arm-smmu.c 53.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- 4k and 64k pages, with contiguous pte hints.
27
 *	- Up to 42-bit addressing (dependent on VA_BITS)
28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
42
#include <linux/pci.h>
43 44 45 46 47 48 49 50 51
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

#include <asm/pgalloc.h>

/* Maximum number of stream IDs assigned to a single device */
52
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
53 54 55 56 57 58 59 60 61

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
62
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
63

64 65 66 67 68 69 70 71 72 73
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

74
/* Page table bits */
75
#define ARM_SMMU_PTE_XN			(((pteval_t)3) << 53)
76 77 78 79 80
#define ARM_SMMU_PTE_CONT		(((pteval_t)1) << 52)
#define ARM_SMMU_PTE_AF			(((pteval_t)1) << 10)
#define ARM_SMMU_PTE_SH_NS		(((pteval_t)0) << 8)
#define ARM_SMMU_PTE_SH_OS		(((pteval_t)2) << 8)
#define ARM_SMMU_PTE_SH_IS		(((pteval_t)3) << 8)
81
#define ARM_SMMU_PTE_PAGE		(((pteval_t)3) << 0)
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

#if PAGE_SIZE == SZ_4K
#define ARM_SMMU_PTE_CONT_ENTRIES	16
#elif PAGE_SIZE == SZ_64K
#define ARM_SMMU_PTE_CONT_ENTRIES	32
#else
#define ARM_SMMU_PTE_CONT_ENTRIES	1
#endif

#define ARM_SMMU_PTE_CONT_SIZE		(PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
#define ARM_SMMU_PTE_CONT_MASK		(~(ARM_SMMU_PTE_CONT_SIZE - 1))

/* Stage-1 PTE */
#define ARM_SMMU_PTE_AP_UNPRIV		(((pteval_t)1) << 6)
#define ARM_SMMU_PTE_AP_RDONLY		(((pteval_t)2) << 6)
#define ARM_SMMU_PTE_ATTRINDX_SHIFT	2
98
#define ARM_SMMU_PTE_nG			(((pteval_t)1) << 11)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

/* Stage-2 PTE */
#define ARM_SMMU_PTE_HAP_FAULT		(((pteval_t)0) << 6)
#define ARM_SMMU_PTE_HAP_READ		(((pteval_t)1) << 6)
#define ARM_SMMU_PTE_HAP_WRITE		(((pteval_t)2) << 6)
#define ARM_SMMU_PTE_MEMATTR_OIWB	(((pteval_t)0xf) << 2)
#define ARM_SMMU_PTE_MEMATTR_NC		(((pteval_t)0x5) << 2)
#define ARM_SMMU_PTE_MEMATTR_DEV	(((pteval_t)0x1) << 2)

/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58
#define ARM_SMMU_GR0_PIDR0		0xfe0
#define ARM_SMMU_GR0_PIDR1		0xfe4
#define ARM_SMMU_GR0_PIDR2		0xfe8

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
#define ID0_PTFS_SHIFT			24
#define ID0_PTFS_MASK			0x2
#define ID0_PTFS_V8_ONLY		0x2
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
149 150
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

#define PIDR2_ARCH_SHIFT		4
#define PIDR2_ARCH_MASK			0xf

/* Global TLB invalidation */
#define ARM_SMMU_GR0_STLBIALL		0x60
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
206 207 208
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
227
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
228 229 230 231 232 233 234 235 236 237 238 239

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
#define ARM_SMMU_CB_TTBR0_LO		0x20
#define ARM_SMMU_CB_TTBR0_HI		0x24
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
240
#define ARM_SMMU_CB_S1_TLBIASID		0x610
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR_EAE			(1 << 31)

#define TTBCR_PASIZE_SHIFT		16
#define TTBCR_PASIZE_MASK		0x7

#define TTBCR_TG0_4K			(0 << 14)
#define TTBCR_TG0_64K			(1 << 14)

#define TTBCR_SH0_SHIFT			12
#define TTBCR_SH0_MASK			0x3
#define TTBCR_SH_NS			0
#define TTBCR_SH_OS			2
#define TTBCR_SH_IS			3

#define TTBCR_ORGN0_SHIFT		10
#define TTBCR_IRGN0_SHIFT		8
#define TTBCR_RGN_MASK			0x3
#define TTBCR_RGN_NC			0
#define TTBCR_RGN_WBWA			1
#define TTBCR_RGN_WT			2
#define TTBCR_RGN_WB			3

