arm-smmu.c 50.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
32
#include <linux/dma-iommu.h>
33 34 35 36 37
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
38
#include <linux/iopoll.h>
39 40
#include <linux/module.h>
#include <linux/of.h>
41
#include <linux/of_address.h>
42
#include <linux/pci.h>
43 44 45 46 47 48
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

49
#include "io-pgtable.h"
50 51

/* Maximum number of stream IDs assigned to a single device */
52
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
53 54 55 56 57 58 59 60 61

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
62
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
63

64 65 66 67 68 69 70 71 72 73
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_64BIT
#define smmu_writeq	writeq_relaxed
#else
#define smmu_writeq(reg64, addr)				\
	do {							\
		u64 __val = (reg64);				\
		void __iomem *__addr = (addr);			\
		writel_relaxed(__val >> 32, __addr + 4);	\
		writel_relaxed(__val, __addr);			\
	} while (0)
#endif

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
118
#define ID0_ATOSNS			(1 << 26)
119 120 121
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
122 123
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

171 172 173
#define S2CR_PRIVCFG_SHIFT		24
#define S2CR_PRIVCFG_UNPRIV		(2 << S2CR_PRIVCFG_SHIFT)

174 175 176 177
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
178 179 180
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
199
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
200 201 202 203

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
204 205
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
206 207
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
208
#define ARM_SMMU_CB_S1_MAIR1		0x3c
209 210
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
211 212 213 214
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
215
#define ARM_SMMU_CB_S1_TLBIVA		0x600
216
#define ARM_SMMU_CB_S1_TLBIASID		0x610
217 218 219
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
220
#define ARM_SMMU_CB_ATS1PR		0x800
221
#define ARM_SMMU_CB_ATSR		0x8f0
222 223 224 225 226 227 228 229 230 231 232

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

233 234 235 236
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

237 238 239 240
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
241
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
242

243
#define TTBRn_ASID_SHIFT		48
244 245 246 247 248 249 250 251 252 253 254 255

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

256 257 258
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
259
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
260 261 262

#define FSYNR0_WNR			(1 << 4)

263
static int force_stage;
264
module_param_named(force_stage, force_stage, int, S_IRUGO);
265 266 267
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");

268 269 270 271 272
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

273 274 275 276 277 278
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

279
struct arm_smmu_master_cfg {
280 281 282 283 284
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

285 286 287 288 289 290
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

291 292 293 294 295
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
296
	unsigned long			pgshift;
297 298 299 300 301 302

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
303
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
304
	u32				features;
305 306 307

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
308
	enum arm_smmu_arch_version	version;
309 310 311 312 313 314 315 316 317

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

318 319 320
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
321 322 323 324 325 326 327 328 329 330 331 332 333 334

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
335
#define INVALID_IRPTNDX			0xff
336

337 338 339
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

340 341 342 343 344 345
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

346
struct arm_smmu_domain {
347
	struct arm_smmu_device		*smmu;
348 349
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
350
	struct arm_smmu_cfg		cfg;
351
	enum arm_smmu_domain_stage	stage;
352
	struct mutex			init_mutex; /* Protects smmu pointer */
353
	struct iommu_domain		domain;
354 355
};

356 357
static struct iommu_ops arm_smmu_ops;

358 359 360
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

361 362 363 364 365
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

366
static struct arm_smmu_option_prop arm_smmu_options[] = {
367 368 369 370
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

371 372 373 374 375
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

376 377 378
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
379

380 381 382 383 384 385 386 387 388 389
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

390
static struct device_node *dev_get_dev_node(struct device *dev)
391 392 393
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
394

395 396
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
397
		return bus->bridge->parent->of_node;
398 399
	}

400
	return dev->of_node;
401 402
}

403 404 405 406 407 408 409
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
410

411 412 413 414 415 416 417 418 419 420 421 422 423
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

424
static struct arm_smmu_master_cfg *
425
find_smmu_master_cfg(struct device *dev)
426
{
427 428
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
429

430 431 432 433
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
434

435
	return cfg;
436 437
}

438 439 440 441 442 443 444 445
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
446 447
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

