arm-smmu.c 51.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- 4k and 64k pages, with contiguous pte hints.
27
 *	- Up to 42-bit addressing (dependent on VA_BITS)
28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
42
#include <linux/pci.h>
43 44 45 46 47 48 49 50 51
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

#include <asm/pgalloc.h>

/* Maximum number of stream IDs assigned to a single device */
52
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
53 54 55 56 57 58 59 60 61 62 63

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (smmu)->pagesize)

64 65 66 67 68 69 70 71 72 73
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

74
/* Page table bits */
75
#define ARM_SMMU_PTE_XN			(((pteval_t)3) << 53)
76 77 78 79 80
#define ARM_SMMU_PTE_CONT		(((pteval_t)1) << 52)
#define ARM_SMMU_PTE_AF			(((pteval_t)1) << 10)
#define ARM_SMMU_PTE_SH_NS		(((pteval_t)0) << 8)
#define ARM_SMMU_PTE_SH_OS		(((pteval_t)2) << 8)
#define ARM_SMMU_PTE_SH_IS		(((pteval_t)3) << 8)
81
#define ARM_SMMU_PTE_PAGE		(((pteval_t)3) << 0)
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

#if PAGE_SIZE == SZ_4K
#define ARM_SMMU_PTE_CONT_ENTRIES	16
#elif PAGE_SIZE == SZ_64K
#define ARM_SMMU_PTE_CONT_ENTRIES	32
#else
#define ARM_SMMU_PTE_CONT_ENTRIES	1
#endif

#define ARM_SMMU_PTE_CONT_SIZE		(PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
#define ARM_SMMU_PTE_CONT_MASK		(~(ARM_SMMU_PTE_CONT_SIZE - 1))

/* Stage-1 PTE */
#define ARM_SMMU_PTE_AP_UNPRIV		(((pteval_t)1) << 6)
#define ARM_SMMU_PTE_AP_RDONLY		(((pteval_t)2) << 6)
#define ARM_SMMU_PTE_ATTRINDX_SHIFT	2
98
#define ARM_SMMU_PTE_nG			(((pteval_t)1) << 11)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

/* Stage-2 PTE */
#define ARM_SMMU_PTE_HAP_FAULT		(((pteval_t)0) << 6)
#define ARM_SMMU_PTE_HAP_READ		(((pteval_t)1) << 6)
#define ARM_SMMU_PTE_HAP_WRITE		(((pteval_t)2) << 6)
#define ARM_SMMU_PTE_MEMATTR_OIWB	(((pteval_t)0xf) << 2)
#define ARM_SMMU_PTE_MEMATTR_NC		(((pteval_t)0x5) << 2)
#define ARM_SMMU_PTE_MEMATTR_DEV	(((pteval_t)0x1) << 2)

/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58
#define ARM_SMMU_GR0_PIDR0		0xfe0
#define ARM_SMMU_GR0_PIDR1		0xfe4
#define ARM_SMMU_GR0_PIDR2		0xfe8

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
#define ID0_PTFS_SHIFT			24
#define ID0_PTFS_MASK			0x2
#define ID0_PTFS_V8_ONLY		0x2
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

#define PIDR2_ARCH_SHIFT		4
#define PIDR2_ARCH_MASK			0xf

/* Global TLB invalidation */
#define ARM_SMMU_GR0_STLBIALL		0x60
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
204 205 206
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
#define ARM_SMMU_CB(smmu, n)		((n) * (smmu)->pagesize)

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
#define ARM_SMMU_CB_TTBR0_LO		0x20
#define ARM_SMMU_CB_TTBR0_HI		0x24
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
238
#define ARM_SMMU_CB_S1_TLBIASID		0x610
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR_EAE			(1 << 31)

#define TTBCR_PASIZE_SHIFT		16
#define TTBCR_PASIZE_MASK		0x7

#define TTBCR_TG0_4K			(0 << 14)
#define TTBCR_TG0_64K			(1 << 14)

#define TTBCR_SH0_SHIFT			12
#define TTBCR_SH0_MASK			0x3
#define TTBCR_SH_NS			0
#define TTBCR_SH_OS			2
#define TTBCR_SH_IS			3

#define TTBCR_ORGN0_SHIFT		10
#define TTBCR_IRGN0_SHIFT		8
#define TTBCR_RGN_MASK			0x3
#define TTBCR_RGN_NC			0
#define TTBCR_RGN_WBWA			1
#define TTBCR_RGN_WT			2
#define TTBCR_RGN_WB			3