#define TTBCR_SL0_SHIFT			6
#define TTBCR_SL0_MASK			0x3
#define TTBCR_SL0_LVL_2			0
#define TTBCR_SL0_LVL_1			1

#define TTBCR_T1SZ_SHIFT		16
#define TTBCR_T0SZ_SHIFT		0
#define TTBCR_SZ_MASK			0xf

#define TTBCR2_SEP_SHIFT		15
#define TTBCR2_SEP_MASK			0x7

#define TTBCR2_PASIZE_SHIFT		0
#define TTBCR2_PASIZE_MASK		0x7

/* Common definitions for PASize and SEP fields */
#define TTBCR2_ADDR_32			0
#define TTBCR2_ADDR_36			1
#define TTBCR2_ADDR_40			2
#define TTBCR2_ADDR_42			3
#define TTBCR2_ADDR_44			4
#define TTBCR2_ADDR_48			5

300 301
#define TTBRn_HI_ASID_SHIFT		16

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
#define MAIR_ATTR_SHIFT(n)		((n) << 3)
#define MAIR_ATTR_MASK			0xff
#define MAIR_ATTR_DEVICE		0x04
#define MAIR_ATTR_NC			0x44
#define MAIR_ATTR_WBRWA			0xff
#define MAIR_ATTR_IDX_NC		0
#define MAIR_ATTR_IDX_CACHE		1
#define MAIR_ATTR_IDX_DEV		2

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

322 323 324
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
325
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
326 327 328

#define FSYNR0_WNR			(1 << 4)

329 330 331 332 333
static int force_stage;
module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");

334 335 336 337 338 339
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

340
struct arm_smmu_master_cfg {
341 342 343 344 345
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

346 347 348 349 350 351
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

352 353 354 355 356
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
357
	unsigned long			pgshift;
358 359 360 361 362 363 364

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
	u32				features;
365 366 367

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	int				version;

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

	unsigned long			input_size;
	unsigned long			s1_output_size;
	unsigned long			s2_output_size;

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
	pgd_t				*pgd;
};
396
#define INVALID_IRPTNDX			0xff
397

398 399 400
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

401
struct arm_smmu_domain {
402 403
	struct arm_smmu_device		*smmu;
	struct arm_smmu_cfg		cfg;
404
	spinlock_t			lock;
405 406 407 408 409
};

static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

410 411 412 413 414
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

415
static struct arm_smmu_option_prop arm_smmu_options[] = {
416 417 418 419 420 421 422
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
423

424 425 426 427 428 429 430 431 432 433
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

434
static struct device_node *dev_get_dev_node(struct device *dev)
435 436 437
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
438

439 440
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
441
		return bus->bridge->parent->of_node;
442 443
	}

444
	return dev->of_node;
445 446
}

447 448 449 450 451 452 453
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
454

455 456 457 458 459 460 461 462 463 464 465 466 467
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

468
static struct arm_smmu_master_cfg *
469
find_smmu_master_cfg(struct device *dev)
470
{
471 472
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
473

474 475 476 477
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
478

479
	return cfg;
480 481
}

482 483 484 485 486 487 488 489
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
490 491
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

533 534
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
535

536 537
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
538

539 540 541 542 543 544 545 546 547
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
548 549 550
	return insert_smmu_master(smmu, master);
}

551
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
552
{
553
	struct arm_smmu_device *smmu;
554
	struct arm_smmu_master *master = NULL;
555
	struct device_node *dev_node = dev_get_dev_node(dev);
556 557

	spin_lock(&arm_smmu_devices_lock);
558
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
559 560 561 562
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
563
	spin_unlock(&arm_smmu_devices_lock);
564

565
	return master ? smmu : NULL;
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

605
static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
606
{
607 608
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
609 610 611 612 613
	void __iomem *base = ARM_SMMU_GR0(smmu);
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
614 615
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
616 617
	} else {
		base = ARM_SMMU_GR0(smmu);
618 619
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
620 621 622 623 624
	}

	arm_smmu_tlb_sync(smmu);
}

625 626 627 628 629 630 631
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
	struct arm_smmu_domain *smmu_domain = domain->priv;
632 633
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
634 635
	void __iomem *cb_base;

636
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
637 638 639 640 641 642 643
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
644
				    "Unexpected context fault (fsr 0x%x)\n",
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
661 662
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
663
		    iova, fsynr, cfg->cbndx);
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
682
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
683 684 685 686 687 688

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

689 690 691
	if (!gfsr)
		return IRQ_NONE;

692 693 694 695 696 697 698
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
699
	return IRQ_HANDLED;
700 701
}