489 490
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
491

492 493
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
494

495 496 497 498 499 500 501 502 503
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
504 505 506
	return insert_smmu_master(smmu, master);
}

507
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
508
{
509
	struct arm_smmu_device *smmu;
510
	struct arm_smmu_master *master = NULL;
511
	struct device_node *dev_node = dev_get_dev_node(dev);
512 513

	spin_lock(&arm_smmu_devices_lock);
514
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
515 516 517 518
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
519
	spin_unlock(&arm_smmu_devices_lock);
520

521
	return master ? smmu : NULL;
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
543
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

561 562 563 564 565 566 567
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
568
{
569
	struct arm_smmu_domain *smmu_domain = cookie;
570 571
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
572
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
573
	void __iomem *base;
574 575 576

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
577 578
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
579 580
	} else {
		base = ARM_SMMU_GR0(smmu);
581 582
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
583 584
	}

585 586 587 588
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
589
					  size_t granule, bool leaf, void *cookie)
590 591 592 593 594 595 596 597 598 599 600 601 602 603
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
			iova |= ARM_SMMU_CB_ASID(cfg);
604 605 606 607
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
608 609 610 611
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
			iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
612 613 614 615
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
616 617 618 619 620 621 622
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
623 624 625 626 627
		iova >>= 12;
		do {
			writeq_relaxed(iova, reg);
			iova += granule >> 12;
		} while (size -= granule);
628 629 630 631 632 633 634 635 636 637 638 639 640
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
		writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

641 642 643 644 645 646
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
647
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
648 649
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
650 651
	void __iomem *cb_base;

652
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
653 654 655 656 657 658 659
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
660
				    "Unexpected context fault (fsr 0x%x)\n",
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
677 678
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
679
		    iova, fsynr, cfg->cbndx);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
698
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
699 700 701 702 703 704

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

705 706 707
	if (!gfsr)
		return IRQ_NONE;

708 709 710 711 712 713 714
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
715
	return IRQ_HANDLED;
716 717
}

718 719
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
720 721
{
	u32 reg;
722
	u64 reg64;
723
	bool stage1;
724 725
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
726
	void __iomem *cb_base, *gr1_base;
727 728

	gr1_base = ARM_SMMU_GR1(smmu);
729 730
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
731

732 733 734 735 736 737 738 739 740 741 742 743 744 745
	if (smmu->version > ARM_SMMU_V1) {
		/*
		 * CBA2R.
		 * *Must* be initialised before CBAR thanks to VMID16
		 * architectural oversight affected some implementations.
		 */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

746
	/* CBAR */
747
	reg = cfg->cbar;
748
	if (smmu->version == ARM_SMMU_V1)
749
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
750

751 752 753 754 755 756 757 758
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	} else {
759
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
760
	}
761
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
762

763 764
	/* TTBRs */
	if (stage1) {
765 766 767 768 769 770 771 772
		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];

		reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);

		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
		reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
773
	} else {
774 775
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
776
	}
777

778 779 780 781 782 783
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
784
			reg |= TTBCR2_SEP_UPSTREAM;
785
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
786 787
		}
	} else {
788 789
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
790 791
	}

792
	/* MAIRs (stage-1 only) */
793
	if (stage1) {
794
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
795
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
796 797
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
798 799 800 801 802 803 804 805 806
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
807
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
808 809 810
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
811
					struct arm_smmu_device *smmu)
812
{
813
	int irq, start, ret = 0;
814 815 816 817
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
818
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
819
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
820

821
	mutex_lock(&smmu_domain->init_mutex);
822 823 824
	if (smmu_domain->smmu)
		goto out_unlock;

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
852 853 854 855 856 857
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
858 859
		break;
	case ARM_SMMU_DOMAIN_NESTED:
860 861 862 863
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
864
	case ARM_SMMU_DOMAIN_S2:
865 866
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
867 868 869 870 871 872
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
873 874 875 876
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
877 878 879 880 881
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
882
		goto out_unlock;
883