#define TTBCR_SL0_SHIFT			6
#define TTBCR_SL0_MASK			0x3
#define TTBCR_SL0_LVL_2			0
#define TTBCR_SL0_LVL_1			1

#define TTBCR_T1SZ_SHIFT		16
#define TTBCR_T0SZ_SHIFT		0
#define TTBCR_SZ_MASK			0xf

#define TTBCR2_SEP_SHIFT		15
#define TTBCR2_SEP_MASK			0x7

#define TTBCR2_PASIZE_SHIFT		0
#define TTBCR2_PASIZE_MASK		0x7

/* Common definitions for PASize and SEP fields */
#define TTBCR2_ADDR_32			0
#define TTBCR2_ADDR_36			1
#define TTBCR2_ADDR_40			2
#define TTBCR2_ADDR_42			3
#define TTBCR2_ADDR_44			4
#define TTBCR2_ADDR_48			5

298 299
#define TTBRn_HI_ASID_SHIFT		16

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
#define MAIR_ATTR_SHIFT(n)		((n) << 3)
#define MAIR_ATTR_MASK			0xff
#define MAIR_ATTR_DEVICE		0x04
#define MAIR_ATTR_NC			0x44
#define MAIR_ATTR_WBRWA			0xff
#define MAIR_ATTR_IDX_NC		0
#define MAIR_ATTR_IDX_CACHE		1
#define MAIR_ATTR_IDX_DEV		2

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

320 321 322
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
323
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
324 325 326 327 328 329 330 331 332

#define FSYNR0_WNR			(1 << 4)

struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

333
struct arm_smmu_master_cfg {
334 335 336 337 338
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

339 340 341 342 343 344
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

345 346 347 348 349 350 351 352 353 354 355 356 357
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
	unsigned long			pagesize;

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
	u32				features;
358 359 360

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	int				version;

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

	unsigned long			input_size;
	unsigned long			s1_output_size;
	unsigned long			s2_output_size;

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
	pgd_t				*pgd;
};
389
#define INVALID_IRPTNDX			0xff
390

391 392 393
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

394
struct arm_smmu_domain {
395 396
	struct arm_smmu_device		*smmu;
	struct arm_smmu_cfg		cfg;
397
	spinlock_t			lock;
398 399 400 401 402
};

static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

403 404 405 406 407
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

408
static struct arm_smmu_option_prop arm_smmu_options[] = {
409 410 411 412 413 414 415
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
416

417 418 419 420 421 422 423 424 425 426
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

427 428 429 430
static struct device *dev_get_master_dev(struct device *dev)
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
431

432 433 434 435 436 437 438 439
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
		return bus->bridge->parent;
	}

	return dev;
}

440 441 442 443 444 445 446
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
447

448 449 450 451 452 453 454 455 456 457 458 459 460
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

461 462 463 464 465 466 467 468 469 470 471 472
static struct arm_smmu_master_cfg *
find_smmu_master_cfg(struct arm_smmu_device *smmu, struct device *dev)
{
	struct arm_smmu_master *master;

	if (dev_is_pci(dev))
		return dev->archdata.iommu;

	master = find_smmu_master(smmu, dev->of_node);
	return master ? &master->cfg : NULL;
}

473 474 475 476 477 478 479 480
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
481 482
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

524 525
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
526

527 528
	for (i = 0; i < master->cfg.num_streamids; ++i)
		master->cfg.streamids[i] = masterspec->args[i];
529 530 531 532

	return insert_smmu_master(smmu, master);
}

533
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
534
{
535
	struct arm_smmu_device *smmu;
536 537
	struct arm_smmu_master *master = NULL;
	struct device_node *dev_node = dev_get_master_dev(dev)->of_node;
538 539

	spin_lock(&arm_smmu_devices_lock);
540
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
541 542 543 544
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
545
	spin_unlock(&arm_smmu_devices_lock);
546

547
	return master ? smmu : NULL;
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

587
static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
588
{
589 590
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
591 592 593 594 595
	void __iomem *base = ARM_SMMU_GR0(smmu);
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
596 597
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
598 599
	} else {
		base = ARM_SMMU_GR0(smmu);
600 601
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
602 603 604 605 606
	}

	arm_smmu_tlb_sync(smmu);
}

607 608 609 610 611 612 613
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
	struct arm_smmu_domain *smmu_domain = domain->priv;
614 615
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
616 617
	void __iomem *cb_base;

618
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
				    "Unexpected context fault (fsr 0x%u)\n",
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
643 644
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
645
		    iova, fsynr, cfg->cbndx);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
664
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
665 666 667 668 669 670