702 703 704 705 706 707 708 709
static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
				   size_t size)
{
	unsigned long offset = (unsigned long)addr & ~PAGE_MASK;


	/* Ensure new page tables are visible to the hardware walker */
	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
710
		dsb(ishst);
711 712 713 714 715 716 717 718 719 720 721 722 723
	} else {
		/*
		 * If the SMMU can't walk tables in the CPU caches, treat them
		 * like non-coherent DMA since we need to flush the new entries
		 * all the way out to memory. There's no possibility of
		 * recursion here as the SMMU table walker will not be wired
		 * through another SMMU.
		 */
		dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
				DMA_TO_DEVICE);
	}
}

724 725 726 727
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
{
	u32 reg;
	bool stage1;
728 729
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
730 731 732 733
	void __iomem *cb_base, *gr0_base, *gr1_base;

	gr0_base = ARM_SMMU_GR0(smmu);
	gr1_base = ARM_SMMU_GR1(smmu);
734 735
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
736 737

	/* CBAR */
738
	reg = cfg->cbar;
739
	if (smmu->version == 1)
740
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
741

742 743 744 745 746 747 748 749
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	} else {
750
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
751
	}
752
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
753 754 755 756 757 758 759 760 761

	if (smmu->version > 1) {
		/* CBA2R */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg,
762
			       gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
763 764 765 766 767 768 769 770 771 772

		/* TTBCR2 */
		switch (smmu->input_size) {
		case 32:
			reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
			break;
		case 36:
			reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
			break;
		case 39:
773
		case 40:
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
			reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
			break;
		case 42:
			reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
			break;
		case 44:
			reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
			break;
		case 48:
			reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
			break;
		}

		switch (smmu->s1_output_size) {
		case 32:
			reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
			break;
		case 36:
			reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
			break;
		case 39:
795
		case 40:
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
			reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
			break;
		case 42:
			reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
			break;
		case 44:
			reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
			break;
		case 48:
			reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
			break;
		}

		if (stage1)
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
	}

	/* TTBR0 */
814
	arm_smmu_flush_pgtable(smmu, cfg->pgd,
815
			       PTRS_PER_PGD * sizeof(pgd_t));
816
	reg = __pa(cfg->pgd);
817
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
818
	reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
819
	if (stage1)
820
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
821 822 823 824 825 826 827 828 829 830 831 832 833
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);

	/*
	 * TTBCR
	 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
	 */
	if (smmu->version > 1) {
		if (PAGE_SIZE == SZ_4K)
			reg = TTBCR_TG0_4K;
		else
			reg = TTBCR_TG0_64K;

		if (!stage1) {
834 835
			reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
			switch (smmu->s2_output_size) {
			case 32:
				reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
				break;
			case 36:
				reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
				break;
			case 40:
				reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
				break;
			case 42:
				reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
				break;
			case 44:
				reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
				break;
			case 48:
				reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
				break;
			}
		} else {
857
			reg |= (64 - smmu->input_size) << TTBCR_T0SZ_SHIFT;
858 859 860 861 862 863 864 865
		}
	} else {
		reg = 0;
	}

	reg |= TTBCR_EAE |
	      (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
	      (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
866 867 868 869 870
	      (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);

	if (!stage1)
		reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);

	/* MAIR0 (stage-1 only) */
	if (stage1) {
		reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
		      (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
		      (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
888
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
889 890 891
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
892
					struct arm_smmu_device *smmu)
893
{
894 895
	int irq, start, ret = 0;
	unsigned long flags;
896
	struct arm_smmu_domain *smmu_domain = domain->priv;
897
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
898

899 900 901 902
	spin_lock_irqsave(&smmu_domain->lock, flags);
	if (smmu_domain->smmu)
		goto out_unlock;

903 904 905 906 907
	if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
908
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
909
		start = smmu->num_s2_context_banks;
910
	} else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
911
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
912
		start = smmu->num_s2_context_banks;
913 914 915
	} else {
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
916 917 918 919 920
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
921
		goto out_unlock;
922

923
	cfg->cbndx = ret;
924
	if (smmu->version == 1) {
925 926
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
927
	} else {
928
		cfg->irptndx = cfg->cbndx;
929 930
	}

931 932 933 934
	ACCESS_ONCE(smmu_domain->smmu) = smmu;
	arm_smmu_init_context_bank(smmu_domain);
	spin_unlock_irqrestore(&smmu_domain->lock, flags);

935
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
936 937 938 939
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
940 941
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
942 943
	}