884
	cfg->cbndx = ret;
885
	if (smmu->version == ARM_SMMU_V1) {
886 887
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
888
	} else {
889
		cfg->irptndx = cfg->cbndx;
890 891
	}

892 893 894 895 896
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
897
		.iommu_dev	= smmu->dev,
898 899 900 901 902 903 904 905 906 907 908
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
909

910 911 912 913 914 915 916
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
917
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
918 919 920 921
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
922 923
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
924 925
	}

926 927 928 929
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
930
	return 0;
931

932 933
out_clear_smmu:
	smmu_domain->smmu = NULL;
934
out_unlock:
935
	mutex_unlock(&smmu_domain->init_mutex);
936 937 938 939 940
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
941
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
942 943
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
944
	void __iomem *cb_base;
945 946 947 948 949
	int irq;

	if (!smmu)
		return;

950 951 952 953
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
954
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
955 956
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

957 958
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
959 960 961
		free_irq(irq, domain);
	}

962
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
963
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
964 965
}

966
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
967 968 969
{
	struct arm_smmu_domain *smmu_domain;

970
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
971
		return NULL;
972 973 974 975 976 977 978
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
979
		return NULL;
980

981 982 983 984 985 986
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

987 988
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
989 990

	return &smmu_domain->domain;
991 992
}

993
static void arm_smmu_domain_free(struct iommu_domain *domain)
994
{
995
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
996 997 998 999 1000

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1001
	iommu_put_dma_cookie(domain);
1002 1003 1004 1005 1006
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1007
					  struct arm_smmu_master_cfg *cfg)
1008 1009 1010 1011 1012 1013 1014 1015
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1016
	if (cfg->smrs)
1017 1018
		return -EEXIST;

1019
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1020
	if (!smrs) {
1021 1022
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1023 1024 1025
		return -ENOMEM;
	}

1026
	/* Allocate the SMRs on the SMMU */
1027
	for (i = 0; i < cfg->num_streamids; ++i) {
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1038
			.id	= cfg->streamids[i],
1039 1040 1041 1042
		};
	}

	/* It worked! Now, poke the actual hardware */
1043
	for (i = 0; i < cfg->num_streamids; ++i) {
1044 1045 1046 1047 1048
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1049
	cfg->smrs = smrs;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1060
				      struct arm_smmu_master_cfg *cfg)
1061 1062 1063
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1064
	struct arm_smmu_smr *smrs = cfg->smrs;
1065

1066 1067 1068
	if (!smrs)
		return;

1069
	/* Invalidate the SMRs before freeing back to the allocator */
1070
	for (i = 0; i < cfg->num_streamids; ++i) {
1071
		u8 idx = smrs[i].idx;
1072

1073 1074 1075 1076
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1077
	cfg->smrs = NULL;
1078 1079 1080 1081
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1082
				      struct arm_smmu_master_cfg *cfg)
1083 1084
{
	int i, ret;
1085
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1086 1087
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1088
	/* Devices in an IOMMU group may already be configured */
1089
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1090
	if (ret)
1091
		return ret == -EEXIST ? 0 : ret;
1092

1093
	for (i = 0; i < cfg->num_streamids; ++i) {
1094
		u32 idx, s2cr;
1095

1096
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1097
		s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1098
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1099 1100 1101 1102 1103 1104 1105
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1106
					  struct arm_smmu_master_cfg *cfg)
1107
{
1108
	int i;
1109
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1110
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1111

1112 1113 1114
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1115 1116 1117 1118 1119

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1120 1121 1122 1123 1124 1125 1126
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];

		writel_relaxed(S2CR_TYPE_BYPASS,
			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

1127
	arm_smmu_master_free_smrs(smmu, cfg);
1128 1129 1130 1131
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1132
	int ret;
1133
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1134
	struct arm_smmu_device *smmu;
1135
	struct arm_smmu_master_cfg *cfg;
1136

1137
	smmu = find_smmu_for_device(dev);
1138
	if (!smmu) {
1139 1140 1141 1142
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1143 1144 1145 1146 1147
	if (dev->archdata.iommu) {
		dev_err(dev, "already attached to IOMMU domain\n");
		return -EEXIST;
	}