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

671 672 673
	if (!gfsr)
		return IRQ_NONE;

674 675 676 677 678 679 680
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
681
	return IRQ_HANDLED;
682 683
}

684 685 686 687 688 689 690 691
static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
				   size_t size)
{
	unsigned long offset = (unsigned long)addr & ~PAGE_MASK;


	/* Ensure new page tables are visible to the hardware walker */
	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
692
		dsb(ishst);
693 694 695 696 697 698 699 700 701 702 703 704 705
	} else {
		/*
		 * If the SMMU can't walk tables in the CPU caches, treat them
		 * like non-coherent DMA since we need to flush the new entries
		 * all the way out to memory. There's no possibility of
		 * recursion here as the SMMU table walker will not be wired
		 * through another SMMU.
		 */
		dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
				DMA_TO_DEVICE);
	}
}

706 707 708 709
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
{
	u32 reg;
	bool stage1;
710 711
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
712 713 714 715
	void __iomem *cb_base, *gr0_base, *gr1_base;

	gr0_base = ARM_SMMU_GR0(smmu);
	gr1_base = ARM_SMMU_GR1(smmu);
716 717
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
718 719

	/* CBAR */
720
	reg = cfg->cbar;
721
	if (smmu->version == 1)
722
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
723

724 725 726 727 728 729 730 731
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	} else {
732
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
733
	}
734
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
735 736 737 738 739 740 741 742 743

	if (smmu->version > 1) {
		/* CBA2R */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg,
744
			       gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

		/* TTBCR2 */
		switch (smmu->input_size) {
		case 32:
			reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
			break;
		case 36:
			reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
			break;
		case 39:
			reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
			break;
		case 42:
			reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
			break;
		case 44:
			reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
			break;
		case 48:
			reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
			break;
		}

		switch (smmu->s1_output_size) {
		case 32:
			reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
			break;
		case 36:
			reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
			break;
		case 39:
			reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
			break;
		case 42:
			reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
			break;
		case 44:
			reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
			break;
		case 48:
			reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
			break;
		}

		if (stage1)
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
	}

	/* TTBR0 */
794
	arm_smmu_flush_pgtable(smmu, cfg->pgd,
795
			       PTRS_PER_PGD * sizeof(pgd_t));
796
	reg = __pa(cfg->pgd);
797
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
798
	reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
799
	if (stage1)
800
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
801 802 803 804 805 806 807 808 809 810 811 812 813
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);

	/*
	 * TTBCR
	 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
	 */
	if (smmu->version > 1) {
		if (PAGE_SIZE == SZ_4K)
			reg = TTBCR_TG0_4K;
		else
			reg = TTBCR_TG0_64K;

		if (!stage1) {
814 815
			reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
			switch (smmu->s2_output_size) {
			case 32:
				reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
				break;
			case 36:
				reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
				break;
			case 40:
				reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
				break;
			case 42:
				reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
				break;
			case 44:
				reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
				break;
			case 48:
				reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
				break;
			}
		} else {
837
			reg |= (64 - smmu->input_size) << TTBCR_T0SZ_SHIFT;
838 839 840 841 842 843 844 845
		}
	} else {
		reg = 0;
	}

	reg |= TTBCR_EAE |
	      (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
	      (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
846 847 848 849 850
	      (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);

	if (!stage1)
		reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);

	/* MAIR0 (stage-1 only) */
	if (stage1) {
		reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
		      (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
		      (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
868
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
869 870 871
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
872
					struct arm_smmu_device *smmu)
873
{
874 875
	int irq, start, ret = 0;
	unsigned long flags;
876
	struct arm_smmu_domain *smmu_domain = domain->priv;
877
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
878

879 880 881 882
	spin_lock_irqsave(&smmu_domain->lock, flags);
	if (smmu_domain->smmu)
		goto out_unlock;

883 884 885 886 887
	if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
888
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
889
		start = smmu->num_s2_context_banks;
890
	} else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
891
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
892
		start = smmu->num_s2_context_banks;
893 894 895
	} else {
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
896 897 898 899 900
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
901
		goto out_unlock;
902

903
	cfg->cbndx = ret;
904
	if (smmu->version == 1) {
905 906
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
907
	} else {
908
		cfg->irptndx = cfg->cbndx;
909 910
	}

911 912 913 914
	ACCESS_ONCE(smmu_domain->smmu) = smmu;
	arm_smmu_init_context_bank(smmu_domain);
	spin_unlock_irqrestore(&smmu_domain->lock, flags);