944
	return 0;
945

946 947
out_unlock:
	spin_unlock_irqrestore(&smmu_domain->lock, flags);
948 949 950 951 952 953
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
954 955
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
956
	void __iomem *cb_base;
957 958 959 960 961
	int irq;

	if (!smmu)
		return;

962
	/* Disable the context bank and nuke the TLB before freeing it. */
963
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
964
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
965
	arm_smmu_tlb_inv_context(smmu_domain);
966

967 968
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
969 970 971
		free_irq(irq, domain);
	}

972
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
}

static int arm_smmu_domain_init(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain;
	pgd_t *pgd;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return -ENOMEM;

989
	pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL);
990 991
	if (!pgd)
		goto out_free_domain;
992
	smmu_domain->cfg.pgd = pgd;
993

994
	spin_lock_init(&smmu_domain->lock);
995 996 997 998 999 1000 1001 1002 1003 1004 1005
	domain->priv = smmu_domain;
	return 0;

out_free_domain:
	kfree(smmu_domain);
	return -ENOMEM;
}

static void arm_smmu_free_ptes(pmd_t *pmd)
{
	pgtable_t table = pmd_pgtable(*pmd);
1006

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	__free_page(table);
}

static void arm_smmu_free_pmds(pud_t *pud)
{
	int i;
	pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);

	pmd = pmd_base;
	for (i = 0; i < PTRS_PER_PMD; ++i) {
		if (pmd_none(*pmd))
			continue;

		arm_smmu_free_ptes(pmd);
		pmd++;
	}

	pmd_free(NULL, pmd_base);
}

static void arm_smmu_free_puds(pgd_t *pgd)
{
	int i;
	pud_t *pud, *pud_base = pud_offset(pgd, 0);

	pud = pud_base;
	for (i = 0; i < PTRS_PER_PUD; ++i) {
		if (pud_none(*pud))
			continue;

		arm_smmu_free_pmds(pud);
		pud++;
	}

	pud_free(NULL, pud_base);
}

static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
{
	int i;
1047 1048
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	pgd_t *pgd, *pgd_base = cfg->pgd;
1049 1050 1051

	/*
	 * Recursively free the page tables for this domain. We don't
1052 1053
	 * care about speculative TLB filling because the tables should
	 * not be active in any context bank at this point (SCTLR.M is 0).
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	 */
	pgd = pgd_base;
	for (i = 0; i < PTRS_PER_PGD; ++i) {
		if (pgd_none(*pgd))
			continue;
		arm_smmu_free_puds(pgd);
		pgd++;
	}

	kfree(pgd_base);
}

static void arm_smmu_domain_destroy(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1069 1070 1071 1072 1073

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1074 1075 1076 1077 1078 1079
	arm_smmu_destroy_domain_context(domain);
	arm_smmu_free_pgtables(smmu_domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1080
					  struct arm_smmu_master_cfg *cfg)
1081 1082 1083 1084 1085 1086 1087 1088
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1089
	if (cfg->smrs)
1090 1091
		return -EEXIST;

1092
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1093
	if (!smrs) {
1094 1095
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1096 1097 1098
		return -ENOMEM;
	}

1099
	/* Allocate the SMRs on the SMMU */
1100
	for (i = 0; i < cfg->num_streamids; ++i) {
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1111
			.id	= cfg->streamids[i],
1112 1113 1114 1115
		};
	}

	/* It worked! Now, poke the actual hardware */
1116
	for (i = 0; i < cfg->num_streamids; ++i) {
1117 1118 1119 1120 1121
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1122
	cfg->smrs = smrs;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1133
				      struct arm_smmu_master_cfg *cfg)
1134 1135 1136
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1137
	struct arm_smmu_smr *smrs = cfg->smrs;
1138

1139 1140 1141
	if (!smrs)
		return;

1142
	/* Invalidate the SMRs before freeing back to the allocator */
1143
	for (i = 0; i < cfg->num_streamids; ++i) {
1144
		u8 idx = smrs[i].idx;
1145

1146 1147 1148 1149
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1150
	cfg->smrs = NULL;
1151 1152 1153 1154
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1155
				      struct arm_smmu_master_cfg *cfg)
1156 1157
{
	int i, ret;
1158
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1159 1160
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1161
	/* Devices in an IOMMU group may already be configured */
1162
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1163
	if (ret)
1164
		return ret == -EEXIST ? 0 : ret;
1165

1166
	for (i = 0; i < cfg->num_streamids; ++i) {
1167
		u32 idx, s2cr;
1168

1169
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1170
		s2cr = S2CR_TYPE_TRANS |
1171
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1172 1173 1174 1175 1176 1177 1178
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1179
					  struct arm_smmu_master_cfg *cfg)
1180
{
1181
	int i;
1182
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1183
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1184