1148 1149 1150 1151 1152
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1153
	/*
1154 1155
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1156
	 */
1157
	if (smmu_domain->smmu != smmu) {
1158 1159
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1160 1161
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1162 1163 1164
	}

	/* Looks ok, so add the device to the domain */
1165
	cfg = find_smmu_master_cfg(dev);
1166
	if (!cfg)
1167 1168
		return -ENODEV;

1169 1170 1171
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1172 1173 1174 1175 1176
	return ret;
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
1177
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1178
	struct arm_smmu_master_cfg *cfg;
1179

1180
	cfg = find_smmu_master_cfg(dev);
1181 1182 1183 1184 1185
	if (!cfg)
		return;

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
1186 1187 1188
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1189
			phys_addr_t paddr, size_t size, int prot)
1190
{
1191 1192
	int ret;
	unsigned long flags;
1193
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1194
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1195

1196
	if (!ops)
1197 1198
		return -ENODEV;

1199 1200 1201 1202
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1203 1204 1205 1206 1207
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1208 1209
	size_t ret;
	unsigned long flags;
1210
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1211
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1212

1213 1214 1215 1216 1217 1218 1219
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1220 1221
}

1222 1223 1224
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1225
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1226 1227 1228 1229 1230 1231 1232
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1233
	unsigned long va;
1234 1235 1236

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1237 1238 1239
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1240
		smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1241 1242
	else
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1243 1244 1245 1246

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1247
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1264
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1265
					dma_addr_t iova)
1266
{
1267 1268
	phys_addr_t ret;
	unsigned long flags;
1269
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1270
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1271

1272
	if (!ops)
1273
		return 0;
1274

1275
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1276 1277
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1278
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1279
	} else {
1280
		ret = ops->iova_to_phys(ops, iova);
1281 1282
	}

1283
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1284

1285
	return ret;
1286 1287
}

1288
static bool arm_smmu_capable(enum iommu_cap cap)
1289
{
1290 1291
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1292 1293 1294 1295 1296
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1297
	case IOMMU_CAP_INTR_REMAP:
1298
		return true; /* MSIs are just memory writes */
1299 1300
	case IOMMU_CAP_NOEXEC:
		return true;
1301
	default:
1302
		return false;
1303
	}
1304 1305
}

1306 1307 1308 1309
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1310 1311
}

1312 1313 1314 1315 1316
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1317 1318
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1319
{
1320
	struct arm_smmu_master_cfg *cfg;
1321 1322
	u16 sid;
	int i;
1323

1324 1325
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1326
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1327 1328
		if (!cfg)
			return -ENOMEM;
1329

1330 1331 1332
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1333

1334 1335
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1349

1350
	return 0;
1351 1352
}

1353 1354
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1355 1356
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1357
	struct arm_smmu_master *master;
1358 1359 1360 1361 1362 1363 1364 1365 1366

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1367 1368

	return 0;
1369 1370 1371 1372
}

static int arm_smmu_add_device(struct device *dev)
{
1373
	struct iommu_group *group;
1374

1375 1376 1377
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1378

1379
	iommu_group_put(group);
1380
	return 0;
1381 1382
}

1383 1384
static void arm_smmu_remove_device(struct device *dev)
{
1385
	iommu_group_remove_device(dev);
1386 1387
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1414 1415 1416
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1417
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1431
	int ret = 0;
1432
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1433

1434 1435
	mutex_lock(&smmu_domain->init_mutex);

1436 1437
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1438 1439 1440 1441 1442
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1443 1444 1445 1446 1447
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1448
		break;
1449
	default:
1450
		ret = -ENODEV;
1451
	}
1452 1453 1454 1455

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1456 1457
}

1458
static struct iommu_ops arm_smmu_ops = {
1459
	.capable		= arm_smmu_capable,
1460 1461
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1462 1463 1464 1465
	.attach_dev		= arm_smmu_attach_dev,
	.detach_dev		= arm_smmu_detach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1466
	.map_sg			= default_iommu_map_sg,
1467 1468 1469
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1470
	.device_group		= arm_smmu_device_group,
1471 1472
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1473
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1474 1475 1476 1477 1478
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1479
	void __iomem *cb_base;
1480
	int i = 0;
1481 1482
	u32 reg;

