
820
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
821 822 823
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
824
					struct arm_smmu_device *smmu)
825
{
826
	int irq, start, ret = 0;
827 828 829 830
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
831
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
832
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
833

834
	mutex_lock(&smmu_domain->init_mutex);
835 836 837
	if (smmu_domain->smmu)
		goto out_unlock;

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
865 866 867 868 869 870
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
871 872
		break;
	case ARM_SMMU_DOMAIN_NESTED:
873 874 875 876
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
877
	case ARM_SMMU_DOMAIN_S2:
878 879
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
880 881 882 883 884 885
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
886 887 888 889
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
890 891 892 893 894
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
895
		goto out_unlock;
896

897
	cfg->cbndx = ret;
898
	if (smmu->version == ARM_SMMU_V1) {
899 900
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
901
	} else {
902
		cfg->irptndx = cfg->cbndx;
903 904
	}

905 906 907 908 909
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
910
		.iommu_dev	= smmu->dev,
911 912 913 914 915 916 917 918 919 920 921
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
922

923 924 925 926 927 928 929
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
930
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
931 932 933 934
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
935 936
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
937 938
	}

939 940 941 942
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
943
	return 0;
944

945 946
out_clear_smmu:
	smmu_domain->smmu = NULL;
947
out_unlock:
948
	mutex_unlock(&smmu_domain->init_mutex);
949 950 951 952 953
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
954
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
955 956
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
957
	void __iomem *cb_base;
958 959 960 961 962
	int irq;

	if (!smmu)
		return;

963 964 965 966
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
967
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
968 969
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

970 971
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
972 973 974
		free_irq(irq, domain);
	}

975
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
976
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
977 978
}

979
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
980 981 982
{
	struct arm_smmu_domain *smmu_domain;

983
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
984
		return NULL;
985 986 987 988 989 990 991
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
992
		return NULL;
993

994 995 996 997 998 999
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1000 1001
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1002 1003

	return &smmu_domain->domain;
1004 1005
}

1006
static void arm_smmu_domain_free(struct iommu_domain *domain)
1007
{
1008
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1009 1010 1011 1012 1013

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1014
	iommu_put_dma_cookie(domain);
1015 1016 1017 1018 1019
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1020
					  struct arm_smmu_master_cfg *cfg)
1021 1022 1023 1024 1025 1026 1027 1028
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1029
	if (cfg->smrs)
1030 1031
		return -EEXIST;

1032
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1033
	if (!smrs) {
1034 1035
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1036 1037 1038
		return -ENOMEM;
	}

1039
	/* Allocate the SMRs on the SMMU */
1040
	for (i = 0; i < cfg->num_streamids; ++i) {
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1051
			.id	= cfg->streamids[i],
1052 1053 1054 1055
		};
	}

	/* It worked! Now, poke the actual hardware */
1056
	for (i = 0; i < cfg->num_streamids; ++i) {
1057 1058 1059 1060 1061
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1062
	cfg->smrs = smrs;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1073
				      struct arm_smmu_master_cfg *cfg)
1074 1075 1076
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1077
	struct arm_smmu_smr *smrs = cfg->smrs;
1078

1079 1080 1081
	if (!smrs)
		return;

1082
	/* Invalidate the SMRs before freeing back to the allocator */
1083
	for (i = 0; i < cfg->num_streamids; ++i) {
1084
		u8 idx = smrs[i].idx;
1085

1086 1087 1088 1089
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1090
	cfg->smrs = NULL;
1091 1092 1093 1094
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1095
				      struct arm_smmu_master_cfg *cfg)
1096 1097
{
	int i, ret;
1098
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1099 1100
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1101
	/* Devices in an IOMMU group may already be configured */
1102
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1103
	if (ret)
1104
		return ret == -EEXIST ? 0 : ret;
1105

1106 1107 1108 1109 1110 1111 1112
	/*
	 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
	 * for all devices behind the SMMU.
	 */
	if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
		return 0;

1113
	for (i = 0; i < cfg->num_streamids; ++i) {
1114
		u32 idx, s2cr;
1115

1116
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1117
		s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1118
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1119 1120 1121 1122 1123 1124 1125
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1126
					  struct arm_smmu_master_cfg *cfg)
1127
{
1128
	int i;
1129
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1130
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1131