1185 1186 1187 1188
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;

1189 1190 1191 1192
	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1193 1194 1195 1196 1197 1198 1199
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];

		writel_relaxed(S2CR_TYPE_BYPASS,
			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

1200
	arm_smmu_master_free_smrs(smmu, cfg);
1201 1202 1203 1204
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1205
	int ret;
1206
	struct arm_smmu_domain *smmu_domain = domain->priv;
1207
	struct arm_smmu_device *smmu, *dom_smmu;
1208
	struct arm_smmu_master_cfg *cfg;
1209

1210
	smmu = find_smmu_for_device(dev);
1211
	if (!smmu) {
1212 1213 1214 1215
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1216 1217 1218 1219 1220
	if (dev->archdata.iommu) {
		dev_err(dev, "already attached to IOMMU domain\n");
		return -EEXIST;
	}

1221
	/*
1222 1223
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1224
	 */
1225 1226
	dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
	if (!dom_smmu) {
1227
		/* Now that we have a master, we can finalise the domain */
1228
		ret = arm_smmu_init_domain_context(domain, smmu);
1229
		if (IS_ERR_VALUE(ret))
1230 1231 1232 1233 1234 1235
			return ret;

		dom_smmu = smmu_domain->smmu;
	}

	if (dom_smmu != smmu) {
1236 1237
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1238 1239
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1240 1241 1242
	}

	/* Looks ok, so add the device to the domain */
1243
	cfg = find_smmu_master_cfg(dev);
1244
	if (!cfg)
1245 1246
		return -ENODEV;

1247 1248 1249 1250
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
	return ret;
1251 1252 1253 1254 1255
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1256
	struct arm_smmu_master_cfg *cfg;
1257

1258
	cfg = find_smmu_master_cfg(dev);
1259 1260 1261 1262 1263
	if (!cfg)
		return;

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
}

static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
					     unsigned long end)
{
	return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
		(addr + ARM_SMMU_PTE_CONT_SIZE <= end);
}

static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
				   unsigned long addr, unsigned long end,
1275
				   unsigned long pfn, int prot, int stage)
1276 1277
{
	pte_t *pte, *start;
1278
	pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF | ARM_SMMU_PTE_XN;
1279 1280 1281

	if (pmd_none(*pmd)) {
		/* Allocate a new set of tables */
1282
		pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
1283

1284 1285 1286
		if (!table)
			return -ENOMEM;

1287
		arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
1288 1289 1290 1291 1292
		pmd_populate(NULL, pmd, table);
		arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
	}

	if (stage == 1) {
1293
		pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1294
		if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
1295 1296
			pteval |= ARM_SMMU_PTE_AP_RDONLY;

1297
		if (prot & IOMMU_CACHE)
1298 1299 1300 1301
			pteval |= (MAIR_ATTR_IDX_CACHE <<
				   ARM_SMMU_PTE_ATTRINDX_SHIFT);
	} else {
		pteval |= ARM_SMMU_PTE_HAP_FAULT;
1302
		if (prot & IOMMU_READ)
1303
			pteval |= ARM_SMMU_PTE_HAP_READ;
1304
		if (prot & IOMMU_WRITE)
1305
			pteval |= ARM_SMMU_PTE_HAP_WRITE;
1306
		if (prot & IOMMU_CACHE)
1307 1308 1309 1310 1311 1312
			pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
		else
			pteval |= ARM_SMMU_PTE_MEMATTR_NC;
	}

	/* If no access, create a faulting entry to avoid TLB fills */
1313
	if (prot & IOMMU_EXEC)
1314
		pteval &= ~ARM_SMMU_PTE_XN;
1315
	else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		pteval &= ~ARM_SMMU_PTE_PAGE;

	pteval |= ARM_SMMU_PTE_SH_IS;
	start = pmd_page_vaddr(*pmd) + pte_index(addr);
	pte = start;

	/*
	 * Install the page table entries. This is fairly complicated
	 * since we attempt to make use of the contiguous hint in the
	 * ptes where possible. The contiguous hint indicates a series
	 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
	 * contiguous region with the following constraints:
	 *
	 *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
	 *   - Each pte in the region has the contiguous hint bit set
	 *
	 * This complicates unmapping (also handled by this code, when
	 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
	 * possible, yet highly unlikely, that a client may unmap only
	 * part of a contiguous range. This requires clearing of the
	 * contiguous hint bits in the range before installing the new
	 * faulting entries.
	 *
	 * Note that re-mapping an address range without first unmapping
	 * it is not supported, so TLB invalidation is not required here
	 * and is instead performed at unmap and domain-init time.
	 */
	do {
		int i = 1;
1345