915
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
916 917 918 919
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
920 921
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
922 923
	}

924
	return 0;
925

926 927
out_unlock:
	spin_unlock_irqrestore(&smmu_domain->lock, flags);
928 929 930 931 932 933
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
934 935
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
936
	void __iomem *cb_base;
937 938 939 940 941
	int irq;

	if (!smmu)
		return;

942
	/* Disable the context bank and nuke the TLB before freeing it. */
943
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
944
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
945
	arm_smmu_tlb_inv_context(smmu_domain);
946

947 948
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
949 950 951
		free_irq(irq, domain);
	}

952
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
}

static int arm_smmu_domain_init(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain;
	pgd_t *pgd;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return -ENOMEM;

969
	pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL);
970 971
	if (!pgd)
		goto out_free_domain;
972
	smmu_domain->cfg.pgd = pgd;
973

974
	spin_lock_init(&smmu_domain->lock);
975 976 977 978 979 980 981 982 983 984 985
	domain->priv = smmu_domain;
	return 0;

out_free_domain:
	kfree(smmu_domain);
	return -ENOMEM;
}

static void arm_smmu_free_ptes(pmd_t *pmd)
{
	pgtable_t table = pmd_pgtable(*pmd);
986

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	__free_page(table);
}

static void arm_smmu_free_pmds(pud_t *pud)
{
	int i;
	pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);

	pmd = pmd_base;
	for (i = 0; i < PTRS_PER_PMD; ++i) {
		if (pmd_none(*pmd))
			continue;

		arm_smmu_free_ptes(pmd);
		pmd++;
	}

	pmd_free(NULL, pmd_base);
}

static void arm_smmu_free_puds(pgd_t *pgd)
{
	int i;
	pud_t *pud, *pud_base = pud_offset(pgd, 0);

	pud = pud_base;
	for (i = 0; i < PTRS_PER_PUD; ++i) {
		if (pud_none(*pud))
			continue;

		arm_smmu_free_pmds(pud);
		pud++;
	}

	pud_free(NULL, pud_base);
}

static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
{
	int i;
1027 1028
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	pgd_t *pgd, *pgd_base = cfg->pgd;
1029 1030 1031

	/*
	 * Recursively free the page tables for this domain. We don't
1032 1033
	 * care about speculative TLB filling because the tables should
	 * not be active in any context bank at this point (SCTLR.M is 0).
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	 */
	pgd = pgd_base;
	for (i = 0; i < PTRS_PER_PGD; ++i) {
		if (pgd_none(*pgd))
			continue;
		arm_smmu_free_puds(pgd);
		pgd++;
	}

	kfree(pgd_base);
}

static void arm_smmu_domain_destroy(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1049 1050 1051 1052 1053

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1054 1055 1056 1057 1058 1059
	arm_smmu_destroy_domain_context(domain);
	arm_smmu_free_pgtables(smmu_domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1060
					  struct arm_smmu_master_cfg *cfg)
1061 1062 1063 1064 1065 1066 1067 1068
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1069
	if (cfg->smrs)
1070 1071
		return -EEXIST;

1072
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1073
	if (!smrs) {
1074 1075
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1076 1077 1078
		return -ENOMEM;
	}

1079
	/* Allocate the SMRs on the SMMU */
1080
	for (i = 0; i < cfg->num_streamids; ++i) {
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1091
			.id	= cfg->streamids[i],
1092 1093 1094 1095
		};
	}

	/* It worked! Now, poke the actual hardware */
1096
	for (i = 0; i < cfg->num_streamids; ++i) {
1097 1098 1099 1100 1101
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1102
	cfg->smrs = smrs;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1113
				      struct arm_smmu_master_cfg *cfg)
1114 1115 1116
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1117
	struct arm_smmu_smr *smrs = cfg->smrs;
1118

1119 1120 1121
	if (!smrs)
		return;

1122
	/* Invalidate the SMRs before freeing back to the allocator */
1123
	for (i = 0; i < cfg->num_streamids; ++i) {
1124
		u8 idx = smrs[i].idx;
1125

1126 1127 1128 1129
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1130
	cfg->smrs = NULL;
1131 1132 1133 1134
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1135
				      struct arm_smmu_master_cfg *cfg)
1136 1137
{
	int i, ret;
1138
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1139 1140
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1141
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1142 1143 1144
	if (ret)
		return ret;