1483 1484 1485
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1486 1487 1488

	/* Mark all SMRn as invalid and all S2CRn as bypass */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1489
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1490 1491
		writel_relaxed(S2CR_TYPE_BYPASS,
			gr0_base + ARM_SMMU_GR0_S2CR(i));
1492 1493
	}

1494 1495 1496 1497 1498 1499
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1500

1501 1502 1503 1504
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1505
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1506

1507
	/* Enable fault reporting */
1508
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1509 1510

	/* Disable TLB broadcasting. */
1511
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1512 1513

	/* Enable client access, but bypass when no mapping is found */
1514
	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1515 1516

	/* Disable forced broadcasting */
1517
	reg &= ~sCR0_FB;
1518 1519

	/* Don't upgrade barriers */
1520
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1521 1522

	/* Push the button */
1523
	__arm_smmu_tlb_sync(smmu);
1524
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1551
	bool cttw_dt, cttw_reg;
1552 1553 1554 1555 1556 1557

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1558 1559 1560 1561 1562 1563 1564

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1581
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1582 1583 1584 1585
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1586
	if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1587 1588 1589 1590
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1591 1592 1593 1594 1595 1596 1597 1598 1599
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1600
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1601 1602 1603 1604 1605 1606
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1637 1638 1639
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1640 1641 1642 1643
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1644
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1645

1646
	/* Check for size mismatch of SMMU address space from mapped region */
1647
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1648
	size *= 2 << smmu->pgshift;
1649
	if (smmu->size != size)
1650 1651 1652
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1653

1654
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1666
	smmu->ipa_size = size;
1667

1668
	/* The output mask is also applied for bypass */
1669
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1670
	smmu->pa_size = size;
1671

1672 1673 1674 1675 1676 1677 1678 1679 1680
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1681
	if (smmu->version == ARM_SMMU_V1) {
1682 1683
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1684 1685
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1686 1687 1688
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1689
#endif
1690 1691 1692 1693 1694 1695 1696
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1697 1698
	}

1699 1700 1701
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1702 1703
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1704
			   smmu->va_size, smmu->ipa_size);
1705 1706 1707

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1708
			   smmu->ipa_size, smmu->pa_size);
1709

1710 1711 1712
	return 0;
}

1713
static const struct of_device_id arm_smmu_of_match[] = {
1714 1715 1716
	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
R
Robin Murphy 已提交
1717
	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1718 1719 1720 1721 1722
	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1723 1724
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1725
	const struct of_device_id *of_id;
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1740 1741 1742
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
	smmu->version = (enum arm_smmu_arch_version)of_id->data;

1743
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1744 1745 1746
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1762 1763 1764 1765
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1777

1778 1779 1780 1781 1782 1783 1784
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1785 1786 1787 1788
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1805 1806
	parse_driver_options(smmu);

1807
	if (smmu->version > ARM_SMMU_V1 &&
1808 1809 1810 1811
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1812
		err = -ENODEV;
1813
		goto out_put_masters;
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1833 1834

	arm_smmu_device_reset(smmu);
1835 1836 1837 1838 1839 1840 1841 1842
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1843 1844
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1872 1873
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1874 1875 1876
		of_node_put(master->of_node);
	}

1877
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1878 1879 1880 1881 1882 1883
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1884
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1899
	struct device_node *np;
1900 1901
	int ret;

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1913 1914 1915 1916 1917
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1918
	if (!iommu_present(&platform_bus_type))
1919 1920
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1921
#ifdef CONFIG_ARM_AMBA
1922
	if (!iommu_present(&amba_bustype))
1923
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1924
#endif
1925

1926 1927 1928 1929 1930
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1931 1932 1933 1934 1935 1936 1937 1938
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1939
subsys_initcall(arm_smmu_init);
1940 1941 1942 1943 1944
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");