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		pteval &= ~ARM_SMMU_PTE_CONT;

		if (arm_smmu_pte_is_contiguous_range(addr, end)) {
			i = ARM_SMMU_PTE_CONT_ENTRIES;
			pteval |= ARM_SMMU_PTE_CONT;
		} else if (pte_val(*pte) &
			   (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
			int j;
			pte_t *cont_start;
			unsigned long idx = pte_index(addr);

			idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
			cont_start = pmd_page_vaddr(*pmd) + idx;
			for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1360 1361
				pte_val(*(cont_start + j)) &=
					~ARM_SMMU_PTE_CONT;
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

			arm_smmu_flush_pgtable(smmu, cont_start,
					       sizeof(*pte) *
					       ARM_SMMU_PTE_CONT_ENTRIES);
		}

		do {
			*pte = pfn_pte(pfn, __pgprot(pteval));
		} while (pte++, pfn++, addr += PAGE_SIZE, --i);
	} while (addr != end);

	arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
	return 0;
}

static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
				   unsigned long addr, unsigned long end,
1379
				   phys_addr_t phys, int prot, int stage)
1380 1381 1382 1383 1384 1385 1386
{
	int ret;
	pmd_t *pmd;
	unsigned long next, pfn = __phys_to_pfn(phys);

#ifndef __PAGETABLE_PMD_FOLDED
	if (pud_none(*pud)) {
1387
		pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
1388 1389
		if (!pmd)
			return -ENOMEM;
1390

1391
		arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
1392 1393 1394 1395
		pud_populate(NULL, pud, pmd);
		arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));

		pmd += pmd_index(addr);
1396 1397 1398 1399 1400 1401
	} else
#endif
		pmd = pmd_offset(pud, addr);

	do {
		next = pmd_addr_end(addr, end);
1402
		ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
1403
					      prot, stage);
1404 1405 1406 1407 1408 1409 1410 1411
		phys += next - addr;
	} while (pmd++, addr = next, addr < end);

	return ret;
}

static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
1412
				   phys_addr_t phys, int prot, int stage)
1413 1414 1415 1416 1417 1418 1419
{
	int ret = 0;
	pud_t *pud;
	unsigned long next;

#ifndef __PAGETABLE_PUD_FOLDED
	if (pgd_none(*pgd)) {
1420
		pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
1421 1422
		if (!pud)
			return -ENOMEM;
1423

1424
		arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
1425 1426 1427 1428
		pgd_populate(NULL, pgd, pud);
		arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));

		pud += pud_index(addr);
1429 1430 1431 1432 1433 1434 1435
	} else
#endif
		pud = pud_offset(pgd, addr);

	do {
		next = pud_addr_end(addr, end);
		ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1436
					      prot, stage);
1437 1438 1439 1440 1441 1442 1443 1444
		phys += next - addr;
	} while (pud++, addr = next, addr < end);

	return ret;
}

static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
				   unsigned long iova, phys_addr_t paddr,
1445
				   size_t size, int prot)
1446 1447 1448 1449
{
	int ret, stage;
	unsigned long end;
	phys_addr_t input_mask, output_mask;
1450 1451 1452
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	pgd_t *pgd = cfg->pgd;
1453
	unsigned long flags;
1454

1455
	if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
		stage = 2;
		output_mask = (1ULL << smmu->s2_output_size) - 1;
	} else {
		stage = 1;
		output_mask = (1ULL << smmu->s1_output_size) - 1;
	}

	if (!pgd)
		return -EINVAL;

	if (size & ~PAGE_MASK)
		return -EINVAL;

	input_mask = (1ULL << smmu->input_size) - 1;
	if ((phys_addr_t)iova & ~input_mask)
		return -ERANGE;

	if (paddr & ~output_mask)
		return -ERANGE;

1476
	spin_lock_irqsave(&smmu_domain->lock, flags);
1477 1478 1479 1480 1481 1482
	pgd += pgd_index(iova);
	end = iova + size;
	do {
		unsigned long next = pgd_addr_end(iova, end);

		ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1483
					      prot, stage);
1484 1485 1486 1487 1488 1489 1490 1491
		if (ret)
			goto out_unlock;

		paddr += next - iova;
		iova = next;
	} while (pgd++, iova != end);

out_unlock:
1492
	spin_unlock_irqrestore(&smmu_domain->lock, flags);
1493 1494 1495 1496 1497