1145
	for (i = 0; i < cfg->num_streamids; ++i) {
1146
		u32 idx, s2cr;
1147

1148
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1149
		s2cr = S2CR_TYPE_TRANS |
1150
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1151 1152 1153 1154 1155 1156 1157
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1158
					  struct arm_smmu_master_cfg *cfg)
1159
{
1160
	int i;
1161
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1162
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1163 1164 1165 1166 1167

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1168 1169 1170 1171 1172 1173 1174
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];

		writel_relaxed(S2CR_TYPE_BYPASS,
			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

1175
	arm_smmu_master_free_smrs(smmu, cfg);
1176 1177 1178 1179
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1180
	int ret;
1181
	struct arm_smmu_domain *smmu_domain = domain->priv;
1182
	struct arm_smmu_device *smmu, *dom_smmu;
1183
	struct arm_smmu_master_cfg *cfg;
1184

1185 1186
	smmu = dev_get_master_dev(dev)->archdata.iommu;
	if (!smmu) {
1187 1188 1189 1190 1191
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

	/*
1192 1193
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1194
	 */
1195 1196
	dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
	if (!dom_smmu) {
1197
		/* Now that we have a master, we can finalise the domain */
1198
		ret = arm_smmu_init_domain_context(domain, smmu);
1199
		if (IS_ERR_VALUE(ret))
1200 1201 1202 1203 1204 1205
			return ret;

		dom_smmu = smmu_domain->smmu;
	}

	if (dom_smmu != smmu) {
1206 1207
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1208 1209
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1210 1211 1212
	}

	/* Looks ok, so add the device to the domain */
1213
	cfg = find_smmu_master_cfg(smmu_domain->smmu, dev);
1214
	if (!cfg)
1215 1216
		return -ENODEV;

1217
	return arm_smmu_domain_add_master(smmu_domain, cfg);
1218 1219 1220 1221 1222
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1223
	struct arm_smmu_master_cfg *cfg;
1224

1225
	cfg = find_smmu_master_cfg(smmu_domain->smmu, dev);
1226 1227
	if (cfg)
		arm_smmu_domain_remove_master(smmu_domain, cfg);
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
}

static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
					     unsigned long end)
{
	return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
		(addr + ARM_SMMU_PTE_CONT_SIZE <= end);
}

static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
				   unsigned long addr, unsigned long end,
1239
				   unsigned long pfn, int prot, int stage)
1240 1241
{
	pte_t *pte, *start;
1242
	pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF | ARM_SMMU_PTE_XN;
1243 1244 1245

	if (pmd_none(*pmd)) {
		/* Allocate a new set of tables */
1246
		pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
1247

1248 1249 1250
		if (!table)
			return -ENOMEM;

1251
		arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
1252 1253 1254 1255 1256
		pmd_populate(NULL, pmd, table);
		arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
	}

	if (stage == 1) {
1257
		pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1258
		if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
1259 1260
			pteval |= ARM_SMMU_PTE_AP_RDONLY;

1261
		if (prot & IOMMU_CACHE)
1262 1263 1264 1265
			pteval |= (MAIR_ATTR_IDX_CACHE <<
				   ARM_SMMU_PTE_ATTRINDX_SHIFT);
	} else {
		pteval |= ARM_SMMU_PTE_HAP_FAULT;
1266
		if (prot & IOMMU_READ)
1267
			pteval |= ARM_SMMU_PTE_HAP_READ;
1268
		if (prot & IOMMU_WRITE)
1269
			pteval |= ARM_SMMU_PTE_HAP_WRITE;
1270
		if (prot & IOMMU_CACHE)
1271 1272 1273 1274 1275 1276
			pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
		else
			pteval |= ARM_SMMU_PTE_MEMATTR_NC;
	}

	/* If no access, create a faulting entry to avoid TLB fills */
1277
	if (prot & IOMMU_EXEC)
1278
		pteval &= ~ARM_SMMU_PTE_XN;
1279
	else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		pteval &= ~ARM_SMMU_PTE_PAGE;

	pteval |= ARM_SMMU_PTE_SH_IS;
	start = pmd_page_vaddr(*pmd) + pte_index(addr);
	pte = start;