1132 1133 1134
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1135 1136 1137 1138 1139

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1140 1141
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1142
		u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1143

1144
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1145 1146
	}

1147
	arm_smmu_master_free_smrs(smmu, cfg);
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
static void arm_smmu_detach_dev(struct device *dev,
				struct arm_smmu_master_cfg *cfg)
{
	struct iommu_domain *domain = dev->archdata.iommu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
}

1160 1161
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1162
	int ret;
1163
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1164
	struct arm_smmu_device *smmu;
1165
	struct arm_smmu_master_cfg *cfg;
1166

1167
	smmu = find_smmu_for_device(dev);
1168
	if (!smmu) {
1169 1170 1171 1172
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1173 1174 1175 1176 1177
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1178
	/*
1179 1180
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1181
	 */
1182
	if (smmu_domain->smmu != smmu) {
1183 1184
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1185 1186
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1187 1188 1189
	}

	/* Looks ok, so add the device to the domain */
1190
	cfg = find_smmu_master_cfg(dev);
1191
	if (!cfg)
1192 1193
		return -ENODEV;

1194 1195 1196 1197
	/* Detach the dev from its current domain */
	if (dev->archdata.iommu)
		arm_smmu_detach_dev(dev, cfg);

1198 1199 1200
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1201 1202 1203 1204
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1205
			phys_addr_t paddr, size_t size, int prot)
1206
{
1207 1208
	int ret;
	unsigned long flags;
1209
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1210
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1211

1212
	if (!ops)
1213 1214
		return -ENODEV;

1215 1216 1217 1218
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1219 1220 1221 1222 1223
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1224 1225
	size_t ret;
	unsigned long flags;
1226
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1227
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1228

1229 1230 1231 1232 1233 1234 1235
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1236 1237
}

1238 1239 1240
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1241
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1242 1243 1244 1245 1246 1247 1248
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1249
	unsigned long va;
1250 1251 1252

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1253 1254 1255
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1256
		smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1257 1258
	else
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1259 1260 1261 1262

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1263
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1280
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1281
					dma_addr_t iova)
1282
{
1283 1284
	phys_addr_t ret;
	unsigned long flags;
1285
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1286
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1287

1288
	if (!ops)
1289
		return 0;
1290

1291
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1292 1293
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1294
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1295
	} else {
1296
		ret = ops->iova_to_phys(ops, iova);
1297 1298
	}

1299
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1300

1301
	return ret;
1302 1303
}

1304
static bool arm_smmu_capable(enum iommu_cap cap)
1305
{
1306 1307
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1308 1309 1310 1311 1312
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1313
	case IOMMU_CAP_INTR_REMAP:
1314
		return true; /* MSIs are just memory writes */
1315 1316
	case IOMMU_CAP_NOEXEC:
		return true;
1317
	default:
1318
		return false;
1319
	}
1320 1321
}

1322 1323 1324 1325
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1326 1327
}

1328 1329 1330 1331 1332
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1333 1334
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1335
{
1336
	struct arm_smmu_master_cfg *cfg;
1337 1338
	u16 sid;
	int i;
1339

1340 1341
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1342
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1343 1344
		if (!cfg)
			return -ENOMEM;
1345

1346 1347 1348
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1349

1350 1351
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1365

1366
	return 0;
1367 1368
}

1369 1370
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1371 1372
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1373
	struct arm_smmu_master *master;
1374 1375 1376 1377 1378 1379 1380 1381 1382

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1383 1384

	return 0;
1385 1386 1387 1388
}

static int arm_smmu_add_device(struct device *dev)
{
1389
	struct iommu_group *group;
1390

1391 1392 1393
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1394

1395
	iommu_group_put(group);
1396
	return 0;
1397 1398
}

1399 1400
static void arm_smmu_remove_device(struct device *dev)
{
1401
	iommu_group_remove_device(dev);
1402 1403
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1430 1431 1432
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1433
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1447
	int ret = 0;
1448
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1449

1450 1451
	mutex_lock(&smmu_domain->init_mutex);

1452 1453
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1454 1455 1456 1457 1458
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1459 1460 1461 1462 1463
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1464
		break;
1465
	default:
1466
		ret = -ENODEV;
1467
	}
1468 1469 1470 1471