	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1498
			phys_addr_t paddr, size_t size, int prot)
1499 1500 1501
{
	struct arm_smmu_domain *smmu_domain = domain->priv;

1502
	if (!smmu_domain)
1503 1504
		return -ENODEV;

1505
	return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
1506 1507 1508 1509 1510 1511 1512 1513 1514
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
	int ret;
	struct arm_smmu_domain *smmu_domain = domain->priv;

	ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1515
	arm_smmu_tlb_inv_context(smmu_domain);
1516
	return ret ? 0 : size;
1517 1518 1519 1520 1521
}

static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
					 dma_addr_t iova)
{
1522 1523 1524 1525
	pgd_t *pgdp, pgd;
	pud_t pud;
	pmd_t pmd;
	pte_t pte;
1526
	struct arm_smmu_domain *smmu_domain = domain->priv;
1527
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1528

1529
	pgdp = cfg->pgd;
1530 1531
	if (!pgdp)
		return 0;
1532

1533 1534 1535
	pgd = *(pgdp + pgd_index(iova));
	if (pgd_none(pgd))
		return 0;
1536

1537 1538 1539
	pud = *pud_offset(&pgd, iova);
	if (pud_none(pud))
		return 0;
1540

1541 1542 1543
	pmd = *pmd_offset(&pud, iova);
	if (pmd_none(pmd))
		return 0;
1544

1545
	pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1546
	if (pte_none(pte))
1547
		return 0;
1548

1549
	return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1550 1551 1552 1553 1554 1555
}

static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
				   unsigned long cap)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1556 1557
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	u32 features = smmu ? smmu->features : 0;
1558 1559 1560 1561 1562 1563 1564 1565 1566

	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return features & ARM_SMMU_FEAT_COHERENT_WALK;
	case IOMMU_CAP_INTR_REMAP:
		return 1; /* MSIs are just memory writes */
	default:
		return 0;
	}
1567 1568
}

1569 1570 1571 1572
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1573 1574
}

1575 1576 1577 1578 1579
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1580 1581
static int arm_smmu_add_device(struct device *dev)
{
1582
	struct arm_smmu_device *smmu;
1583
	struct arm_smmu_master_cfg *cfg;
1584
	struct iommu_group *group;
1585
	void (*releasefn)(void *) = NULL;
1586 1587
	int ret;

1588
	smmu = find_smmu_for_device(dev);
1589
	if (!smmu)
1590 1591
		return -ENODEV;

1592 1593 1594 1595 1596 1597
	group = iommu_group_alloc();
	if (IS_ERR(group)) {
		dev_err(dev, "Failed to allocate IOMMU group\n");
		return PTR_ERR(group);
	}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
		if (!cfg) {
			ret = -ENOMEM;
			goto out_put_group;
		}

		cfg->num_streamids = 1;
		/*
		 * Assume Stream ID == Requester ID for now.
		 * We need a way to describe the ID mappings in FDT.
		 */
		pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
				       &cfg->streamids[0]);
1614
		releasefn = __arm_smmu_release_pci_iommudata;
1615
	} else {
1616 1617 1618 1619 1620 1621 1622 1623 1624
		struct arm_smmu_master *master;

		master = find_smmu_master(smmu, dev->of_node);
		if (!master) {
			ret = -ENODEV;
			goto out_put_group;
		}

		cfg = &master->cfg;
1625 1626
	}

1627
	iommu_group_set_iommudata(group, cfg, releasefn);
1628 1629
	ret = iommu_group_add_device(group, dev);

1630 1631
out_put_group:
	iommu_group_put(group);
1632
	return ret;
1633 1634 1635 1636
}

static void arm_smmu_remove_device(struct device *dev)
{
1637
	iommu_group_remove_device(dev);
1638 1639
}

1640
static const struct iommu_ops arm_smmu_ops = {
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	.domain_init	= arm_smmu_domain_init,
	.domain_destroy	= arm_smmu_domain_destroy,
	.attach_dev	= arm_smmu_attach_dev,
	.detach_dev	= arm_smmu_detach_dev,
	.map		= arm_smmu_map,
	.unmap		= arm_smmu_unmap,
	.iova_to_phys	= arm_smmu_iova_to_phys,
	.domain_has_cap	= arm_smmu_domain_has_cap,
	.add_device	= arm_smmu_add_device,
	.remove_device	= arm_smmu_remove_device,
	.pgsize_bitmap	= (SECTION_SIZE |
			   ARM_SMMU_PTE_CONT_SIZE |
			   PAGE_SIZE),
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1659
	void __iomem *cb_base;
1660
	int i = 0;
1661 1662
	u32 reg;