	/*
	 * Install the page table entries. This is fairly complicated
	 * since we attempt to make use of the contiguous hint in the
	 * ptes where possible. The contiguous hint indicates a series
	 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
	 * contiguous region with the following constraints:
	 *
	 *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
	 *   - Each pte in the region has the contiguous hint bit set
	 *
	 * This complicates unmapping (also handled by this code, when
	 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
	 * possible, yet highly unlikely, that a client may unmap only
	 * part of a contiguous range. This requires clearing of the
	 * contiguous hint bits in the range before installing the new
	 * faulting entries.
	 *
	 * Note that re-mapping an address range without first unmapping
	 * it is not supported, so TLB invalidation is not required here
	 * and is instead performed at unmap and domain-init time.
	 */
	do {
		int i = 1;
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		pteval &= ~ARM_SMMU_PTE_CONT;

		if (arm_smmu_pte_is_contiguous_range(addr, end)) {
			i = ARM_SMMU_PTE_CONT_ENTRIES;
			pteval |= ARM_SMMU_PTE_CONT;
		} else if (pte_val(*pte) &
			   (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
			int j;
			pte_t *cont_start;
			unsigned long idx = pte_index(addr);

			idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
			cont_start = pmd_page_vaddr(*pmd) + idx;
			for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1324 1325
				pte_val(*(cont_start + j)) &=
					~ARM_SMMU_PTE_CONT;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

			arm_smmu_flush_pgtable(smmu, cont_start,
					       sizeof(*pte) *
					       ARM_SMMU_PTE_CONT_ENTRIES);
		}

		do {
			*pte = pfn_pte(pfn, __pgprot(pteval));
		} while (pte++, pfn++, addr += PAGE_SIZE, --i);
	} while (addr != end);

	arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
	return 0;
}

static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
				   unsigned long addr, unsigned long end,
1343
				   phys_addr_t phys, int prot, int stage)
1344 1345 1346 1347 1348 1349 1350
{
	int ret;
	pmd_t *pmd;
	unsigned long next, pfn = __phys_to_pfn(phys);

#ifndef __PAGETABLE_PMD_FOLDED
	if (pud_none(*pud)) {
1351
		pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
1352 1353
		if (!pmd)
			return -ENOMEM;
1354

1355
		arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
1356 1357 1358 1359
		pud_populate(NULL, pud, pmd);
		arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));

		pmd += pmd_index(addr);
1360 1361 1362 1363 1364 1365
	} else
#endif
		pmd = pmd_offset(pud, addr);

	do {
		next = pmd_addr_end(addr, end);
1366
		ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
1367
					      prot, stage);
1368 1369 1370 1371 1372 1373 1374 1375
		phys += next - addr;
	} while (pmd++, addr = next, addr < end);

	return ret;
}

static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
1376
				   phys_addr_t phys, int prot, int stage)
1377 1378 1379 1380 1381 1382 1383
{
	int ret = 0;
	pud_t *pud;
	unsigned long next;

#ifndef __PAGETABLE_PUD_FOLDED
	if (pgd_none(*pgd)) {
1384
		pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
1385 1386
		if (!pud)
			return -ENOMEM;
1387

1388
		arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
1389 1390 1391 1392
		pgd_populate(NULL, pgd, pud);
		arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));

		pud += pud_index(addr);
1393 1394 1395 1396 1397 1398 1399
	} else
#endif
		pud = pud_offset(pgd, addr);

	do {
		next = pud_addr_end(addr, end);
		ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1400
					      prot, stage);
1401 1402 1403 1404 1405 1406 1407 1408
		phys += next - addr;
	} while (pud++, addr = next, addr < end);

	return ret;
}

static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
				   unsigned long iova, phys_addr_t paddr,
1409
				   size_t size, int prot)
1410 1411 1412 1413
{
	int ret, stage;
	unsigned long end;
	phys_addr_t input_mask, output_mask;
1414 1415 1416
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	pgd_t *pgd = cfg->pgd;
1417
	unsigned long flags;
1418

1419
	if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		stage = 2;
		output_mask = (1ULL << smmu->s2_output_size) - 1;
	} else {
		stage = 1;
		output_mask = (1ULL << smmu->s1_output_size) - 1;
	}

	if (!pgd)
		return -EINVAL;

	if (size & ~PAGE_MASK)
		return -EINVAL;

	input_mask = (1ULL << smmu->input_size) - 1;
	if ((phys_addr_t)iova & ~input_mask)
		return -ERANGE;

	if (paddr & ~output_mask)
		return -ERANGE;

1440
	spin_lock_irqsave(&smmu_domain->lock, flags);
1441 1442 1443 1444 1445 1446
	pgd += pgd_index(iova);
	end = iova + size;
	do {
		unsigned long next = pgd_addr_end(iova, end);

		ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1447
					      prot, stage);
1448 1449 1450 1451 1452 1453 1454 1455
		if (ret)
			goto out_unlock;

		paddr += next - iova;
		iova = next;
	} while (pgd++, iova != end);

out_unlock:
1456
	spin_unlock_irqrestore(&smmu_domain->lock, flags);
1457 1458 1459 1460 1461

	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1462
			phys_addr_t paddr, size_t size, int prot)
1463 1464 1465
{
	struct arm_smmu_domain *smmu_domain = domain->priv;

1466
	if (!smmu_domain)
1467 1468
		return -ENODEV;

1469
	return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
1470 1471 1472 1473 1474 1475 1476 1477 1478
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
	int ret;
	struct arm_smmu_domain *smmu_domain = domain->priv;

	ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1479
	arm_smmu_tlb_inv_context(smmu_domain);
1480
	return ret ? 0 : size;
1481 1482 1483 1484 1485
}

static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
					 dma_addr_t iova)
{
1486 1487 1488 1489
	pgd_t *pgdp, pgd;
	pud_t pud;
	pmd_t pmd;
	pte_t pte;
1490
	struct arm_smmu_domain *smmu_domain = domain->priv;
1491
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1492

1493
	pgdp = cfg->pgd;
1494 1495
	if (!pgdp)
		return 0;
1496

1497 1498 1499
	pgd = *(pgdp + pgd_index(iova));
	if (pgd_none(pgd))
		return 0;
1500

1501 1502 1503
	pud = *pud_offset(&pgd, iova);
	if (pud_none(pud))
		return 0;
1504

1505 1506 1507
	pmd = *pmd_offset(&pud, iova);
	if (pmd_none(pmd))
		return 0;
1508

1509
	pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1510
	if (pte_none(pte))
1511
		return 0;
1512

1513
	return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1514 1515 1516 1517 1518 1519
}

static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
				   unsigned long cap)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1520 1521
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	u32 features = smmu ? smmu->features : 0;
1522 1523 1524 1525 1526 1527 1528 1529 1530

	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return features & ARM_SMMU_FEAT_COHERENT_WALK;
	case IOMMU_CAP_INTR_REMAP:
		return 1; /* MSIs are just memory writes */
	default:
		return 0;
	}
1531 1532
}

1533 1534 1535 1536
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1537 1538 1539 1540
}

static int arm_smmu_add_device(struct device *dev)
{
1541
	struct arm_smmu_device *smmu;
1542 1543 1544 1545 1546 1547 1548
	struct iommu_group *group;
	int ret;

	if (dev->archdata.iommu) {
		dev_warn(dev, "IOMMU driver already assigned to device\n");
		return -EINVAL;
	}
1549

1550
	smmu = find_smmu_for_device(dev);
1551
	if (!smmu)
1552 1553
		return -ENODEV;

1554 1555 1556 1557 1558 1559
	group = iommu_group_alloc();
	if (IS_ERR(group)) {
		dev_err(dev, "Failed to allocate IOMMU group\n");
		return PTR_ERR(group);
	}

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	if (dev_is_pci(dev)) {
		struct arm_smmu_master_cfg *cfg;
		struct pci_dev *pdev = to_pci_dev(dev);

		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
		if (!cfg) {
			ret = -ENOMEM;
			goto out_put_group;
		}

		cfg->num_streamids = 1;
		/*
		 * Assume Stream ID == Requester ID for now.
		 * We need a way to describe the ID mappings in FDT.
		 */
		pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
				       &cfg->streamids[0]);
		dev->archdata.iommu = cfg;
	} else {
		dev->archdata.iommu = smmu;
	}

1582 1583
	ret = iommu_group_add_device(group, dev);

1584 1585
out_put_group:
	iommu_group_put(group);
1586
	return ret;
1587 1588 1589 1590
}

static void arm_smmu_remove_device(struct device *dev)
{
1591 1592 1593
	if (dev_is_pci(dev))
		kfree(dev->archdata.iommu);

1594
	dev->archdata.iommu = NULL;
1595
	iommu_group_remove_device(dev);
1596 1597
}

1598
static const struct iommu_ops arm_smmu_ops = {
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	.domain_init	= arm_smmu_domain_init,
	.domain_destroy	= arm_smmu_domain_destroy,
	.attach_dev	= arm_smmu_attach_dev,
	.detach_dev	= arm_smmu_detach_dev,
	.map		= arm_smmu_map,
	.unmap		= arm_smmu_unmap,
	.iova_to_phys	= arm_smmu_iova_to_phys,
	.domain_has_cap	= arm_smmu_domain_has_cap,
	.add_device	= arm_smmu_add_device,
	.remove_device	= arm_smmu_remove_device,
	.pgsize_bitmap	= (SECTION_SIZE |
			   ARM_SMMU_PTE_CONT_SIZE |
			   PAGE_SIZE),
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1617
	void __iomem *cb_base;
1618
	int i = 0;
1619 1620
	u32 reg;