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1472 1473
}

1474
static struct iommu_ops arm_smmu_ops = {
1475
	.capable		= arm_smmu_capable,
1476 1477
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1478 1479 1480
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1481
	.map_sg			= default_iommu_map_sg,
1482 1483 1484
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1485
	.device_group		= arm_smmu_device_group,
1486 1487
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1488
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1489 1490 1491 1492 1493
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1494
	void __iomem *cb_base;
1495
	int i = 0;
1496 1497
	u32 reg;

1498 1499 1500
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1501

1502 1503
	/* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
	reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1504
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1505
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1506
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1507 1508
	}

1509 1510 1511 1512 1513 1514
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1515

1516 1517 1518 1519
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1520
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1521

1522
	/* Enable fault reporting */
1523
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1524 1525

	/* Disable TLB broadcasting. */
1526
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1527

1528 1529 1530 1531 1532 1533
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1534 1535

	/* Disable forced broadcasting */
1536
	reg &= ~sCR0_FB;
1537 1538

	/* Don't upgrade barriers */
1539
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1540

1541 1542 1543
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1544
	/* Push the button */
1545
	__arm_smmu_tlb_sync(smmu);
1546
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1573
	bool cttw_dt, cttw_reg;
1574 1575 1576 1577 1578 1579

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1580 1581 1582 1583 1584 1585 1586

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1603
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1604 1605 1606 1607
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1608
	if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1609 1610 1611 1612
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1613 1614 1615 1616 1617 1618 1619 1620 1621
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1622
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1623 1624 1625 1626 1627 1628
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1659 1660 1661
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1662 1663 1664 1665
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1666
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1667

1668
	/* Check for size mismatch of SMMU address space from mapped region */
1669
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1670
	size *= 2 << smmu->pgshift;
1671
	if (smmu->size != size)
1672 1673 1674
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1675

1676
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1688
	smmu->ipa_size = size;
1689

1690
	/* The output mask is also applied for bypass */
1691
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1692
	smmu->pa_size = size;
1693

1694 1695 1696
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1697 1698 1699 1700 1701 1702 1703 1704 1705
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1706
	if (smmu->version == ARM_SMMU_V1) {
1707 1708
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1709 1710
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1711 1712 1713
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1714
#endif
1715 1716 1717 1718 1719 1720 1721
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1722 1723
	}

1724 1725 1726
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1727 1728
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1729
			   smmu->va_size, smmu->ipa_size);
1730 1731 1732

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1733
			   smmu->ipa_size, smmu->pa_size);
1734

1735 1736 1737
	return 0;
}

1738
static const struct of_device_id arm_smmu_of_match[] = {
1739 1740 1741
	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
R
Robin Murphy 已提交
1742
	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1743
	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1744
	{ .compatible = "cavium,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1745 1746 1747 1748
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1749 1750
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1751
	const struct of_device_id *of_id;
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1766 1767 1768
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
	smmu->version = (enum arm_smmu_arch_version)of_id->data;

1769
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1770 1771 1772
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1788 1789 1790 1791
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1803

1804 1805 1806 1807 1808 1809 1810
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1811 1812 1813 1814
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1831 1832
	parse_driver_options(smmu);

1833
	if (smmu->version > ARM_SMMU_V1 &&
1834 1835 1836 1837
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1838
		err = -ENODEV;
1839
		goto out_put_masters;
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (of_device_is_compatible(dev->of_node, "cavium,smmu-v2")) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}

1867 1868 1869 1870
	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1871 1872

	arm_smmu_device_reset(smmu);
1873 1874 1875 1876 1877 1878 1879 1880
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1881 1882
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1910 1911
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1912 1913 1914
		of_node_put(master->of_node);
	}

1915
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1916 1917 1918 1919 1920 1921
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1922
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1937
	struct device_node *np;
1938 1939
	int ret;

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1951 1952 1953 1954 1955
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1956
	if (!iommu_present(&platform_bus_type))
1957 1958
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1959
#ifdef CONFIG_ARM_AMBA
1960
	if (!iommu_present(&amba_bustype))
1961
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1962
#endif
1963

1964 1965 1966 1967 1968
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1969 1970 1971 1972 1973 1974 1975 1976
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1977
subsys_initcall(arm_smmu_init);
1978 1979 1980 1981 1982
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");