1663 1664 1665
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1666 1667 1668

	/* Mark all SMRn as invalid and all S2CRn as bypass */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1669
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1670 1671
		writel_relaxed(S2CR_TYPE_BYPASS,
			gr0_base + ARM_SMMU_GR0_S2CR(i));
1672 1673
	}

1674 1675 1676 1677 1678 1679
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1680

1681 1682 1683 1684 1685
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1686
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1687

1688
	/* Enable fault reporting */
1689
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1690 1691

	/* Disable TLB broadcasting. */
1692
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1693 1694

	/* Enable client access, but bypass when no mapping is found */
1695
	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1696 1697

	/* Disable forced broadcasting */
1698
	reg &= ~sCR0_FB;
1699 1700

	/* Don't upgrade barriers */
1701
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1702 1703 1704

	/* Push the button */
	arm_smmu_tlb_sync(smmu);
1705
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;

	dev_notice(smmu->dev, "probing hardware configuration...\n");

	/* Primecell ID */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
	smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
#ifndef CONFIG_64BIT
	if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
		dev_err(smmu->dev, "\tno v7 descriptor support!\n");
		return -ENODEV;
	}
#endif
1748 1749 1750 1751 1752 1753 1754

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1771
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

	if (id & ID0_CTTW) {
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
		dev_notice(smmu->dev, "\tcoherent table walk\n");
	}

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1810 1811 1812
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1813 1814 1815 1816
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1817
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1818

1819
	/* Check for size mismatch of SMMU address space from mapped region */
1820 1821
	size = 1 <<
		(((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1822
	size *= 2 << smmu->pgshift;
1823
	if (smmu->size != size)
1824 1825 1826
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
				      ID1_NUMS2CB_MASK;
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);

	/*
	 * Stage-1 output limited by stage-2 input size due to pgd
	 * allocation (PTRS_PER_PGD).
	 */
1846
	if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
1847
#ifdef CONFIG_64BIT
1848
		smmu->s1_output_size = min_t(unsigned long, VA_BITS, size);
1849
#else
1850
		smmu->s1_output_size = min(32UL, size);
1851
#endif
1852 1853 1854 1855
	} else {
		smmu->s1_output_size = min_t(unsigned long, PHYS_MASK_SHIFT,
					     size);
	}
1856 1857 1858

	/* The stage-2 output mask is also applied for bypass */
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1859
	smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1860 1861 1862 1863 1864 1865

	if (smmu->version == 1) {
		smmu->input_size = 32;
	} else {
#ifdef CONFIG_64BIT
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1866
		size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
#else
		size = 32;
#endif
		smmu->input_size = size;

		if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
		    (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
		    (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
			dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
				PAGE_SIZE);
			return -ENODEV;
		}
	}

	dev_notice(smmu->dev,
		   "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1883 1884
		   smmu->input_size, smmu->s1_output_size,
		   smmu->s2_output_size);
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	return 0;
}

static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1905 1906 1907
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1923 1924 1925 1926
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1938

1939 1940 1941 1942 1943 1944 1945
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1946 1947 1948 1949
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1966 1967
	parse_driver_options(smmu);

1968 1969 1970 1971 1972
	if (smmu->version > 1 &&
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1973
		err = -ENODEV;
1974
		goto out_put_masters;
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1994 1995

	arm_smmu_device_reset(smmu);
1996 1997 1998 1999 2000 2001 2002 2003
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2004 2005
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2033 2034
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
2035 2036 2037
		of_node_put(master->of_node);
	}

2038
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2039 2040 2041 2042 2043 2044
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
2045
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	return 0;
}

#ifdef CONFIG_OF
static struct of_device_id arm_smmu_of_match[] = {
	{ .compatible = "arm,smmu-v1", },
	{ .compatible = "arm,smmu-v2", },
	{ .compatible = "arm,mmu-400", },
	{ .compatible = "arm,mmu-500", },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
#endif

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.owner		= THIS_MODULE,
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
	int ret;

	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
2079
	if (!iommu_present(&platform_bus_type))
2080 2081
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

2082
#ifdef CONFIG_ARM_AMBA
2083
	if (!iommu_present(&amba_bustype))
2084
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2085
#endif
2086

2087 2088 2089 2090 2091
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

2092 2093 2094 2095 2096 2097 2098 2099
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2100
subsys_initcall(arm_smmu_init);
2101 2102 2103 2104 2105
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");