1621 1622 1623
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1624 1625 1626 1627

	/* Mark all SMRn as invalid and all S2CRn as bypass */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(i));
1628 1629
		writel_relaxed(S2CR_TYPE_BYPASS,
			gr0_base + ARM_SMMU_GR0_S2CR(i));
1630 1631
	}

1632 1633 1634 1635 1636 1637
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1638

1639 1640 1641 1642 1643
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1644
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1645

1646
	/* Enable fault reporting */
1647
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1648 1649

	/* Disable TLB broadcasting. */
1650
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1651 1652

	/* Enable client access, but bypass when no mapping is found */
1653
	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1654 1655

	/* Disable forced broadcasting */
1656
	reg &= ~sCR0_FB;
1657 1658

	/* Don't upgrade barriers */
1659
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1660 1661 1662

	/* Push the button */
	arm_smmu_tlb_sync(smmu);
1663
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;

	dev_notice(smmu->dev, "probing hardware configuration...\n");

	/* Primecell ID */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
	smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
#ifndef CONFIG_64BIT
	if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
		dev_err(smmu->dev, "\tno v7 descriptor support!\n");
		return -ENODEV;
	}
#endif
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 |
		 ARM_SMMU_FEAT_TRANS_NESTED))) {
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

	if (id & ID0_CTTW) {
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
		dev_notice(smmu->dev, "\tcoherent table walk\n");
	}

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
	smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;

1768
	/* Check for size mismatch of SMMU address space from mapped region */
1769 1770
	size = 1 <<
		(((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1771
	size *= (smmu->pagesize << 1);
1772
	if (smmu->size != size)
1773 1774 1775
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
				      ID1_NUMS2CB_MASK;
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);

	/*
	 * Stage-1 output limited by stage-2 input size due to pgd
	 * allocation (PTRS_PER_PGD).
	 */
#ifdef CONFIG_64BIT
1796
	smmu->s1_output_size = min_t(unsigned long, VA_BITS, size);
1797 1798 1799 1800 1801 1802
#else
	smmu->s1_output_size = min(32UL, size);
#endif

	/* The stage-2 output mask is also applied for bypass */
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1803
	smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1804 1805 1806 1807 1808 1809

	if (smmu->version == 1) {
		smmu->input_size = 32;
	} else {
#ifdef CONFIG_64BIT
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1810
		size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
#else
		size = 32;
#endif
		smmu->input_size = size;

		if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
		    (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
		    (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
			dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
				PAGE_SIZE);
			return -ENODEV;
		}
	}

	dev_notice(smmu->dev,
		   "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1827 1828
		   smmu->input_size, smmu->s1_output_size,
		   smmu->s2_output_size);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	return 0;
}

static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1849 1850 1851
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1867 1868 1869 1870
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1882

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
1908
		goto out_put_masters;
1909

1910 1911
	parse_driver_options(smmu);

1912 1913 1914 1915 1916
	if (smmu->version > 1 &&
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1917
		err = -ENODEV;
1918
		goto out_put_masters;
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1938 1939

	arm_smmu_device_reset(smmu);
1940 1941 1942 1943 1944 1945 1946 1947
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1948 1949
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1977 1978
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1979 1980 1981
		of_node_put(master->of_node);
	}

1982
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1983 1984 1985 1986 1987 1988
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1989
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	return 0;
}

#ifdef CONFIG_OF
static struct of_device_id arm_smmu_of_match[] = {
	{ .compatible = "arm,smmu-v1", },
	{ .compatible = "arm,smmu-v2", },
	{ .compatible = "arm,mmu-400", },
	{ .compatible = "arm,mmu-500", },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
#endif

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.owner		= THIS_MODULE,
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
	int ret;

	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
2023
	if (!iommu_present(&platform_bus_type))
2024 2025
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

2026
#ifdef CONFIG_ARM_AMBA
2027
	if (!iommu_present(&amba_bustype))
2028
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2029
#endif
2030

2031 2032 2033 2034 2035
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

2036 2037 2038 2039 2040 2041 2042 2043
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2044
subsys_initcall(arm_smmu_init);
2045 2046 2047 2048 2049
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");